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SUMMARY  Conversion between multi-level modulation formats is
one of key processing functions for flexible networking aimed at high spec-
tral efficiency (SE) in optical fiber transmission. The authors previously
proposed an all-optical format conversion system from binary phase-shift
keying (BPSK) to quadrature PSK (QPSK) and reported an experimental
demonstration. In this paper, we consider its reversed conversion, that is,
from QPSK to BPSK. The proposed system consists of a highly nonlin-
ear fiber used to generate complex conjugate signal, and a 3-dB directional
coupler used to produce converted signals by interfering the incident signal
with the complex conjugate signal. The incident QPSK stream is converted
into two BPSK tributaries without any loss of transmitting data. We show
the system performances such as bit-error-rate and optical signal-to-noise
ratio penalty evaluated by numerical simulation.

key words: optical processing, modulation format, four-wave mixing,
OPSK, BPSK

1. Introduction

To meet the demand in rapidly growing communication traf-
fic, advanced modulation formats have been employed to in-
crease transmission capacity and spectral efficiency (SE) in
optical fibers with developing digital signal processing ca-
pability [1], [2]. In such spectrally efficient networks, flexi-
ble conversion between different levels of multi-level modu-
lation formats without using optical-to-electrical (O/E) and
electrical-to-optical (E/O) conversions will be important to
improve utilization of fiber’s spectral resource and to sup-
press power consumption in network nodes.

Various all-optical techniques have been studied for
modulation format conversion from lower-order to higher-
order to increase spectral efficiency. For example, from
on-off-keying (OOK) to binary phase-shift keying (BPSK),
quadrature PSK (QPSK), or 8 PSK have been reported us-
ing nonlinear effects in a semiconductor optical amplifier
(SOA) and a highly nonlinear fiber (HNLF) [3], [4]. Among
different m-ary PSKs, the authors proposed passive interfer-
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ence method to convert from BPSK to QPSK [5], and the
same principle was further applied to convert to quadrature
amplitude modulation (QAM) by Parmigiani et al. [6].

In this paper, we consider its reverse conversion, that
is, from QPSK to BPSK. Such reverse conversion from
higher-order to lower-order is needed when the signal trans-
mitted in long-haul is then destined to local or short-reach
transmission. To convert from QPSK to BPSK, various
nonlinear methods have been reported. Conversion using
phase erasure by four-wave mixing (FWM) [7], using phase
squeezing by phase-sensitive amplification PSA) in HNLF
or periodically poled lithium niobate (PPLN) [8], and us-
ing phase-sensitive FWM in HNLF [9] or PPLN [10] have
been reported. Among these methods, the first one using
phase erasure outputs only a half of the original data se-
quence as a BPSK stream with a single pump light. The
second method generates either of the two BPSK tributaries
by setting 0 or n/2 phase-shift in the incident QPSK se-
quence, where two pump lights are required. On the con-
trary, the third method generates two BPSK tributaries with-
out loss of the original data; however, four phase-arranged
pump lights are required. In these three methods, the inci-
dent QPSK stream and output BPSK streams have different
wavelengths. This wavelength difference is inefficient be-
cause it might need additional wavelength conversion when
a signal once isolated for format conversion is re-inserted
into the same wavelength channel among other WDM chan-
nels.

Some conversion techniques with no signal center
wavelength shift have been reported so far to solve the issue.
Experimental demonstration using dual-pump PSA [11] de-
multiplexed each phase component of a QPSK signal sep-
arately. Our previously reported method [12] converted a
QPSK signal to two BPSK tributaries simultaneously with-
out loss of the original data by using FWM, in which the
quantitative analysis based on bit-error-rate (BER) was lim-
ited on the comparison between the nonlinear media of
HNLF or SOA. Recently proposed conversion method [13]
includes experimental results and is expected to be more sta-
ble by using polarizers, though, the experimental analyses
were mainly performed based on constellation diagrams.

In this paper, we describe the concept and detailed op-
eration principle of the proposed format conversion from
QPSK to BPSK as well as quantitative analyses based on
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BER such as dependencies of signal OSNR, pump power,
laser linewidth, pulse shape, and symbol rate by numerical
simulation in order to assess the conversion system perfor-
mance. Moreover, issues to be considered for practical use
of the proposed system are also discussed.

2. Operation Principle

The proposed format conversion system is schematically il-
lustrated in Fig. 1. The setup consists of two stages, that
is, one is for generating the phase conjugate of the incident
QPSK signal, and another is to interfere the input QPSK sig-
nal with the generated phase conjugate signal. An incident
QPSK sequence E; is combined with orthogonally polar-
ized two pump signals E,; and E,,, and these signals are
incident in a HNLF. The incident QPSK signal with angular
frequency w; (= 2nf;) in the HNLF is written as

E, .
Ei(t,7) = e,—=e/ @D N £t —iAT)
ﬁ Z

X [ej(¢:i+ﬂ/2) + ejesg,-] (1)

— exEsej(‘“J"_ﬁJ‘Z) Z folt - iAT)em,-’
i

where e, is the unit vector in x polarization, Ej is the real-
valued amplitude, j is the imaginary unit, f(#) denotes a
pulse shape, B, is the propagation constant, ¢;, and ¢y, are
the in-phase and the quadrature phase of ith data sequence,
respectively, and AT is the pulse period. The QPSK phase
¢; is derived as given by

sin(¢y, + /2) + sin(¢p,)
cos(¢y, + m/2) + cos(¢g,) |

¢; = arctan

2

The two continuous wave (CW) pump signals with angular

frequencies w,; (= 2nf,1) and wp, (= 27f,) in orthogonal

polarization states are given by
Epl(t’ 7) = eXEplej(wp]t_ﬁplZ)’
En(tz)=e, Epzej(w,,zt—ﬁpzz)’
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where 8,1 and B, are the propagation constants and the
pump angular frequencies are chosen to be w1 + w,> = 2w;
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to induce FWM with the same signal center frequency [14].

By considering the phase matching condition, £, +
B2 = 2f,, the generated optical field Er at the output of
the HNLF at z = L is given by

Ep = e)kE,Ep Epe/ PP % fit — iAT)e *,  (4)
i

where « is the conversion efficiency, E; and e~/* corre-
spond to the real-valued amplitude and the complex con-
jugate phase term of the incident signal, respectively. The
generated phase conjugate signal E is phase shifted by 7/2
to be E}. = Epe’™?. The original signal E; is attenuated
by @ = kE, E,; with the attenuator, and its polarization is
rotated to be

E| = e aE /"D " fi(t — iAT)el”. (5)
i

We obtain two outputs from the 3-dB coupler as given by

(Eoutl )_L(l _J )( E;‘)
Eout2 \/5 _j 1 E’s 6

) sin ¢; ©)
=e, V20 E e l@st=BsL) Z folt - iAT)( cos )

The output signals correspond to the two converted BPSK
signals as shown in Table 1. The constellation of the inci-
dent QPSK code and the output BPSK codes are illustrated
in Fig. 2.

It is worth noting that this conversion is assumed to
be performed separately from the transmission fiber. There-
fore, there is no concern about a certain bandwidth occupa-
tion by pump and FWM-product waves even for applying
to WDM signals because each of them would be demul-
tiplexed in advance and then converted as the channel-by-
channel manner.

Table 1  Incident phase ¢; and the outputs.
li=¢n/n Qi =dgilr [ sing;  cos¢;
0 0 /4 1 1
0 1 3n/4 1 -1
1 1 Sr/4 -1 -1
1 0 r/4 -1 1
B2
’ E
Phase . outl

shifter

A ' A

Fig.1  All-optical wavelength-shift-free modulation format converter from a QPSK stream to two

BPSK tributaries using FWM in a HNLF.
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Fig.2
BPSK codes.

Constellation of each incident QPSK code and the converted

3. Numerical Simulation

The proposed format conversion is demonstrated by numer-
ical simulation using OptiSystem (Optiwave Systems Inc.).
The system model is shown in Fig.3. The RZ QPSK sig-
nal at 5 Gbaud is generated using a 10-dBm laser source at
fs = 193.2 THz. The pump lasers have power of 10 dBm
at f,1 = 193.0 THz and f,; = 193.4 THz. The local
laser source at the coherent detection has power of 5 dBm

Optical Frequency (THz) Optical Frequency (THz)

Setup used in numerical simulation. Optical spectra are shown as insets.

at fio = f;. All the laser sources are assumed to have
linewidth of 100 kHz. We assume that these laser sources
are phase-locked in order to keep the phase matching condi-
tion between the signal and the pump laser sources, and to
avoid frequency offset error between the signal and the lo-
cal laser sources. A discussion on how this can be achieved
will be given in Sect.4. An ASE noise is added in both
polarizations before format conversion to measure bit-error-
rate (BER) performance. The WDM combiner has band-
width of 100 GHz. The HNLF has length of L = 100 m
with nonlinearity n, = 2.7 X 1072° m%/W [15]. The zero-
dispersion wavelength is 1550 nm with dispersion slope
of 0.075 ps/nm?/km. The band-pass filter (BPF) after the
HNLF has a rectangle-shape transmission function with
width of 20 GHz centered at f; and sideband suppression
of 50 dB. The filtered signal is sent to the polarization beam
splitter (PBS) to be separated in TE and TM polarizations.
The variable optical attenuator (VOA3) is adjusted so that
the intensity of the phase conjugate signal in TM mode is
equal to that of the original signal in TE mode. The phase
conjugate signal is phase-shifted by /2 and coupled with
the polarization converted original signal to generate two
BPSK signals. These two BPSK signals are demodulated
using coherent receivers with output currents /,; and I,;.
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Optical spectra at some points of the conversion system are
also shown as insets. In order to obtain higher FWM conver-
sion efficiency, we set the signal wavelength to nearly zero-
dispersion wavelength of HNLF. The FWM conversion effi-
ciency from the incident signal to the phase conjugate signal
is —26.3 dB and —16.3 dB at a pump power of 10 dBm and
15 dBm, respectively.

Figure 4 shows the waveforms in the conversion cir-
cuit, where the linewidth of all the lasers was set at 0 Hz
to show ideally converted waveforms. Two coded signals /
and Q shown in (a) and (b) are generated using a QPSK pre-
coder from a single pseudorandom binary sequence (PRBS)
of 2% — 1 at bit rate of Ry = 10 Gb/s. A modulated RZ
QPSK signal E at symbol rate of Ry/2 is shown in (c). Two
converted BPSK signals E and E, are shown in (d) and
(e), respectively. These two BPSK signals are detected by
coherent balanced detectors as shown in (f) and (g) that co-
incide with the original / and inverse Q codes, respectively.

The evaluated BER performance as a function of
OSNR of the original QPSK signal measured at the input
port of the WDM multiplexer for the cases of pump power
of 5 dBm, 10 dBm, and 15 dBm is shown in Fig.5 (a). As
a reference, a back-to-back BER performance without for-
mat conversion is also evaluated by directly detecting the
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Fig.4  Optical waveform through format conversion by HNLF; (a) NRZ
I signal for QPSK modulation, (b) NRZ Q signal for QPSK modulation,
(c) generated RZ QPSK signal, (d) converted BPSK signal 1, (e) converted
BPSK signal 2, (f) balanced detected photo current 7,1, and (g) balanced
detected photo current 7,5.
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noise-added QPSK signal with a coherent QPSK receiver.
Two measured results, I,; and [,,, correspond to the 7 and Q
signals, respectively. The signal power at the WDM com-
biner is 2.25 dBm. Even at low pump power of 5 dBm,
error-free operation is achieved with high OSNR. Sample
constellation maps of the original QPSK signal and the ex-
tracted two BPSK signals at pump power of 10 dBm are
shown in Figs. 5 (b) and (c) when OSNR of original QPSK
signal is 22 dB and 28 dB, respectively. The average am-
plitude of each signal is normalized to 1. It is found from
these constellation maps that the OSNR degradation affects
the signal quality of converted BPSK sequences.

The BER performance is also plotted as a function
of the signal power at the WDM combiner in Fig. 6 (a),
where pump power is 10 dBm and two values of OSNR,
25 dBm and 30 dBm, are assumed as a parameter. It is
found that there is a noise floor for a given OSNR. These
BER curves can be explained qualitatively by ASE noise
and shot noise. In our simulation, the shot noise is domi-
nant in the receiver photo detector due to the coherent de-
tection in which sufficient power is always injected by the
local laser source. Therefore, the slope of the BER curves
at lower signal power in Fig. 6 (a) is caused mainly by the
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Fig.5 BER performance and constellation examples of the format con-
version; (a) BER as a function of OSNR with pump power of 5 dBm,
10 dBm, and 15 dBm, and the signal power of 2.25 dBm at the WDM
combiner, (b) constellation map of original QPSK signal and extracted
two BPSK signals at pump power of 10 dBm and OSNR of 22 dB, and
(c) 28 dB.
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Fig.6  BER performance of the format conversion; (a) BER as a function
of the signal power at the WDM combiner with pump power of 10 dBm,
and (b) OSNR penalty from back-to-back result, where the linewidth of the
pump lights is varied as a parameter.

shot noise, whereas the noise floor at higher signal power is
caused dominantly by the given ASE noise.

The OSNR penalty from the back-to-back result at 10~°
BER is plotted as a function of pump power in Fig. 6 (b),
where the linewidth of the two pump lights is varied as a
parameter. The signal power is the same as in (a) and the
pump power is 10 dBm. In addition to the constant noise
floor for a given OSNR, the power of the phase conjugate
signal depends on the pump power. Therefore, the OSNR
penalty has a direct relation with the pump power. The
OSNR penalty shows 7.3 dB from back-to-back result when
the pump power is 15 dBm at any linewidths. Although
the FWM efficiency at this pump power is —16.3 dB as de-
scribed above, calculated OSNR penalty is 9-dB lower than
the value corresponding to the FWM efficiency. This differ-
ence can be explained by following three reasons. First of
all, in order to achieve the same BER, QPSK format needs
to have 3-dB higher energy than that of BPSK format in
principle because QPSK has two bits in a single symbol.
Second, we have used an extra optical splitter in frontend
module to detect in-phase and quadrature components sep-
arately in the back-to-back QPSK measurement, resulted in
3-dB power loss. Final reason is the unbalance of the ASE
noise level between the original QPSK signal and the com-
plex conjugate QPSK signal. In our simulation, 10~° BER is
obtained at 15-dBm pump power and 2.25-dBm QPSK sig-
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Fig.7  BER performance of the format conversion for NRZ signals using
100-m HNLF, where the pump power is 10 dBm, and the signal power is
6.56 dBm at the WDM combiner.

nal on TM polarization with 18.4-dB OSNR. The ASE noise
added to the original QPSK signal on each polarization is on
the power level of 2.25 — 18.4 —3 = —19.15 dBm(/0.1 nm).
In this case, complex conjugate QPSK signal is generated at
2.25 - 16.3 = —14.05 dBm on TE polarization due to the
FWM efficiency. This complex conjugate QPSK signal is
mixed with the ASE noise which has already been on TE
polarization, namely, —14.05-dBm complex conjugate sig-
nal and —19.15-dBm(/0.1 nm) ASE noise. On TM mode,
original QPSK signal is just attenuated on the same power
level of —14.05 dBm without OSNR penalty. Therefore,
combining the TE polarization component having 16.3-dB
OSNR penalty due to the FWM efficiency with TM polar-
ization (which is rotated to be TE polarization in advance)
component having no OSNR penalty results in almost 3-dB
decrease of OSNR penalty on the converted BPSK signals.
Thus, above three reasons lead to 9-dB lower OSNR penalty.
In other pump power case, OSNR penalty increases almost
in steps of 10-dB corresponding to the FWM efficiency de-
crease due to the total pump power decrease. In addition,
the OSNR penalty does not depend on the laser linewidth
because all laser source is assumed to be phase-locked in
our simulation.

We demonstrate the format conversion for QPSK signal
in NRZ form with the setup without the intensity modulator
(IM)) in Fig. 3. The simulated result of BER performance is
shown in Fig. 7, where pump power is 10 dBm and the signal
power is 6.56 dBm at the WDM combiner. The OSNR at
BER of 107 is about 30 dB and the OSNR penalty from the
back-to-back result is 17 dB. The OSNR penalty is almost
the same as that for RZ signals.

The OSNR penalty from the back-to-back result as a
function of the symbol rate is plotted in Fig. 8 where the
symbol rates of the QPSK signal are set to 5, 8, 16, 24, and
32 GBaud. The bandwidth of the BPF after the HNLF is
changed to 100 GHz in these cases. The pump lasers have
power of 10 dBm. The OSNR penalty shows almost the
same value, therefore, no additional performance degrada-
tion is produced by the symbol rate change.
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4. Discussion

In this section we discuss some important issues for practi-
cal use of the proposed conversion scheme. The first issue
is about the phase-locking. There are two aspects of phase-
locking that one is the need of phase-locked signal and pump
laser sources and another is stabilizing the interference be-
tween the signal and the phase conjugated signal. For the
phase-locked laser sources, two pump lights can be locked,
for example, by generating frequency comb from a com-
mon laser source. Phase-locking between signal and pumps
should be stabilized faster than the phase fluctuation. A pos-
sible method has been reported [11] in which the output of
an optical phase comparator has been used as the error sig-
nal in a phase-locked loop. For the stabilized interference
between the signal and the phase conjugated signal, a pos-
sible solution is the photonic integrated circuit. Although
simulations are performed with HNLF, any nonlinear media
supporting the possibility of integration can be used such
as SOA and silicon nanowires. By using such media, the
QPSK-to-BPSK conversion block can be completely inte-
grated from the WDM combiner until the output of the 3 dB
coupler.

Then, we consider another issue for better perfor-
mance, that is, conversion efficiency of the proposed
method. The FWM efficiency depends on the total power
of two pumps, fiber length and nonlinear coefficient of the
HNLF. Lower limit of the FWM efficiency can be deter-
mined by OSNR of the incident QPSK signal as discussed
in the result of OSNR penalty. At least almost equivalent
value to the signal OSNR is needed. On the contrary, upper
limit of the FWM efficiency can be dominated by stimulated
Brillouin scattering (SBS). Beyond the SBS threshold, the
pump power is not efficiently used for the conversion and
the FWM efficiency is restricted [16].

At the end of the discussion section, the other im-
portant issue is mentioned regarding the system configu-
ration and power consumption compared to electrical re-
generation with O/E and E/O conversion. With respect to
the system configuration for a single channel, as a differ-
ent set of two DFB pump lasers is needed in our proposed
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method, the electrical regeneration method also needs at
least the same number of lasers due to its coherent detec-
tion and retransmission in an optical transceiver. Although
two parallel retransmission is needed for the electrical re-
generation method because our method generates two BPSK
streams simultaneously, such retransmission can be replaced
with a polarization multiplexed system with a single opti-
cal laser source. For applying to WDM system, both meth-
ods can be scaled with the number of WDM channels be-
cause our method and the electrical regeneration method
need channel-by-channel conversion block and channel-by-
channel transceiver, respectively. With respect to the power
consumption, it is hardly assessed because of the implemen-
tation dependence of electrical modules such as materials
used, process rule of integrated circuits, clock speed, asso-
ciated control mechanism and etc. From a viewpoint of the
symbol rate, our method has a merit of being able to operate
at any symbol rate without changes in pump power as shown
in Fig. 8. Whereas the power consumption of the electrical
regeneration method can be qualitatively proportional to the
symbol rate because that of electrical logic circuits is also
proportional to the clock speed. This topic will be further
investigated in our future works for practical use of the pro-
posed method.

5. Conclusion

We have proposed an all-optical modulation format conver-
sion system from a QPSK signal to two BPSK signals by
using FWM which is the nonlinear conversion process that
allows us to operate with phase-modulated signals. The con-
version does not accompany a frequency shift between the
incident QPSK signal and the converted BPSK signals. The
data sequence of the incident QPSK signal is fully converted
to two BPSK sequences without any loss of data.

The performance of the proposed system have suc-
cessfully been demonstrated by numerical simulation. The
OSNR required for 10~° BER is around 18.4 dB and 27.5 dB
for pump power of 15 dBm and 10 dBm, respectively, for
the 100-m HNLF. The dependence of the OSNR penalty on
the linewidth of pump lasers has also been investigated. It
does not depend on the linewidth because all laser source is
assumed to be phase-locked in our simulation. The OSNR
penalty on the symbol rate shows almost the same value,
which results in no additional performance degradation by
the symbol rate change.

Since the proposed system is, in principle, applied
in polarization preserved networks, the conversion perfor-
mance is affected by fluctuation of polarization state and
polarization mode dispersion in transmission fibers. We will
investigate polarization-insensitive system and polarization-
diversity system as future works in order not only to over-
come such a degradation but also to apply to modulation
formats with polarization multiplexing. Taking the phase-
locking mechanism into account is also another big issue to
be investigated as our future works for practical use of the
proposed system.
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