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SUMMARY The pendulum equation with a periodic impul-
sive force is investigated. This model described by a second or-
der differential equation is also derived from dynamics of the
stepping motor. In this paper, firstly, we analyze bifurcation
phenomena of periodic solutions observed in a generalized pen-
dulum equation with a periodic impulsive force. There exist two
topologically different kinds of solution which can be chaotic
by changing system parameters. We try to stabilize an unstable
periodic orbit embedded in the chaotic attractor by small pertur-
bations for the parameters. Secondly, we investigate the intermit-
tent drive characteristics of two-phase hybrid stepping motor. We
suggest that the unstable operations called pull-out are caused by
bifurcations. Finally, we proposed a control method to avoid the
pull-out by changing the repetitive frequency and stepping rate.
key words: impulsive force, bifurcation, controlling chaos, step-
ping motor

1. Introduction

The equation of motion for a kicked rotor, a stepping
motor, a circuit containing a Josephson junction with
an impulsive voltage source is described as a second or-
der differential equation containing a sinusoidal func-
tion with a discontinuous external force. In such sys-
tems, two topologically different kinds of periodic solu-
tions are found; revolving and oscillatory solution. The
former winds around a cylindrical phase space, and lat-
ter does not, see Fig. 1. We observed higher periodic
orbits or chaotic states for both these solutions.

In this paper, we investigate some properties of
the pendulum equation with a periodic impulsive force.
First of all, we analyze periodic orbits by using bifur-
cation theory. Although this equation has an impul-
sive force, i.e., the orbit changes discontinuously, we
can calculate bifurcation parameters since its Poincaré
mapping is constructed as a differentiable map[1]. As
the result, some properties of the periodic solutions are
explained from bifurcation diagrams. In Sect. 5 we pro-
pose a method to stabilize the unstable periodic orbit
embedded in a chaotic attractor by small perturbations
of the system parameter.

The equation is also described the behavior of a
stepping motor on the velocity error plane. Especially
if the orbit converges to any revolving orbit the motor
cannot be controlled to generate the desirable velocity.
In Sect. 6.2, we study the bifurcation phenomena of pe-
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riodic orbit in case that the motor is driven by intermit-
tent sequences[2], and obtain the bifurcation diagram.
Moreover in Sect.6.3 we propose a method to avoid
the pull-out and to improve the transient responses by
changing the repetitive frequency and stepping rate of
the intermittent drive sequence.

2. Mathematical Model

The motion of a pendulum with damping is described
by the following autonomous equation:

dxz
7 =Y = flz,y)
W= sz = gl )

where, (z,y) € R? is the state, x > 0 is a damping coef-
ficient. Note that the state space is regarded as S* x R,
where S' = {z € Rmod 27}. Since the system (1)
is dissipative, there is no periodic solution except for
k = 0. Now we assume an input which achieves the pe-
riodic discontinuity of initial state by using the sequence
of impulses. Then Eq.(1) is rewritten as follows:

dx T —
— = z,y)+ —h 6(t — kr
7 @) +5h Y 6(t— k)
k=0
Oscillatory solution
Revolving solution
Fig. 1  Oscillatory solution and revolving solution.
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Fig. 2 Sequence of implusive waves > 6(t— kr).

dy

o = 9=y (2)

where, §(t) is the Dirac’s delta function, and h, 7 are
height and interval of the impulse, respectively. See
Fig.2. m/2 is added for the convenience sake.

Adding the periodic impulsive force to f(z,y) is
frequently assumed to simulate the response of the pe-
riodically stimulated neuron model by a BVP oscilla-
tor[3].

3. Poincaré Mapping

We construct the Poincaré mapping to analyze periodic
solutions observed in Eq.(2) in A > 0. The impulsive
external force affects the orbit of Eq.(2) as an instan-
taneous translation. The computational method to ob-
tain periodic points and bifurcation parameters for the
periodic solution driven by a discontinuous input are
already proposed[1], hence the bifurcational analysis
for oscillations observed in this system is possible. In
the following, we summarize this scheme briefly.
We rewrite the Eq.(2) as the following form:

d oo
o = fhe N +hY 5 3

k=0

where, € R™ and A € R are the state and the system
parameter, respectively. Suppose f: Rx R" xR — R"
is C*°. Let a solution of Eq. (2) be

z(t) = p(t, 2o, A) ©))
where,
w(O) = 50(07 g, )\) = &yp- (5)

We choose the interval of the Poincaré mapping as a pe-
riod 7 of the impulse sequence. In the moment at which
the impulse is added to the system, a composition of the
following two maps is considered as the Poincaré map-
ping; Py is a map which translates x to x + h:

Plan — Rn
r — x+h=mx.

(6)

P, is an ordinary time T mapping:

P:R*" — R"
i o((k + )7, 2(kr), \). @

Ty —
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Fig. 3 Bifurcation diagram of periodic solutions in (7-h)
plane. x = 0.2.
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Fig. 4 Bifurcation diagram of periodic solutions in (7-k)
plane. A =2.0.

Hence the Poincaré mapping P is described by:

PR - R" )
x — P(r,z,\)=Pyo P(r,x,)).

We use this composite mapping and its derivatives to
calculate not only fixed or periodic points and bifurca-
tion parameters, but also the gain of controller stabiliz-
ing chaotic state.

4. Bifurcation Diagrams

For simplicity, we fix the parameter By as 0. In this case,
there exist a sink(0,0) and a saddle(r,0) in S x R with
h = 0. Figures 3 and 4 show bifurcation diagrams in
the 7-h and 7-k plane. In the following we fix h = 2.0,
k= 0.2. G} and I} i = 1,2 indicate tangent and period
doubling bifurcations for the fixed point, respectively.
Almost regions of these diagrams there exist revolving
solutions, see Fig.5. The oscillatory solutions are ob-
served in the shaded regions. There also exist two kinds
of oscillatory solutions in the dark-shaded region, see
Figs.6 and 7. In each of the regions encircled by I} or
I2, there are many higher periodic and chaotic orbits.
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Fig.5  Periodic orbit with a fixed point (black circle) winding
around a cylindrical phase space. x = 0.2, h = 2.0, 7 = 11.8. A
straight right-oriented arrow shows taking modulo 27 and broken
line shows separatrix.
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Fig. 6 Periodic orbit with a fixed point. 7 = 3.0.
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Fig. 7  Periodic orbit with a fixed point. 7 = 10.0.

2.5 -
20k "‘\\ ™ g \\\
150 A
1.0 A
05}
= [ A
-05 b
1.0k
{15
20} .
25 L L i | Lo e L

~7.0-6.0-5.0-4.0~3.0-2.0-1.0 1.0 2.0

r —

Fig. 8 2-periodic orbit bifurcated by I}. 7 = 3.32.

Figures 8—10 show the orbits bifurcated by the cascade
of period doubling. Figure 11 is a chaotic orbit wind-
ing around S,
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Fig. 9  4-periodic orbit. ~ = 4.16.
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Fig. 10  Chaotic orbit bifurcated by the cascade of period dou-
bling. 7= 4.24.
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Fig. 11 A chaotic orbit winding around a cylindrical phase
space. k = 0.2, h = 2.0, 7 = 4.32.

5. Controlling the Unstable Orbit

In this section, we consider a control strategy of any pe-
riodic orbit included in Eq. (2) by applying a technique
of controlling chaos[4],[5].

Suppose that the system (2) has a fixed point, i.e.,
there exist * € R™ and \* € R such that

x* = P(r,z",\"). 9

We call this point the target.
The variational equation in the neighborhood of
the target =* is described as follows:

x(kt) =2" +&(k), \=X"+u(k) (10)

where, k is an integer, u(k) is the perturbation of A*.
From Eq.(9), we have

@ +E(k+1) = P(r,2* + &(k), \* + u(k))
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= P(r,z*,\*) + A¢(k)
+ bu(k) + - (1)
where,
_ 9P p— oL (12)
oz T=L*, A=)\~ 22\ T=T*, A=A+

Thus, we obtain a linearized difference equation in the
neighborhood of the target as follows:

E(k+1) = A&(k) + bu(k). (13)

Note that the matrices A and vector b are obtained nu-
merically by solving the following differential equations
fromt=0tot=r:

doP 0f op P
dt 0x Oz Oz wit o |,_q

40P 0foP of . oP
eo”_orob  of 97 o (14
#ox ozox ax M ogx|_ 70 (9

These equations are already calculated to obtain
the fixed point or bifurcation set by using the Poincaré
mapping (8). We construct the state feedback to control
Eq. (13):

u(k) = " €(k) (15)

where, ¢ is a control vector (1 x n), and T indicates a
transposition. As is well known, if

det[b|Ab|---|A" 1] £ 0, (16)

then Eq. (13) is controllable by Eq. (15). Consequently,
we can choose a control vector determined by the solu-
tion of the pole assignment problem for characteristic
equation:

det[A+be" —pul] =0 (17

where, I is an identity matrix. Finally, the composite
dynamical system [ 5] for Eq. (2) is described as follows:

dx * *
= =T (62,2 + e (@(kr) - )

with kr <t < (k4 1)7
x(kt) —x* =[A+be" | (z((k - 1)) —x*). (18)

Note that the control input calculated by (15) is applied
constantly to the system parameter A during the period
T, see Fig. 12.

In general, some methods for controlling chaos uses
a property that the neighborhood of target will be vis-
ited before long by the chaotic orbit while wandering
in the attractor. Equation (18) is also designed that
the control is done if the orbit satisfies the following
condition:

[|x(kT) —x*|| <€, €>0. (19)
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Fig. 12 Response of the state and the control input.
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Fig. 13 Stabilized periodic orbit (thick curve). = = 4.32,
€ = 0.01. The original eigenvalues for the fixed point are
p1 = —0.2868, puo = —1.4697.

In case that the system parameter having a stable orbit
varies to the destabilizing (bifurcation) direction, we
can suppress it if the controller is designed instantly.
Therefore a robust operation is achieved in wide pa-
rameter region compared with the non-controlled sys-
tem. Note that the control available region called basin
of attraction depends on f, € and assigned poles[6].

Figure 13 shows a stabilized unstable periodic or-
bit with fixed point embedded in a chaotic attractor by
small perturbations of h. Tts poles are assigned to 0
(dead beat control). We also confirm that any oscilla-
tory and revolving solution with a fixed point can be
controlled by h or By if Eq.(16) is held.

6. Failure of the Stepping Motor and Its Control

Stepping motors have been used in many position and
speed control systems. However, there are failure oper-
ations called pull-out depending on parameters of the
motor. An analysis for the failure model of the step-
ping motor is studied in Ref.[7]. In this section, we
derive the equation of motions for the stepping mo-
tor, and show that the equation on the velocity error
plane is identical to Eq.(2). Moreover, we investigate
the characteristics of the motor driven by the intermit-
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Fig. 14  Intermittent drive sequence. fs is the stepping rate, f,
is the repetitive frequency.

S

tent sequence shown in Fig. 14.
6.1 The Equation of Motion and Velocity Error Plane

The torque equation of two-phase hybrid stepping mo-
tor is described by the following differential equation:

d?6 do .
Jog+ D+ T = V2K T, sin{N(U(t) — )}
(20)
where,
J [kgem-s?] the moment of inertia
D [kg-em/rad/s] viscous friction coefficient
Ty [kg-em] load torque
K [kgem/A] torque constant
L,[A] maximum motor current

N number of rotor teeth
U [rad] mechanical angle

In Eq. (20) the stepwise function U(t) corresponds
to a stepping input signal:
U@y = 3 (t — kT) 1)
T aN £
‘ k=0
where, u(t) is the unit step function. Putting @ = N¢
we try to rewrite Eq.(21) into a normalized form as:

d?e n D doe
dt? J dt
NV2K I, N
+ \/_f sin{® — NU(¢)} + 7TL =0. (22)
By scaling the time axis as t' = wt, Eq. (22) becomes
d?e do ) ([t
77 + n@ + sin {@ — NU (;)} + By = 0(23)
where
‘ Nv2KTI,,
w=A4{——
J
‘ D
K =
NV2KTI,,J
17,

(24)
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Finally, by changing the variables in Eq. (23) such that

t/ de
tzt',zz@—NU(—),y:— (25)
w dt
Eq.(22) is normalized as
o _ ffo §(t — kwT)
at Y72 “
k=0
d, .
d_?i = —ky —sinz — By
2(0) = (0) = 0. (26)

This equation is equivalent to Eq.(2) with h =w =1
and its phase space (z,y) is called the velocity error
plane[7].

After the transient state, if the orbit of Eq. (26) stays
at 0 £ =z < 27 as t — oo without taking modulo 2,
the normal operation is almost achieved. If the orbit is
jumped across left separatrix one by one then the system
behaves the asynchronous oscillation called pull-out op-
eration. Figure 5 is also classified into this operation.
One of our objectives of this study is to clarify this
phenomenon depending on system parameters by using
bifurcation theory.

6.2 Characteristics of Intermittent Drive

In industrial fields, there exist many demands of the
mechanism which accomplishes the synchronized oper-
ation for other intermittent motions, e.g., paper feeder,
sawing machine, etc. The stepping motor driven by the
intermittent sequence as shown in Fig. 14 is suitable to
realize such motions. Reference [2] suggests that some
choices of the stepping rate f; and repetitive frequency
fr involve pull-out. In this section, we investigate these
phenomena by bifurcation theory, and control them by
using the method discussed in Sect. 5.

We fix the parameters as follows:

J=112x10"3, D=02, T, =0, V2KI,, =22

and the number of steps during a period is 4. Thus the
natural frequency and damping are as follows:

frn =w/27 2= 158 [HZ]
Kk~ 0.18.

Figure 15 shows the bifurcation diagram of peri-
odic solutions driven by intermittent sequences in f,-f-
plane. In this figure, the line A indicates

. f» = number of steps x fs. 27

The drive sequence on A is identical to Fig.2, i.e., the
impulses are arranged in equally interval. Therefore,
the intermittent driving is achieved under this line. In
light-shaded region under A there exist stable oscillatory
or revolving orbits with a fixed point. In dark-shaded
region enclosed G* and I* these orbit are bifurcated to
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Fig. 15  Bifurcation diagram of periodic orbit driven by inter-

mittent drive sequence.
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Fig. 16 2-period stable orbit started from the origin. The
shaded line shows transient state. » = 0.18, f. = 198.2Hz,
fs = 1982 Hz.

chaotic revolving orbits. Figure 16 shows a 2-period
orbit bifurcated by I'. The neighborhood of the point
crossing G and I'* we cannot trace the both bifurcation
curves anymore because many higher periodic revolv-
ing and oscillatory solutions are found around there by
changing severe parameter perturbations.

Note that Fig. 15 is not considered the starting char-
acteristics. The orbit started from (zp,y5) = (0,0) does
not always converge to the stable oscillatory orbit; in
other words, it may not realize the normal operation.

6.3 Controlling Pull-Out

In Sect. 5 a control method suppressing bifurcations for
original stable target is proposed. We can also apply
this method to the intermittent drive stepping motor.
In this section, we propose a controller satisfying the
following specifications:

e Avoid the pull-out.
e Consider the starting characteristics.

The latter condition indicates that the orbit started from
initial state (xo,yo) = (0,0) should fall into the target
orbit to achieve the normal operation. At the steady
state, if the orbit started from the origin falls into a sta-
ble revolving orbit, then it can be regarded as pull-out.
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Fig. 17  Pull-out orbit(thick curve) and the fixed point. x =
0.18, fr = 90 Hz, f; = 900 Hz.
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Fig. 18  Stabilized orbit. Both poles are assigned to 0. € = 2.0.

Figure 17 shows pull-out started from the origin.
In the same system parameters there also exists a basin
falling into the stable oscillatory target. To avoid this
starting failure we manipulate the basin of attraction
for stable target by developing a compensator.

The compensator designed by same method dis-
cussed in Sect. 5 gives an opportunity to change the at-
tractor into which the orbit falls and improves the tran-
sient response by manipulating poles of the characteris-
tic equation for the stable target. We choose 1/ f,. which
allows large scale perturbations, as the control param-
eter to enlarge the control area ¢ because the control
value is proportional to the deviation €. Thus the com-
pensator changing timings of adding input sequences.
Note that we assume the ratio f;/f, is constant. Fig-
ure 18 shows the case that both poles of the compen-
sator assigned to 0, but several times the orbit winding
around S'. On the other hand, Fig. 19 shows a satisfac-
tory example which poles are assigned to 0 and —0.5.
The control value is perturbed within 16.5% for 1/f,.
For practical use, we should investigate a compensator
using the fixed stepping rate.
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Fig. 19  Improved transient state. The poles are assigned to 0
and —0.5. e = 1.0.

7. Conclusions

We investigate some properties of Eq. (2) by using bifur-
cation diagrams. In this system, there exist the revolv-
ing and oscillatory solutions, and chaotic solutions are
caused by their bifurcations. We also propose a method
to control the target orbit by small perturbations of the
system parameter, and show an example of controlling.
Further, we study the properties of the stepping mo-
tor by using velocity error plane. In case that the mo-
tor driven by intermittent impulse sequences, there exist
failure operations called pull-out operations. Then we
construct a compensator to avoid them by changing the
intermittent driving frequency and stepping rate, and
illustrate some examples applied the pole assign tech-
nique. To develop the actual implementations is a fu-
ture problem.
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