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Composite Dynamical System for Controlling Chaos

Tetsushi UETA' and Hiroshi KAWAKAMI!, Members

SUMMARY We propose a stabilization method of unstable
periodic orbits embedded in a chaotic attractor of continuous-
time system by using discrete state feedback controller. The con-
troller is designed systematically by the Poincaré mapping and
its derivatives. Although the output of the controller is applied
periodically to system parameter as small perturbations discon-
tinuously, the controlled orbit accomplishes C°. As the stability
of a specific orbit is completely determined by the design of con-
troller, we can also use the method to destabilize a stable periodic
orbit. The destabilization method may be effectively applied to
escape from a local minimum in various optimization problems.
As an example of the stabilization and destabilization, some nu-
merical results of Duffing’s equation are illustrated.

key words:  controlling chaos, Poincaré mapping, stabilization,
destabilization '

1. Introduction

Recently, the topic about controlling chaos is one of re-
markable researches in engineering fields. In 1990, Otto,
Grebogi, Yorke[1] proposed a standard method to sta-
bilize an unstable periodic orbit called target embed-
ded in a chaotic attractor. But this method requires the
target being a saddle, i.e., the target must possess stable
manifolds to determine a feedback gain. Romeiras, Gre-
bogi, Ott, Dayawansa[2] applied a conventional state
feedback theory to controlling chaos. By this method
any types of unstable fixed or periodic point in a chaotic
state can be stabilized by the pole assignment technique.

On the other hand, many other approaches are pro-
posed, e.g., parameter variation technique, absorber, en-
trainment and feedback method, etc., the outlines of
them are given by Ogorzalek [3]. The central techniques
using control theory[4],[5] are traditional state feed-
back control: the feedback signal determined by differ-
ence between the target and an orbit is applied to state
of the system continuously, thus all information of the
target wave form are necessary for stabilization.

In this paper we propose the composite dynamical
system as a method for controlling chaos. This system
constructed by the original differential equation and
difference equation derived from linearization in the
neighborhood of the target by the Poincaré mapping.
We have only to design a controller stabilizing unsta-
ble characteristics of the target on the discrete system
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described by the difference equation. Some significant
features must be pointed out compared with Ref.[2]:

e How to embed the control value to the parameter,
which is implicit in many articles, is clarified. Al-
though the parameter varies discontinuously by the
control, a controlled orbit can be CP since the state
space is never manipulated.

e To calculate the controller, we can obtain deriva-
tives of the Poincaré mapping numerically without
using analytic or embedding methods.

Consequently, we develop the systematic design method
for controlling chaos in case that the mathematical
model is given. Moreover the method is applied to
destabilize a stable orbit to escape from an undesirable
stable state. We show some illustrations of stabilizing
or destabilizing the target of the Duffing’s equation.

2. System Equation and Its Poincaré Mapping

For simplicity, let us consider an n-dimensional nonau-
tonomous ordinary differential equation (ODE):

dx

E:f(tama)‘) (1)

where, x € R" is the state vector and A € R is the
system parameter. We assume that f is periodic in ¢
with period 27:

flE+2m @A) = f(t,z,A) 2

and sufficiently differentiable for all variables. Suppose
also that Eq. (1) have a unique solution for the initial
value problem. We denote the solution «(t) with initial
value g at t = 0 as:

:B(t) = (p(t, Lo, )‘) 3
Thus the relation
:B(O) = 90(07 5150,)\) = &g (4)
holds. Let us define a differentiable mapping
T:-R"xR — R"
(o, A) = @1 = T(mo,A) 5
= (2w, zo, A).

For a fixed A the mapping 7" becomes the ordinary
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Poincaré mapping. For the latter use we call the sam-
pling interval 27 the Poincaré sampling period or sim-
ply Poincaré period, which is equal to the period of the
original system (1), see Eq.(2). A fixed or m-periodic
point corresponds to a periodic solution of Eq. (1) with
period 27 or 2m, respectively. Moreover all topologi-
cal properties of the solution of Eq. (1) can be reduced
to that of the discrete dynamical system (5). In this
paper we consider following two problems:

I. Assuming that Eq. (1) has a chaotic attractor, de-
sign a controller stabilizing a specific periodic or-
bit, also called a target orbit, embedded in the
chaotic attractor.

I1. Assuming that Eq.(1) has a stable periodic orbit,
destabilize it by a suitable controller.

Note that these two problems are the same if the pole
assignment technique is used. Stabilization and desta-
bilization correspond to the stable and unstable pole
assignment, respectively. Note also that in the follow-
ing we shall discuss the stabilization or destabilization
method for Eq. (1), but this method can be easily ap-
plied to an autonomous ODE by changing the definition
of the Poincaré mapping.

3. Stabilizing Unstable Periodic Orbit with a Fixed
Point

Let us consider an unstable periodic solution x*(t) of
Eq.(1) with period 2w, which is our target orbit embed-
ded in a chaotic attractor. Suppose that =* is a fixed
point of T', which corresponds to the target orbit *(¢):

=T (x*,\") = p2m, =", A7) (6)

where we denote A* as the nominal value of the parame-
ter. For any integer k, let us consider the perturbations:

x(2rk) =ar ="+ £&(k), Ap=X"Fulk). (7
After one iteration of T" we have
z(2m(k+1)) = xpp1 =" +§(k+1)
=T (z* + £(k), X" + u(k))

:T(:E,/\)—i-a—w I &(k) (8)
A=A"
or
+ﬁ z=ux" (k) + -
A=A

Therefore we obtain the difference equation defined by
the derivative of 7"

£(k+1) = A&(k) + Bu(k) )
where we put

oT 8T |

= 92| @ andB—a—X I (10)

A=A" A=X"
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Note that if w(k) = 0, the origin is the unstable fixed
point of Eq.(9) provided that * is embedded in a
chaotic attractor.

Now we construct a state feedback control to sta-
bilize the origin:

u(k) = CTE(k), (11)

where C' is an r X n matrix must be designed. Substi-
tuting Eq. (11) into Eq.(9) we have

E(k+1) =[A+ BCEk). (12)

By the linear control theory, especially by the pole as-
signment technique, we can choose an appropriate ma-
trix C to stabilize the origin, equivalently say the fixed
point «*, provided that the controllability condition is
satisfied [6]:

rank[B|AB|---|A™ 'B] =n (13)

Hence we obtain the following theorem:
Theorem 1: Let z* be an unstable fixed point of the
mapping 7', which corresponds to an unstable periodic
solution x*(t) of Eq. (1) with the period 27. Assume
that the controllability condition (13) is satisfied. Then
we can choose a matrix C' such that Eq.(9) becomes
stable, i.e., the matrix

A+ BCT (14)

is stable. Moreover by applying piecewise constant con-
trol u(k) = CT£(k) to the parameter A:
A=A +uk) =X +C &k
=X+ CT {x(27k) — x*} (15)
with 27k <t < 2m(k + 1)
the periodic solution x*(¢) becomes stable.
Remark 1: A and B in Eq. (10) are obtained numeri-

cally by solving the following linear ODEs from ¢ = 0
tot =2m:

d aof
— A== A
dt Ox| == iEi
16)
d (
dy_or|” T plor
dt Ox| z==c" ON| z=a’
A=A A=)
with initial condition
Al,_,=1, B|,_,=0, (17)

where [ is an identity matrix. Therefore, any analytic or
estimating method to obtain 4 and B is not necessary.
Remark 2[7]: A schematic block diagram of this con-
trol is illustrated in Fig. 1.

In this figure sampler operates at every instant
2rk, say the Poincaré sampling instant. At every in-
stant 2rk, the sampled signal z(27k) is clamped during
the Poincaré period or until next sampling is achieved.
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Fig. 1 Composite dynamical system.

u(k)

Fig. 2  State feedback control described by Egs. (9) and (11).

Therefore the parameter A is changed discontinuously
at every instant 27k. Such a sampled data system with
zero-order hold (clamper; ZOH) is the most commonly
known sampled data system. Note that, however, for
practical digital control system the sampled interval is
chosen as much shorter than our Poincaré period.
Remark 3: Eq.(9) is used only for designing the con-
trol matrix C. Therefore it does not explicitly appear
in the diagram shown in Fig. 1. We use the linear dif-
ference equation to stabilize the origin at the design-
ing process, see Fig.2. If C is calculated once for all,
the information about the difference equation can be
removed. Design steps of the matrix C for pole assign-
ment are omitted here, but it is easily found in linear
control textbooks, e.g., see Ref.[8].

Remark 4: The control signal (15) may be started to
apply to Eq. (1) when an orbit wandering in the chaotic
attractor passes through in the neighborhood of z*. A
detecting element, called watcher, measures

||e(2mk) —x*|| <€ (18)

at every Poincaré sampling instant, and switches the
control signal.
The controlled system is then totally described by
WO _ 1 (e, X +OTew),
for 2mk <t <2n(k+1)

£(k)=[A+ BC'|¢(k - 1),
at t= 2wk

(19)

with £(k) = z(2wk) — «* for every integer k. This is a
mixed continuous and discrete dynamical system, which
we call a composite dynamical system (CDS). The most
significant property of Eq. (19) is that the stability of the
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Fig.3  Response of the control signal and state x(t). (a) Fixed
point, (b) 3-periodic point.

solutions «*(t) and £(k) = O is determined by the dis-
crete part:

£(k) = [A+ BCT)g(k—1) (20)

Hence if A + BC' is designed to be stable, then
(&(k),u(k)) tends to (0,0) as & — oo. This means at
the steady state the parameter A seems to be invariant
as A* so that x* is exactly the same trajectory as the
uncontrolled original system, see Fig.3(a). Note that
the solution x(t) is unstable if we consider only the first
equation of (19), but it becomes stable in the CDS.

4. Stabilizing Unstable m-Periodic Orbit

Similar result can be easily obtained for m-periodic
point of T'. Let the following m points:

x*(2m) = 2 =T(x},, A7),
a*(2mk) =z} =T (x;_,, A7), 2D
for k=23, ,m.
be m-periodic points of T'. This means that
xy =T™(x;, A"), for k=1,2,--- m. (22)

holds, i.e., } is the fixed point of 7. Hence choosing
the Poincaré period as 2mm, we can construct the con-
trol matrix C' at every 2mmk instant, see Fig. 3 (b). For
more detailed information, see Ref.[6].
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5. Destabilizing Stable Fixed or m-periodic Point

In this section we discuss to design a controller desta-
bilizing a fixed point or m-periodic of the mapping 7.
We have the following destabilizing theorem.

Theorem 2: Let * be a stable fixed point of the map-
ping 1", which corresponds to a stable periodic solution
x(t) of Eq.(1) with the period 2w. Assume that the
controllability condition (13) is satisfied. Then we can
choose a matrix C such that Eq. (9) becomes unstable,
i.e., the matrix

A+ BCT (23)

is unstable. Moreover by applying piecewise constant
control u(k) = CT€(k) to the parameter X:

A= X 4ulk)=X+C"¢k)
=X+ C " {x(27k) — z*}, (24)
for 2nk <t <2n(k+1)

the periodic solution z*(¢) becomes unstable.

Remark 5: After the destabilization the orbit of CDS
(19) may be chaotic, periodic, or convergent to another
stable attractor.

6. Target Generating and Noise Effect

To calculate a target (fixed or periodic point), the New-
ton’s method using the Jacobian matrix A is available.
Any precision of the target location can be obtained
unless that the Jacobian matrix A is singular by this
method. When a deterministic differential equation is
given, the local properties of the orbit is completely de-
scribed by A, which is the solution of the first equation
of Egs.(16). Therefore, if the target can be calculated
by A and the condition (13) is held, control can be
succeed by suitable choice of e.

The width of € giving the control available region
called basin of attraction depends on stability of the
target, control parameters, and assigned poles{6], espe-
cially, the basin tends to reduce as the period of the tar-
get becomes higher. This disadvantage causes that the
transient chaotic response is too long. If the basin of at-
traction can be wide, not only suppressing for transient
responses but also the robustness of the control against
disturbances or noise is earned. We must investigate to
enlarge the basin in future for physical implementations.

7. Illustrated Examples

We choose Duffing’s equation:

dz
dt
dy
dt

(25)
= —ky — x> 4 By + Beost
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Unstable

Fig. 4 Stability in p-q plane for Eq. (26).

to demonstrate our method of control [7]. For simplic-
ity in this paper we assume that we know the system, i.e.,
we can obtain all information for constructing the con-
trol matrix C. Hence unstable fixed or periodic point
embedded in some chaotic attractor is calculated in ad-
vance by using Newton’s method. Matrices A and B
are also calculated from Eq. (16).

Now we choose By as the control parameter and
calculate control vector C(2 x 1). Any other parameter
can be chosen if the condition Eq. (13) is held. To deter-
mine the control vector C we consider the characteristic
equation from Eq. (14):

|JA+BCT — ul| = p? —pu+q=0. (26)

Thus the modulus of the root of Eq.(26) is less than
unity if p and ¢ are placed in the triangle such that:

g<1
1+p+qg>0 (27)
l1-p+g>0.

Figure 4 shows the stable region in p-g plane.
7.1 Stabilization

Example 1: Let us consider the case where x = 0.02,

. By =2.0, and B = 2.2 in Egs. (25). The equations have

a chaotic attractor shown in Fig.5(a). In the chaotic
attractor we see unstable fixed or periodic points. Some
of them are listed in Table 1. We calculate the control
vector C' so as p = g = 0 which gives a dead beat con-
trol. In this case A+ BC" becomes a nilpotent matrix.
Hence for any initial condition £(0), the state £(k) falls
into 0 at most twice iteration of A + BC'|.

Figures 5(b)—(f) show the stabilized periodic so-
lutions by the controlling (15). For the fixed point of
Fig. 5 (b), this is given by:

By = 2.0 + 2.3071(z(27k) — 2.3891)

+0.3784(y(2mk) — 0.0256). (28)

Although the control parameter By changes dis-
continuously, if B is chosen as the control parame-
ter and its controllability is held, the external force
By + (B + u(2m)k) cost can be smooth.
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Fig. 5 Chaotic attractor and stabilized orbits embedded in the attractor.

10 2.0 3.0 -1.0 0 10 20 3.0

x = 0.02,

By = 2.0, B = 2.2. (a) Chaotic attractor (orbit and Poincaré mapping), (b) Fixed point,
e = 0.1 (¢) Period-3, ¢ = 0.1, (d) Period-5, ¢ = 0.1, (e) Period-7, ¢ = 0.05, (f) Period-9,

e = 0.01
Table 1 Fixed or periodic points and the values of control vectors.
| figure | period | fixed/periodic point | eigenvalues | control vector C |

Fig. 5(b) 1 (2.3891,0.0256) (—0.1776, —4.9633) 2.3071 0.3784]
Fig. 5 (c) 3 (2.1868, —1.2681) (—0.2681, —2.5579) 2.4317 0.0140
Fig.5(d) 5 (2.4427, -0.8255) (—0.01366, —39.0295) [2.3561 0.0673
Fig.5(e) 7 (1.9857, 3.6287) (—0.0216’77 —19.1425) [4.1572 4.1529]
Fig. 5 (1) 9 (1.9391, 0.7922) (0.005869,54.9848) | [0.9811 — 0.8679)]

7.2 Destabilization

Example 2: Now we consider the case where & = 0.1,
By = 0.0, and B = 0.3. In this case we have two stable
fixed points 'S and 2S as shown in Fig.6 (a). Let us try
the destabilization of the fixed point 2S in Fig.6 (a) by
placing the poles of Eq. (26) out of the triangle Eq. (27)
so that solution enters in the basin of the stable fixed
point 1S and finally tends to 'S. The transient pro-
cess is shown in Fig. 6 (b). This example suggests that
the destabilization method may be efficiently applied to
escape from a local minimum in various optimization
problems.

Example 3: As the final example we consider the case

where Eq. (25) have only one stable fixed point. In this
case we may observe a chaotic attractor by choosing C
appropriately. Two examples are shown in Figs.7 (a)
and (b). Both attractors have positive Lyapunov expo-
nents, see Figs.7.

8. Concluding Remarks

We propose the stabilization and destabilization
method of periodic orbits for continuous dynamical sys-
tem described ODE. In our stabilization method all tra-
jectories are remain to be continuous and converge to
a specific unstable orbits. Dead beat control design is
one of the conventional method for this purpose: Many
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Fig. 6  (a) Created 7-periodic orbit by destabilizing the fixed
point 28. Poles are —4.0 and 4.0, e = 0.3. (b) Created chaotic
transient eventually falling into the basin of 1S. Poles are 6.6
and 0.0, e = 0.3

techniques known in the linear control theory can be
applied to design the control matrix C. For examples
an output feedback method with observer, and optimal
control method are directly applied to our problems.
For controlling chaotic signal generated from unknown
system we must construct target (the location of fixed
point etc.) and matrices A and B only by using the
chaotic signal. For the practical application this type
of question is an interesting problem left to the future.
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