
INTRODUCTION

The heat shock response, first observed in Drosophila
melanogaster over thirty years ago (1), is now recognized to
represent a universally conserved cellular defense program.
The heat shock response is mediated by the increased
expression of genes encoding a group of proteins referred
to as the heat shock proteins (HSPs) or stress proteins.
Over the last 30 years, the heat shock response has been
observed in cells from all organisms ; from bacteria to
human. In addition to heat shock, a variety of metabolic
insults, including heavy metals, amino acid analogs, oxi-
dants, and different metabolic poisons, also elicits the
response. Stress proteins are highly conserved with respect
to their primary structure, mode of regulation, and bio-
chemical function (2, 3). HSP expression is not limited to
cells undergoing acute stress, and several members of
HSP families are constitutively expressed. Many stress
proteins maintain cellular homeostasis by acting as molec-

ular chaperones (4-6). Molecular chaperones have been
defined as proteins that bind to and stabilize an otherwise
unstable conformer of another protein. By controlling
binding and release, they participate in the folding and
assemby of nascent and unfolded peptides and facilitate
protein transport to a particular subcellular compartment
and disposal by degradation (7). Stress proteins are classified
into families according to their apparent molecular weights
and respective inducers. Major stress proteins expressed
in mammalian cells are listed in Table 1.

Stress proteins are crucial for the maintenance of cell
integrity during normal cell growth as well as during
pathophysiological conditions. Most of our knowledge
concerning the homeostatic role of stress proteins has
come from studies using cultured cells. The best example
of the acquisition of tolerance by stress proteins is illustrated
by the phenomenon of“acquired thermotolerance”. Cells
subjected to a sublethal heat shock treatment or other
insults, if they are provided an appropriate recovery
period, are able to survive a second lethal stressor.
Although much less is known about their expression in
vivo, HSPs are acutely induced in intact animals in response
to various metabolic insults, such as ischemia/reperfusion
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or inflammation, as well as whole body hyperthermia
(8-10). Are the biochemical and functional properties of
the heat shock response/proteins observed in cultured
cells relevant to organs and tissues in the whole animal?
In order to address this issue, in this review, we will focus
on the HSP expression in vivo and on the clinical implica-
tions of the heat shock response/stress proteins. Because
of space limitations, we will not describe the structure of
stress proteins. In this regard, please refer to the recent
reviews and references therein (2-7).

INDUCTION OF HEAT SHOCK RESPONSE IN
VITRO

The expression of stress proteins is not only induced by
elevated temperature, but also by several environmental
stresses described above. Many of these agents/treat-
ments share the common property of affecting the proper
conformation of proteins. Consequently, the intracellular
accumulation of unfolded or misfolded“abnormal”protein
may be a common signal (11), but other mediators, including
classical second messengers, such as intracellular free

calcium, protein kinases, or alterations in DNA, have also
been suggested to induce stress proteins (12, 13).

The stress response in mammalian cells is usually con-
sidered to be transcriptionally regulated by the activation
of a pre-existing pool of the heat shock transcription factor
(HSF), which binds to the heat shock promoter element
(HSE) that is composed of at least three pentanucleotide
modules (nGAAn) arranged as a contiguous inverted
repeat (14). The HSF family includes HSF1, HSF2, HSF3,
and HSF4 in higher eukaryotes (15-19). HSF1 is identified
as the mediator of stress-induced transcription of heat
shock genes (17, 20, 21). HSF2 has been suggested to be
important for controlling the activities of heat shock gene
expression in normal or unstressed cells (21). The precise
physiological roles of HSF 3 and HSF 4 are not completely
elucidated (18, 19).

HSF1 is present in normal, unstressed cells as a monomer.
HSFs have two highly conserved regions : an NH2-terminal
DNA-binding domain of ̃100 amino acids and an adjacent
trimerization domain containing three leucine zippers. In
higher eukaryotes, there is a fourth leucine zipper domain
near the COOH-terminus that appears to interact directly

Table 1. Major stress proteins expressed in mammalian cells

Name Size
(kDa)

Location Remarks

ORP150

HSP 104/110

HSP90

Grp78 (Bip)

Grp75

HSC70

HSP70

HSP60

TCP-1

HSP56

HSP47

HSP40 (Hdj 1)

Small HSPs

HSP10

Ubiquitin

150

104/110

90

78

75

73

72

60

60

56

47

40

20-30

10

8

Endoplasmic reticulum

Cytosol/nucleus

Cytosol/nucleus

Endoplasmic reticulum

Mitochondria

Cytosol/nucleus

Cytosol/nucleus

Mitochondria

Cytosol

Cytosol

Endoplasmic reticulum

Cytosol/nucleus

Cytosol/nucleus

Mitochondria

Cytosol/nucleus

Hypoxia inducible

Required to survive severe stress molecular
chaperone (?)

Part of steroid hormone receptor complex ;
chaperon for protein kinases (?)

Constitutively expressed molecular chaperone

Constitutively expressed molecular chaperone

Constitutively expressed molecular chaperone

Highly stress inducible

Molecular chaperone (chaperonin)

chaperonin related to HSP60

Part of steroid hormone receptor ; binds FK506

Collagen chaperone

Cofactor for HSP70

Proposed regulator of actin ; proposed molecular
chaperone

Cofactor for HSP60

Involved in protein degradation by proteasome
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with the more NH2-terminal leucine zipper array to prevent
trimerization and to mask the nuclear localization signal in
resting cells (22). As illustrated in Fig.1, upon exposure to
stress, it rapidly trimerizes, acquires DNA-binding activity,
is transported into the nucleus, and becomes transcriptionally
competent (23, 24). It has been suggested that the acqui-
sition of DNA-binding activity by HSF1 is independent of
inducible phosphorylation, but acquisition of transcriptional
activation is linked to inducible serine phosphorylation
(25). The redox regulation is also suggested to be involved
in the transcriptional activation of heat shock genes (26, 27).

HOW STRESS PROTEINS PROTECT CELLS
AGAINST DAMAGE UNDER STRESSFUL CON-
DITIONS

Members of the HSP70 protein family include: HSC70
(a constitutive HSP70), present within the cytoplasm and
nucleus; grp75, mitochondrial HSP70; grp78(Bip), a resident
of the endoplasmic reticulum. In addition, under conditions
of stress, another form of the highly stress-inducible
HSP70 (simply referred to here as HSP70) is synthesized
at high levels. This stress-inducible HSP70 plays a critical
role in the induction of resistance to various metabolic
insults (28, 29). The HSP70 protein family functions as
molecular chaperones in refolding of denatured polypeptide
(4-7). In fact, overproduction of HSP70 was shown to reduce
stress-induced denaturation and aggregation of certain
proteins (30, 31), leading to the common assumption
that refolding and antiaggregating activities of HSP70
determine its role in protection against stresses (32, 33).
However, under some conditions, the protective action of

HSP70 appears to be unrelated to its chaperoning action.
TNF-α-induced apoptosis can be prevented by over-
expression of HSP70 (34). This can be explained by the
notion that overproduction of HSP70 interferes with the
apoptotic program by suppressing the activation of JNK
(35-38). Thus, the protective action of HSP70 in some cir-
cumstances may, at least in part, involve direct interference
with the apoptotic program, although the molecular basis
of this action is still unknown.

There is growing evidence that HSPs play an essential role
in protecting cells against oxidative injury (39). Oxidative
injury participates in a variety of pathological conditions,
such as inflammation and ischemia/reperfusion injury.
During inflammation, oxygen free radicals are generated
by the phagocytic cells (polymorphonuclear leukocytes,
monocytes-macrophages) infiltrating the inflamed tissues.
Oxygen free radicals are also produced by a xanthine-
xanthine oxidase system. Ischemia causes a decrease in
ATP level related to uncoupling of oxidative phos-
phorylation, leading to the accumulation of xanthine and
hypoxanthine. These substrates are normally metabolized
by xanthine dehydrogenase. However, during ischemia
and when the level of intracellular free calcium is elevated,
the dehydrogenase reverts to xanthine oxidase. During
reperfusion, xanthine and hypoxanthine are metabolized by
xanthine oxidase, generating large amounts of superoxide
anion. Oxygen free radicals are potent activators for HSP
expression, and at the same time, overproduction of HSP70
protects cells against oxidative injury (39). For example,
during activation, macrophages induce HSP70, to protect
themselves against autooxidative damage associated with
the enhanced respiratory burst activity (40).

Protective effects of HSP against oxygen radical-induced
cellular damage may be targeted to any of the following:
membranes (lipid peroxidation), proteins, DNA, and
mitochondria. The protective effects of HSP70 against
lipid peroxidation and DNA damage have been reviewed
(41). Recently, Polla et al. suggested that mitochondria
are selective targets for the protective effects of heat
shock against oxidative injury (42). They demonstrated
that overproduction of HSP70 by heat shock prevented
hydrogen peroxide-induced decline of mitochondrial per-
meability transition and swelling of mitochondria, which
are suggested to make the“decision to die”in the effector
phase of the apoptotic process (43). Consequently,mitochondria
may represent a key organella in the choice of necrosis
(amplification of inflammation) or apoptosis (limitation of
inflammation). Therefore, HSP70 may protect cells against
oxidant-induced apoptosis. Thus, HSP overexpression may
protect multiple cellular compartments and induce resistance
of the cell against damage caused by various metabolic
insults.

INDUCTION OF STRESS PROTEINS IN RESPONSE
TO PHYSIOLOGICAL STRESS

The ability to preserve homeostasis under stressful
conditions is a requisite for survival of all organisms in an
everchanging environment. At the cellular level, the stress

Fig.1. Model of HSF1activation. In resting cells, HSF1is present in the
cytosol as a monomer. Stress induces trimerization, acquisition of
HSF1-DNA binding activity, and nuclear translocation. Stress-inducible
serine phosphorylation is required for transcriptional activation.
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response is well characterized to be mediated by the rapid
expression of heat shock genes. However, relatively little
information is available on HSP induction in vivo and on
its roles in normal as well as pathological conditions.
Holbrook and colleagues have demonstrated in the rat
that expression of the major HSP, HSP70, is induced in
vivo in response to a variety of stresses, including mild
elevations in body temperature (>1.5℃), ether anesthesia,
surgery, and restraint stress (8, 44-46). They found that the
response was present in the adrenal gland and vasculature
and absent in all other tissues examined (44, 46). Restraint
causes the rapid expression of HSP70 mRNA with a peak
at 30-60 min after starting the stress. The induction of
HSP70 transcript is followed by an elevation in HSP70
protein, with maximum expression occurring between 3
and 6 hours after restraint (46).

The restraint-induced HSP70 expression is, at least in
part, regulated by neuroendocrine mechanisms. Stress
induces the secretion of corticotropin-releasing hormone
(CRH) from the hypothalamus, which in turn results in
secretion of adrenocorticotropic hormone (ACTH) from
the anterior pituitary gland. ACTH then stimulates the
adrenal cortex, increasing both the synthesis and release
of glucocorticoids into the peripheral circulation. CRF also
activates the sympathetic nerve center in the brain stem,
resulting in the synthesis and release of catecholamines
from both peripheral ganglia and the adrenal medulla.
Hypophysectomy abolished the response of the adrenal
cortex, and the addition of ACTH restored specific
expression in the hypophysectomized rats, suggesting
that ACTH mediates the adrenal response (47).

In contrast to the adrenal response, elevated HSP70
mRNA was observed in the aorta of hypophysectomized
animals after restraint regardless of the presence or absence
of ACTH or dexamethasone. A specific α1 adrenergic-
blocking agent, prazosin, virtually eliminated the induction
of HSP70 in the vasculature, while the β adrenergic
receptor antagonist, propranolol, had a lesser effect
(46). Furthermore, the specific α1 adrenergic agonist,
phenylephrine, induced the expression of HSP70 in the
aorta, suggesting that the vascular response to restraint is
dependent on activation of the sympathetic nervous
system, especially via α1 adrenergic receptor (48). The
physiological meaning of HSP induction in the vasculature
is not completely understood. However, recent evidence
suggests that the response plays an important role in
protection of arteries against hemodynamic stress. Acute
hypertension caused by treatment with various hypertensive
agents, including phenylephrine, angiotensin II, and
vasopressin, induces HSP gene expression in rat arterial
wall (49, 50). Another interesting finding is that the rat
strain with a genetic hypertensive background (SHR,
spontaneously hypertensive rat) shows enhanced heat shock
response in the aorta (51). Alternatively, overexpression of
HSP70 prevents endotoxin-induced hypotension (52). Thus,
HSP70 in the vasculature appears to induce resistance
against hemodynamic stress.

STRESS PROTEINS IN THE STOMACH

The stomach is frequently exposed to hot food, ethanol,
and oxidants generated from ingested food, cigarette
smoke, and Helicobacter pylori -associated inflammation.
Gastric surface epithelial cells are the first line of defense
against these irritants. Primary cultures of gastric surface
epithelial cells from guinea pig fundic glands exhibit a
typical heat shock response (27, 53). In order to study the
physiological roles of stress proteins in the stomach, we
focused on the HSP induction in the stomach after
exposure of rats to restraint and water-immersion stress.
This stress causes severe ulceration in the stomach; there-
fore, it is an excellent model for revealing the importance
of stress proteins in gastric mucosal cytoprotection.

Restraint and water-immersion stress caused rapid
expression of HSP90, HSC70, and HSP70 mRNAs in the
hypothalamus, and these expressions were followed by
inductions of the respective HSP proteins. However, in
this case, HSP90 was more remarkably induced than
HSP70. When the stress-induced HSP90 expression was
examined in various brain regions, the elevation of HSP90
induction was observed selectively in the hypothalamus,
hippocampus, and amygdala, all of which participate in
mediating stress responses (Fig.2). The restraint and
water-immersion stress activates the hypothalamic-pituitary-
adrenal axis, and HSP70 induction was observed in the
adrenal gland. The stress rapidly activated HSF1 in gastric
mucosa within 15 min, and HSP70 mRNA expression was
detected with a peak at 30 min, followed by induction of
HSP70 protein (Fig.3). The gastric mucosal response
preceded the formation of gastric mucosal lesion, since
macroscopic ulceration was first detected at 2 hours after

Fig.2. Accumulation of HSP 90 in rat brain regions after exposure to
restraint and water-immersion stress. Before and after exposure of
rats to restraint and water-immersion stress for 2 h, tissue proteins
were extracted from A, amygdala ; Hi, hippocampus ; S, striatum ; T,
thalamus ; H, hypothalamus ; C, cortex ; and P, pyriform cortex. The
HSP level was measured by immunoblot analysis with a polyclonal
anti-HSP90 antibody. Values are the mean±SD from 3 animals. *P <
0.05 by Student’s t -test, compared with unstressed rats.
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starting the stress.
In order to better understand the role of HSP expression

in gastric mucosa, we exposed three experimental models;
protein-malnourished rats, adrenalectomized rats, and
vagotomized rats, to restraint and water-immersion stress
(Fig.4). Rats fed a low-protein diet had a markedly reduced
stress-induced HSP70 mRNA expression in the hypothalamus,
adrenal gland, and stomach. The stress ulcer formation
was enhanced in these animals. Although the HSP70 mRNA
expression in the hypothalamus was rather enhanced in
the adrenalectomized rats, bilateral adrenalectomy com-
pletely blocked the stress signal from the hypothalamus to
the stomach, and the stress response was absent in the
stomach, causing the most severe damage in the stomach.
In contrast, subdiaphragmatic vagotomy almost completely
prevented the stress ulcer formation. In this case, the HSP
induction was markedly enhanced; HSP70 mRNA expression
was acceralated and remained elevated for more than
4 hours (Fig.4). Thus, the extent of HSP induction was
inversely correlated to the severity of gastric mucosal
damage. We also found that the HSP expression in gastric
mucosa was regulated by the activation of HSF1. These
results strongly suggest that the gastric mucosal response
is mediated by the activations of hypothalmic-pituitary-
adrenal axis and sympathetic nerve system, and that HSPs,

especially HSP70, induce resistance of gastric mucosa
against stress-induced mucosal damage. Thus, HSPs play
a fundamental protective role in gastric mucosa under
stressful conditions.

STRESS PROTEINS IN THE CENTRAL NERVOUS
SYSTEM AND HEART

Transient ischemia induces HSPs within certain regions
of the brain, and it is of particular interest that the ability
of a neuronal population to survive an ischemic trauma
appeared to be correlated with increased expression of
HSPs (9). The induction of the stress-inducible HSP70
after transient ischemia was most pronounced in the
dentate granule cells and the hippocampal CA3 cells, where
neuronal cells exhibit the highest survivability following
the ischemic trauma. In contrast, HSP70 induction is mini-
mal in those regions, like the hippocampal CA1 region,
that appeared to be most sensitive to the ischemic episode
(54). In addition to ischemia, stress protein induction has
been observed in various pathological conditions such as
trauma, epilepsy, elevated body temperature, neurode-
generative diseases, excitatory amino acids such as
glutamate, and drug administration (for reviews see 55
and 56). Certain neuronal cells pretreated with mild heat

Fig.3. Activation of HSF1 and expression of HSP70 mRNA and protein in gastric mucosa of rats exposed to restraint and
water-immersion stress. (A) Before and after exposure to restraint and water-immersion stress for the indicated times, total
cellular protein was extracted from gastric mucosa, and gel mobility shift assay was performed with [32P]HSE oligonucleotide.
Lane 5 (marked self) and lane 6 (marked non-self) contained a 50-fold molar excess of unlabeled HSE oligonucleotide and the
AP-1 oligonucleotide, respectively. Lane 7 shows the supershift experiment with an antibody against HSF 1. Interaction shown
by“h”was specific HSE-binding activity.“ns”, nonspecific interaction. (B) Total RNA was extracted from gastric mucosa of the
rats and subjected to Northern hybridization with a cDNA probe for human HSP70. (C) The HSP70 protein level in the gastric
mucosa was measured by immonoblot analysis with a polyclonal antibody against HSP70.
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shock or sublethal ischemia acquire a tolerance against
subsequent lethal ischemic stress. Stress proteins are
believed to contribute to the acquisition of this tolerance
(57-60). Recently, Kuwabara et al. identified a novel stress
protein, the 150-kDa oxygen-regulated protein (ORP150),
which is selectively induced in astrocytes exposed to
hypoxia. This ORP is also expected to induce ischemic
tolerance of astroglia (61).

In the heart, induction of stress response has been
observed under physiological stresses, such as ischemia
(10, 62, 63), trauma (64), hemodynamic overload (65, 66),
and exercise (67), as well as hyperthermia (68). Induction
of HSPs by pretreatment with heat shock or transient

ischemia has been shown to be correlated with improve-
ment of functional recovery (69-71) and reduction of infarct
size (68, 72, 73). These protective roles were demonstrated
in transgenic mouse overexpressing HSP70 in the heart
(74-76).

In the brain and heart, the acquisition of ischemic
tolerance, which is sometimes referred to as“ischemic
preconditioning”is an attractive phenomenon for physicians.
The factors that induce the tolerance would be potential
targets for treatment and prevention of cerebrovascular
diseases and myocardial infarction. Stress proteins are
believed to play an important role in the ischemic pre-
conditioning.

Fig.4. Expression of HSP70 mRNA in the hypothalamus, adrenal gland, and gastric mucosa of rats exposed to restraint and water-immersion
stress. Control rats fed a 20% casein diet (●) or rats fed a 5% casein diet (▼) for 3 weeks were exposed to restraint and water-immersion stress.
Rats fed a 20% casein diet received bilateral adrenalectomy (▲) or truncal vagotomy (■), and then they were enforced with the same stress
one week after the operation. Before and after exposure to the stress for the indicated times, total RNA was extracted from the hypothalamus
(A), adrenal gland (B), and gastric mucosa (C), and the HSP70 mRNA level was measured by Northern blot analysis, as described in the
legend to Fig.3. The HSP70 mRNA level was quantified by densitometric analysis and standardized by the mRNA level of glyceraldehyde-3-
phosphate dehydrogenase.
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IMPLICATIONS OF CHAPERONE INDUCER FOR
MEDICINE AND DISEASE

When cells are under sudden stress from heat, toxins,
or disease-causing microorganisms, cellular proteins often
lose their proper shape (i. e. aggregation), and HSP numbers
quickly double (usually 10% of the protein mass of a cell).
These HSPs rush to rescue the injured protein, repairing
damage by binding to them and helping to fold them
properly again (4-7). HSPs also bind to irreversibly damaged
protein, helping to facilitate their degradation through the
ubiquitin-proteasome pathway of proteolysis or lysosomal
proteolysis (for reviews see 77 and 78). A large body of
information supports that many HSPs work as molecular
chaperones and are crucial for the maintenance of cell
integrity during normal growth as well as during patho-
physiological conditions. Therefore, it would be of great
therapeutic benefit to discover compounds that induce
HSPs without any toxic effect.

Biorex Research & Development Co., Hungary, has
introduced a group of drugs in development that works
by triggering the production of stress proteins. One
hydroxylamine derivative (called Bimoclomol) that was
originally developed to prevent microangiopathy in diabetes
patients is now under Phase II clinical trials. Biorex is
already testing similar drugs for stroke and athero-
sclerosis. Bimoclomol does not directly induce HSP70,
but it amplifies the induction when cells are exposed to
stressful conditions (79). There are numerous compounds
that trigger the HSP induction; however, in most cases,
they produce harmful conditions. We introduced a non-toxic
chaperone inducer for the first time (80). Geranylgeranyl-
acetone (GGA), an acyclic polyisoprenoid, is an antiulcer
drug developed in Japan and has been widely used for
more than 13 years. This drug rapidly induces resistance
of gastric mucosal cells to irritants within 30 min in vivo
and in vitro. We demonstrated that GGA can directly
activate HSF1 and transiently cause transcriptional acti-
vation of heat shock protein genes to a lesser extent in
both cultured gastric epithelial cells and rat gastric
mucosa (80). This compound also enhances heat shock
response of gastric mucosa of rats exposed to restraint
and water-immersion stress and suppresses stress ulcer
formation (Fig.5). GGA has been widely used as an
antiulcer drug with a previously unrealized action that
induces HSPs without any toxic effect. Nontoxic chaperone
inducers may have potential therapeutic benefits for treat-
ment and prevention of several diseases, such as ischemia/
reperfusion injury, trauma, inflammation, infection, stress
ulcer, and organ transplantation (Fig.6).

In addition to studies on the protective effects of stress
proteins on ischemia/reperfusion injury in the brain and
heart, there are several on-going projects that target stress
proteins. For example, the capacity of HSPs as chaperones
might prevent the accumulation of deadly plaques in
neurodegenerative ailments such as Alzheimer’s disease.
Linquest has shown that stress proteins regulate another
closely watched class of proteins, prions, which are prone
to improper folding. Malformed prions is believed to cause

mad cow disease as well as human Creutzfeldt-Jakob
disease (81).

Now immunologists are also using stress proteins to
develop vaccines for AIDS and other infectious diseases
and for treatment of cancer. Stress proteins themselves
(HSP65 and HSP70) are potent stimuli of the immune
system (for reviews see 82-84). The immune responses
raised against pathogen HSPs appear to be essential in
protective immunity. HSPs are highly conserved in all
organisms and the molecular mimicry may lead to auto-
immune reactions in the host (83). HSPs may participate
in the processing and/or presentation of exogenous
antigens. A possible involvement of HSPs in the antigen
presentation is suggested by the structural similarities
between major histocompatibility complex (MHC) class 1
and structural models of HSP70 (4). It has been suggested
that tumor cells express HSP70 and HSP90 on the cell mem-

Fig.5. Effects of geranylgeranylacetone (GGA) on HSP70 induction
in rat gastric mucosa. Gastric mucosa was collected from rats at the
indicated times after intragastric administration of GGA or vehicle
(A). Gastric mucosa was also isolated after exposing rats, pretreated
with GGA or vehicle for 2 h, to restraint and water-immersion stress
(B). Tissue proteins were extracted from gastric mucosa and
subjected to immunoblot analysis with an antibody against HSP70.

Fig.6. Therapeutic implications of chaperone inducers.
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brane. HSC70 has been suggested to be a transformation-
associated antigen and a target for anti-tumor immunity
(85). Immunization with HSP-peptide complexes elicits
potent T cell response against the chaperoned peptides
and hence against the cells from which the HSPs are
purified, as seen in studies with cancers (86). Since HSPs
are potent immune-system stimuli, they could be used in
vaccines as generic immune-system boosters, or adjuvants
for treatment of cancer as well as infectious diseases.

CONCLUSION

The stress response represents a highly conserved
defense program by which cells adapt to abrupt and
adverse changes in their environment. Through the study
of the structure/function of the stress proteins, especially
those which function as molecular chaperones, the molec-
ular basis for the acquisition and maintenance of protein
conformation in the cell is now recognized. At the same
time, there is increasing evidence that stress proteins play
a crucial role in the protection of organs and tissues
against injuries from surgery, ischemia/reperfusion, inflam-
mation, or organ transplantation. Considering the potent
cytoprotective action of stress proteins, nontoxic chaperone
inducers may be of great therapeutic benefit as a new
generation of drugs for the treatment of diseases.
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