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Abstract 

We propose a phase-modulation fluorometer (PMF) with a light-emitting diode (LED) or a 

laser diode (LD) used as an excitation light source (ELS) that is driven in the 

phase-modulation (PM) mode. The PM-ELS generates many frequency sidebands that spread 

in the vicinity of carrier frequency fc with the interval of modulation frequency fm depending 

on the maximum phase deviation φΔ . The scheme enables us to derive fluorescence lifetime 

values of a multicomponent sample at one time. We show a typical numerical simulation 

result for explaining the principle of operation. To demonstrate the effectiveness of the 

proposed PMF, we have measured fluorescence lifetimes of three kinds of inorganic 

fluorescent glasses and that of a mixture solution of 6101 −× M rhodamine 6G and 6101 −× M 

coumarin 152 in ethanol with a volume ratio of 1 :1. 

 

Keywords: phase-modulation fluorometer, phase-modulated light source, fluorescence 
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1.  Introduction 

In analytical chemistry, biochemistry, and organic- and inorganic-material science, 

fluorescence lifetime measurements play an important role in analyses for distinguishing 

samples. On the basis of fluorescence lifetime values, we are often able to distinguish between 

two fluorescent samples whose spectral shapes are similar to each other and which would 

otherwise be indistinguishable. 

Measurement methods for obtaining fluorescence lifetime values are divided into two 

categories: time-domain (TD) methods and frequency-domain (FD) methods1). In the TD 

method, we measure the impulse response of the fluorescence sample after pulsed excitation. 

In this case, we are able to obtain a fluorescence decay waveform directly and to measure 

weak fluorescence with precision by adopting a time-correlated single-photon-counting 

(TC-SPC) technique. This is the reason why the TC-SPC method has been utilized commonly. 

However, safety and damage considerations for the sample are required. Consideration to 

avoid the nonlinear optical effect is also required. On the other hand, the FD method is the 

measurement of the steady-state response of the sample for sinusoidally modulated excitation. 

Therefore, the FD method seems promising for use with biological samples. However, we 

have to use plural modulation frequencies to measure a multicomponent fluorescent sample. 

To solve this problem, a mode-locked laser with a high-repetition frequency has been used as 

an excitation light source (ELS); phase shifts of many harmonics of the fundamental repetition 

frequency are utilized for obtaining fluorescence lifetime values. Such a system works quite 

well for analytical purposes in the laboratory. However, the use of the mode-locked laser 

system results in some complications in constructing the total measurement system, 

troublesome adjustment and maintenance, large size, and high cost. In addition, flexibility for 

selecting the optimal excitation wavelength for the absorption band of the sample is restricted. 

In such a background, the ultraviolet (UV) or blue-light-emitting diodes (LED) or laser 
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diodes (LD) that have recently become available have alleviated the difficulties. Among the 

many FD instruments developed so far, the conventional PMF equipped with the LED (or LD) 

as the ELS is easy to construct and simple in operation2-6), where the conventional PMF means 

the traditional one that uses a single or a few modulation frequencies at most. Depending on 

kind of the fluorescent sample, the LED (or LD) can be replaced easily with another one so 

that its emission wavelength matches the absorption band of the sample. Therefore, the 

conventional PMF is still useful for the purpose of screening biological samples. However, 

two problems arise in practical application: (i) the use of PMF is limited to fluorescent 

samples whose quantum efficiencies are moderately high, and (ii) the fluorescence decay 

curve should be expressed by a single-exponential function. The former problem might be 

alleviated by using a photon-counting PMF7). For the latter problem, the use of a PMF with 

plural modulation frequencies has been proposed8-22). We also have proposed a 

Fourier-transform (FT)-PMF23,24) and a frequency-multiplexed (FMX)-PMF25) incorporated 

with the UV or the blue LED. Although the two PMF’s work well, there still remains a 

problem in preparing the excitation waveform peculiar to each PMF, which is somewhat 

cumbersome: we need a frequency-chirped waveform for the FT-PMF and a 

frequency-multiplexed and phase-randomized one for the FMX-PMF. Such a general-purpose 

waveform generator is difficult to prepare in a practical analytical situation. Furthermore, for 

the case of the FMX-PMF, the number of modulation frequencies and that of data points were 

limited to less than 10 and 3,000 at most, respectively, because of the tremendous 

computation-time problem due to the autoregressive-model-based data-analysis technique. A 

simple PMF that is easy to construct is required. 

In the present paper, although the final goal and the fundamental principle for deriving 

fluorescence lifetime values are the same as described in the previous one, we propose an 
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alternative technique and concept of PMF for solving the problem: the use of a 

phase-modulated excitation light source (PM-ELS). With the PM-ELS, we are able to obtain 

many sidebands that spread over at the upper and the lower side of carrier frequency fc with 

the interval of modulation frequency fm. In the present paper, for the sake of simplicity, we use 

an arbitrary waveform generator and a digital oscilloscope for generating and recording the 

PM waveform, respectively, as before.25) However, we can easily replace them anytime with 

two commercially available phase-locked-loop integrated circuits (PLL-IC). To our 

knowledge, no such idea or instrumental technique has yet been reported. To demonstrate the 

performance of the proposed PMF, we have measured fluorescence lifetime values of three 

kinds of inorganic fluorescent glasses and that of a mixture solution of 6101 −× M rhodamine 

6G and 6101 −× M coumarin 152 in ethanol with a volume ratio of 1 :1. 

 

2.  Principle of PMF with PM-ELS 

Figure 1 shows a conceptual diagram that illustrares the principle of PMF with PM-ELS. 

The PM excitation waveform (a) as a function of time t is given by 

 ( ){ }tftfAte mc πφπ 2cos2cos)( Δ+= , (1) 

where fc is the carrier frequency, fm is the modulation frequency, and φΔ  is the maximum 

phase deviation. The fluorescence waveform (b) is given by the convolution of the excitation 

wave (a) with the fluorescence decay wave that would be obtainable from the impulse 

excitation. Waveforms (c) and (d) are the modulus )(1 fA  and the phase spectrum )(1 fθ , 

respectively, which are obtainable by Fourier transform of the excitation waveform (a). 

Similarly, waveforms (e) and (f) are the modulus )(2 fA and the phase )(2 fθ  spectrum, 

respectively, obtainable from the fluorescence waveform (b). The two waveforms (c) and (e) 

have many sidebands around the carrier frequency fc with the interval of fm. The number and 
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magnitudes of the sidebands depend on φΔ . The horizontal dotted line depicted in (e) [and 

(c)] indicates a threshold level, which is used for calculating the discrete phase-difference 

spectrum )()()( 21 fff θθθ −=  shown in (g). When calculating )( fθ  from (d) and (f), 

uninformative phase components are discarded: that is, the phase spectral components whose 

corresponding modulus spectra below the threshold level in magnitude are made to be zero. 

This is because such components are embedded in noise in a practical situation. From )( fθ , 

we can derive a fluorescence lifetime value (or values) by the conventional procedure in 

PMF1). In this manner, measurements at plural modulation frequencies can be carried out at 

one time. 

We can carry out precise measurements by chooing the optimal PM parameters of fc, fm, and 

φΔ  for a given or an unknown fluorescence lifetime value of τ . From the equation 

θτπ tan2 =f , we can derive the following relation: 

 
θ
θ

τ
τ

2sin
2Δ

=
Δ . (2) 

The optimal modulation frequency that gives the minimum value of ττ /Δ  is πτ2/1opt =f  

and then 4/πθ = . We therefore should determine cf  so as to be equal to optf , taking into 

account the other PM parameters. Although we should set the value of φΔ  to be large so as 

to cover a wide frequency range, a large value of φΔ  results in small magnitude in the 

modulus spectrum. We therefore empirically set the threshold level as 10 % against the peak 

value, although the level should be changed depending on τ , noise level, and the number of 

accumulations of waveforms. For the 10 %-thereshold level, we set πφ 2=Δ  to generate 

around ten sideband spectral lines and set fm = fc / 10  to cover the frequency range of around 

10 fm . 
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In principle, the overall noise-proof capability of the proposed PMF is the same as that of the 

conventional one from the viewpoint of signal-gathering efficiency. However, the proposed 

PMF enables us to use plural modulation frequencies at one time. Extending the above 

procedure to a multicomponent sample is straightforward1,16). Even for the single-component, 

the proposed PMF is useful for readily confirming whether it actually consists of a single 

component. 

 

3.  Numerical Simulation 

In order to demonstrate that the proposed PMF works well for the multicomponent sample in 

a situation with noise, we carried out a numerical simulation, in which two different series of 

artifitial noise were added to the excitation and the fluorescence waveform independently. 

Figure 2(a) shows the PM excitation waveform, where πφ 2=Δ , fc= 100 MHz, and fm = 10 

MHz. We set the sampling frequency fs to be 25 GHz (data interval; tΔ = 40 ps) and the 

number of total data points N = 10,000. Figure 2(b) shows the fluorescence waveform, where 

we assumed that the fluorescence decay waveform was expressed as the sum of two 

exponentials: ( ) ( )2211 /exp/exp)( ττ tatatf −+−= , where =1τ 10.0 ns, =2τ 1.0 ns, and 

=12 /aa 5.0. For the excitation and the fluorescence waveform, we superimposed 

=σ 5 %-Gaussian-distributed noise against the peak-to-peak value, where σ  is a standard 

deviation of Gaussian noise. Figures 2(c) and 2(d) show Fourier transforms of (a): (c) is a 

modulus spectrum and (d) a phase spectrum. Similarly, Figs. 2(f) and 2(g) show Fourier 

transforms of (b): (f) is a modulus spectrum and (g) a phase spectrum. Figure 2(e) shows a 

plot of phase values versus modulation frequency, which was extracted from (d) using the 

10 % threshold level depicted in (c). Similarly, Fig. 2(h) shows a plot of phase values versus 

modulation frequency, which is obtained from (g) using (f). Figure 2(i) shows a phase 
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difference spectrum )( fθ  calculated from (e) and (h). The solid line shows the theoretically 

calculated curve for the true values of =1τ 10.0 ns, =2τ 1.0 ns, and =12 /aa 5.0. In this 

fashion, we carried out thirty independent numerical trials to evaluate the influence of noise on 

the assumed true values. The estimated values were =1̂τ 9.9±0.1 ns, =2τ̂ 1.0±0.1 ns, and 

=12 /aa 4.9±0.1 ns. In spite of adding =σ 5 %-Gaussian noise to both the excitation and the 

fluorescence waveform independently, the proposed scheme worked well. 

 

4.  Experimental Setup 

Figure 3 shows a schematic diagram of the proposed PMF with PM-ELS. In order to 

demonstrate the performance of the PMF, we carried out two basic measurements. The first 

one was the measurement of fluorescence lifetime values of three kinds of fluorescent glasses 

that are commercially available: Lumilass B, Lumilass G9, and Lumilass R7 (Sumita Optical 

Glass) with peak absorption and emission wavelengths of 353 nm and 413 nm, 315 nm and 

543 nm, and 393 nm and 613 nm, respectively. Here, we used a UV LED (NSHU590E, 

Nichia) as the PM-ELS, the peak emission wavelength of which was 365 nm. The UV LED 

was driven with a 15 mA dc bias current, and a 20 mApp PM signal obtained from an arbitrary 

waveform generator (AWG 520, Tektronix) was superimposed on the dc bias. Average light 

power on the sample point was about 10 nW. We inserted a low-pass filter (LPF) in the 

emission side: SCF-50S-42L (–3dB cutoff wavelength cλ = 420 nm, Sigma Koki) for the case 

of Lumilass B,	 SCF-50S-48Y ( cλ = 480 nm) for that of Lumilass G9, and SCF-50S-58O 

( cλ = 580 nm) for that of Lumilass R7. When obtaining the reference waveform, we replaced 

each sample by a diffusion plate that had no wavelength dependence in reflection. The output 

signal obtained from a photomultiplier tube (PMT; 7400U, Hamamatsu Photonics) was fed 
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into a digital oscilloscope (TDS5054, Tektronix), in which an accumulation procedure was 

carried out 1,000 times for N = 5,000. For demonstrative purposes, we used two pairs of PM 

parameters (fc, fm) for the fixed value of πφ 2=Δ  so that two decades of the frequency 

bandwidth was covered: (i) (fc, fm) = (50, 5.0 kHz) and (ii) (500, 50 kHz) for the case of 

Lumilass B, (i) (500, 50 Hz) and (ii) (5.0 kHz, 500 Hz) for that of Lumilass G9, and (i) (500, 

50 Hz) and (ii) (5.0 kHz, 500 Hz) for that of Lumilass R7. 

The second measurement is that of fluorescence lifetime values of 6101 −× M rhodamine 

6G in ethanol, 6101 −× M coumarin 152 in ethanol, and a mixture of the two solution a volume 

ratio of 1 :1. The peak wavelength of absorption and that of emission of rhodamine 6G were 

531 and 553 nm, respectively. Those of coumarin 152 were 400 and 505 nm, respectively. For 

these measurements, we used a violet LD (NDV4313, Nichia) as the PM-ELS, the emission 

wavelength of which was 405 nm. The violet LD was driven with a 70 mA bias current and a 

40 mApp PM signal was superimposed on it. The average power on the sample point was about 

65 µW. The experimental procedure was the same as above, except that the number of 

accumulations and that of sampling points were increased from 1,000 to 10,000 and 5,000 to 

100,000, respectively. We inserted LPF on the emission side: SCF-50S-48L ( cλ = 480 nm) for 

the case of rhodamine 6G and SCF-50S-42L ( cλ = 420 nm) for that of coumarin 152 or the 

mixture solution. In these measurements, we again used two pairs of PM parameters for the 

fixed value of πφ 2=Δ : (i) (fc, fm) = (20, 2.0 MHz) and (ii) (100, 10 MHz).  

 

5.  Results and Discussion 

Figures 4(a)-4(c) show plots of phase difference versus frequency, which were obtained 

from the three fluorescent glasses: (a) Lumilass B, (b) Lumilass G9, and (c) Lumilass R7. We 
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plotted modulation ratio spectra as well as phase difference spectra for reference purposes. In 

each figure, the solid line shows the theoretically calculated curve. Plots of white circles and 

black circles represent data points obtained from the PM parameters (i) and (ii), respectively, 

as described in the experimental section. Concerning Lumilass B and Lumilass R7, we found 

that their fluorescence decays could be approximated by a single-exponential function with 

=τ̂ 792±0.1 ns and =τ̂ 2.15±0.01 ms, respectively. For Lumilass G7, however, we found that 

the decay could not be approximated by a single-exponential one. As shown in the figure, the 

decay should be expressed as the sum of two exponentials: )ˆ/exp(ˆ)ˆ/exp(ˆ 2211 ττ tata −+− , 

where =1̂τ 2.31±0.01 ms, =2̂τ 35.5±0.1 ns, and =12 ˆ/ˆ aa 850±10. At present, we have no 

means to confirm whether the estimated fluorescence lifetime values are true because no 

reliable information on compositions of the fluorescence glasses is available from the 

manufacturer’s data sheet26). However, our measurements with different PM parameter 

settings support the estimated results. 

Figure 5 shows plots of phase difference versus frequency for (a) 6101 −× M rhodamine 6G 

in ethanol, (b) 6101 −× M coumarin 152 in ethanol, and (c) the mixture solution. Again, solid 

lines show theoretically fitted curves: estimated values are (a) =τ̂ 4.0±0.1 ns, (b) =τ̂ 1.6±0.1 

ns, and (c) =1̂τ 4.0±0.1 ns, =2̂τ 1.6±0.1 ns, and 12 ˆ/ˆ aa =11±0.5. The lifetime value of 

rhodamine 6G and that of coumarin 152 agree well with literature values27,28). For the mixture 

solution, the ratio of ≅1122 ˆˆ/ˆˆ ττ aa 4.4 is almost equal to that of the total fluorescence intensities 

of the two solutions separately measured using a fluorescence spectrometer (RF−5300PC, 

Shimadzu) with the excitation wavelength of 405 nm. 

The measurement results shown above indicate that the proposed PMF is useful for 

estimating fluorescence lifetime values of a multicomponent sample as well as a 
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single-component one. Although we have proposed the use of PM-ELS in the present paper, 

we can also use a frequency-modulated (FM)-ELS for the same purpose. However, the 

PM-ELS might be somewhat easier to use than the FM-ELS. This is because we can determine 

the frequency bandwidth of the PM-ELS from only φΔ  independent of fm. 

 

6.  Conclusions 

 We have proposed a concept of a phase-modulation fluorometer (PMF) that incorporates a 

phase-modulated (PM) excitation light source (ELS). In the proposed PMF, frequency 

sidebands obtainable from the PM-ELS were used for estimating fluorescence lifetime values 

of a multicomponent fluorescent sample at one time. Even for a single-component sample, the 

proposed PMF is useful for confirming whether it actually consists of a single-component. 

Although we used an arbitrary waveform generator and a digital oscilloscope for obtaining the 

PM excitation waveform and recording the fluorescence waveform, respectively, we could use 

two commercially available PLL-ICs for modulation and demodulation purposes. Such a 

modification and the use of an amplitude limiter might improve the carrier-to-noise ratio of the 

PM waveform further, which is a common technique used in FM communication. The 

proposed PMF is easy to construct and simple in operation and has the potential for use in the 

screening of fluorescent samples. 

 

Acknowledgements 

This work was supported by a Grant-in-Aid for Scientific Research (B) No.21300167 from 

Japan Society for the Promotion of Science (JSPS). 



 12 

References 

1) J. R. Lakowicz: Principle of Fluorescence Spectroscopy (Springer, New York, 2006) 3rd 

edition. 

2) J. Sipior, G. M. Carter, J. R. Lakowicz, and G. Rao: Rev. Sci. Instrum. 68 (1997) 2666. 

3) P. Harms, J. Sipior, N. Ram, G. M. Carter, and G. Rao: Rev. Sci. Instrum. 70 (1999) 

1535. 

4) T. Iwata, T. Kamada, and T. Araki: Opt. Rev. 7 (2000) 495. 

5) H. Szmacinski and Q. Chang: Appl. Spectrosc. 54 (2000) 106. 

6) P. Herman and J. Vecer: Ann. N. Y. Acad. Sci. 1130 (2008) 56. 

7) T. Iwata, A. Hori, and T. Kamada: Opt. Rev. 8 (2001) 326. 

8) R. D. Spencer and G. Weber: Ann. N. Y. Acad. Sci. 158 (1969) 361. 

9) H. Merkelo, S. R. Hartman, T. Mar, and G. S. Singhal Govindjee: Science 164 (1969) 

301. 

10) M. J. Wirth and S. Chou: Appl. Spectrosc. 42 (1988) 483. 

11) F. V. Bright, C. A. Monig, and G. M. Hieftje: Anal. Chem. 58 (1986) 3139. 

12) F. V. Bright, C. A. Monig, and G. M. Hieftje: Appl. Opt. 26 (1987) 3526. 

13) F. V. Bright, C. A. Monig, and G. M. Hieftje: Appl. Spectrosc. 42 (1988) 272. 

14) M. Hauser and G. Heidt: Rev. Sci. Instrum. 46 (1975) 470. 

15) H. P. Haar and M. Hauser: Rev. Sci. Instrum. 49 (1978) 632. 

16) G. Ide, Y. Engelborghs, and A. Persoons: Rev. Sci. Instrum. 54 (1983) 841. 

17) E. Gratton and M. Limkeman: Biophys. J. 44 (1983) 315. 

18) E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko: 

Biophys. J. 46 (1984) 479. 

19) J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limkeman: Biophys. J. 46 



 13 

(1984) 463. 

20) B. A. Fedderson, D. W. Piston, and E. Gratton: Rev. Sci. Instrum. 60 (1989) 2929. 

21) E. Gratton, D. M. Jameson, N. Rosato, and G. Weber: Rev. Sci. Instrum. 55 (1984) 486. 

22) S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson: Rev. Sci. 

Instrum. 72 (2001) 3396. 

23) T. Iwata: Opt. Rev. 10 (2003) 31. 

24) T. Iwata, H. Shibata, and T. Araki: Meas. Sci. Technol. 16 (2005) 2351. 

25) T. Iwata, A. Muneshige, and T. Araki: Appl. Spectrosco. 61 (2007) 950. 

26) http://www.sumita-opt.co.jp/en/functional/lumilass.pdf. 

27) D. Magde, R. Wong, and P. G. Seybold: Photochem. Photobiol. 75 (2002) 327. 

28) P. Dahiya, M. Kumbhakar, T. Mukherjee, and H. Pal: Chem. Phys. Lett. 414 (2005) 148. 



 14 

Figure Captions 

Fig.1  Illustration of the principle of PMF with PM excitation light source.  

Fig.2  Numerical simulation result for PMF with PM excitation light source. (a) PM 

excitation waveform e(t) with πφ 2=Δ , fc = 100 MHz, and fm = 10 MHz, where fs = 

25 GHz and N = 10,000, (b) fluorescence waveform with =1τ 10.0 ns, =2τ 1.0 ns, 

and =12 /aa 5.0. =σ 5 %-Gaussian-distributed noise was added on the two 

waveforms (a) and (b) independently. (c) and (d) are Fourier transforms of (a): (c) is a 

modulus spectrum and (d) is a phase spectrum. (f) and (g) are Fourier transforms of 

(b): (f) is a modulus spectrum and (g) is a phase spectrum. (e) and (h) are plots of 

phase values extracted from (d) and (g), respectively, using threshold levels shown in 

(c) and (f). (i) Phase difference spectrum, where solid line shows theoretically 

calculated values for =1τ 10.0 ns, =2τ 1.0 ns, and =12 /aa 5.0. 

Fig.3  Schematic diagram of the proposed PMF. For the measurements of fluorescent glasses, 

a 365 nm UV LED was used and for that of rhodamine 6G and coumarin 152, a 405 

nm LD was used as the ELS. 

Fig.4  Phase difference spectra for three kinds of fluorescent glasses: (a) Lumilass B, (b) 

Lumilass G9, and (c) Lumilass R7, where modulation ratios as well as phase 

differences are plotted for reference. In each plot, the solid line shows the theoretically 

calculated curve. White and black circles represent data points obtained from PM 

parameters (i) and (ii), respectively, as described in the experimental section. 

Fig.5 Phase difference spectra: (a) 6101 −× M rhodamine 6G in ethanol, (b) 6101 −× M 

coumarin 152 in ethanol, and (c) a mixture of the two solutions at a volume ratio of 1 : 

1. In each plot, the solid line shows the theoretically calculated curve. White and black 

circles represent data points obtained from the PM parameters (i) (fc, fm) = (20, 2.0 
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MHz) and (ii) (100, 10 MHz), respectively, for a fixed value of πφ 2=Δ . 
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