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On Unstable Saddle-Node Connecting Orbit in a Planer

Autonomous System

Tetsushi UETA' and Hiroshi KAWAKAMI!, Members

SUMMARY We found a novel connecting orbit in the aver-
aged Duffing-Rayleigh equation. The orbit starts from an unsta-
ble manifold of a saddle type equilibrium point and reaches to a
stable manifold of a node type equilibrium. Although the con-
necting orbit is structurally stable in terms of the conventional
definition of structural stability, it is structually unstable since a
one-dimensional manifold into which the connecting orbit flows
is unstable. We can consider the orbit is one of global bifurca-
tions governing the differentiability of the closed orbit.
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1. Introduction

Generally, global bifurcations in dynamical systems are
represented by the saddle-saddle connections, say ho-
moclinic or heteroclinic orbits. As is well known, these
connecting orbits are structurally unstable and behavior
of an orbit near the connection can be chaotic by suffi-
ciently small perturbations of a parameter. Therefore it
is important to study the saddle-saddle connections in
given nonlinear system.

We have already developed a simple method to
obtain an approximate value of the parameter causing
saddle-saddle connections[1],[2] and have investigated
the averaged Duffing-Rayleigh (abbr. DR) or other
planer autonomous systems. In this paper, we report
a novel connecting orbit which is found in the averaged
system. The orbit is started from an unstable manifold
of the saddle and entered into the node along the eigen-
vector whose eigenvalue is less than the other. The orbit
is structurally unstable in the sense that it is broken by
the parameter perturbations.

By tracing this orbit as a bifurcation curve we ob-
tain a bifurcation diagram with complete classification
of flows in the planer parameter space. It is notewor-
thy that the orbit is possible in any planer autonomous
system.

2. Averaged System

We treat a DR oscillator shown in Fig. 1. The differen-
tial equation of the circuit is described by the following
equation:
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Suppose that the characteristics of a nonlinear resistor
and a nonlinear inductor are as follows:
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The current source j(t) supplies cosine waves:

j{t) = J coswt. 3)

Let us take transformations:
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Consequently we have a normalized non-autonomous
differential equation:
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To study the qualitative properties of the principal har-
monic oscillation, we apply the averaging method to
Eq. (5). By using a periodic transformation for the prin-
cipal harmonic oscillation:

w = xcosvT + ysinvT

, . @
v = —xsInvT + Yy cosvT

we have a two-dimensional averaged system:
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Fig. 1 Duffing-Rayleigh oscillator.
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Fig. 2 Bifurcation diagram of DR equation.
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3. Bifurcations in the System

Bifurcation diagrams of some averaged systems: forced
van der Pol equation discussed in Refs.[3],[4], Duff-
ing van der Pol equation discussed in Refs.[5],[6], are
similar structure of bifurcation sets. Figure 2 shows a
bifurcation diagram of the equilibria and a limit cycle
for Eq.(8) in v-B space, e = 0.2, c =~y = 1.

Three types of bifurcations were already reported:
G, h, and SS indicate saddle-node bifurcations, Hopf bi-
furcations, and saddle-saddle connections, respectively.
The interior region surrounded by G is an entrainment
domain of the principal harmonic oscillation.

There also exist codimension two bifurcations; A:
cusp point connected by saddle-node bifurcations; B: si-
multaneous Hopf and tangent bifurcations; O: doubly
degenerate equilibrium; S: saddle-node bifurcation with
saddle-saddle connection in boundary of its stable man-
ifold. These codimension two bifurcations are located
in the upper-right portion of the entrainment domain.
Figure 5 shows a schematic diagram enlarged from the
upper-right portion of Fig.2.

4. Unstable Saddle-Node Connecting Orbit

Now we pay attention to behavior of the orbit around
the node. Let two real eigenvalues of the node be p1 and
ta, po < 1 < 0, and corresponding eigenvectors be &,
and &, respectively. See Fig.3. These two eigenvectors
can be regarded as stable one-dimensional manifolds.
Since there exist only two orbits pass through £,, any
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Fig. 3 A stable node.

other orbits flowing along the neighborhood of &, are
attracted into &; tangentially at last[7].

We found a new type of bifurcation in Eq.(8). If
an orbit approaches the saddle along its unstable man-
ifold as 7 — —oo asymptotically and approaches the
node along the one-dimensional stable manifold &, as
T — oo asymptotically, then we call this orbit unsta-
ble saddle-node connection. The orbit is one of unstable
orbits because it is broken by the small perturbations of
the system parameter, thus the existent of orbit also gives
codimension one bifurcation. To prove its existence of
this orbit is future objective of research. Conventionally
a node is treated as a sink because it has no positive
eigenvalues, thus there is no report mentioned this type
of orbits.

5. Calculating Connecting Orbit

In this section, we explain briefly how to calculate the
connecting orbits. The method is simple and suited to
a computational algorithm because it does not require
any other analytical information; using an exact solu-
tion of the system or the Melnikov method etc., so we
can save time to calculate the bifurcation set.

Rewrite Eq. (8) as the following equation:

&= f(z,)) 9)

where & = (z,y) is a state and A is a system parameter.
Suppose that a solution of Eq.(8) is described by

z(7) = (7, %0, \) (10)
where
z(0) = p(0, 2, ) = x¢ (11)

We calculate unstable saddle-node connection by
Newton’s method using the following conditions: Let
zo = (x5,y5) be a point on an unstable manifold,
which has a length of 6§, from the saddie and =, =
(z,y") be a point on a one-dimensional stable mani-
fold &,, which has a length of 6, from the node. The
condition of an unstable saddle-node connection is that
the orbit started from x, with forward time T, and the
orbit started from x, with backward time T,, are coin-
cided at a section II:

LP(TOU Lo, A) - (P(_Twa mwaA) =0 (12)
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Fig. 5 Schematic bifurcation diagram. The saddle-node con-
necting orbit is a curve Sg N, .

Figure 4 shows a saddle-node connection. Note that
this procedure is also applicable to obtain a saddle-
saddle connection.

6. Classification of Flows

Bifurcation curve of the unstable saddle-node connec-
tions is shown in Figs.2 and 5 as S,N,,. This curve is
started from E and terminated at S. On a curve A, the
node is degenerated.

Figures 6 (a)—(c) show phase portraits when the pa-
rameter B varies across the bifurcation curve of the un-
stable saddle-node connection(S,N,,). There are three
equilibria; D: a saddle, U: a source, N: a node.
Stable and unstable manifolds of the saddle D, one-
dimensional manifolds of the node IV, and other orbits
are drawn in this figure. The thick line in Fig. 6 (b) in-
dicates an unstable saddle-node connection. It is shown
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Fig. 6 Phase portraits of the Eq. (8). v = 1.15.

that the orbit started from the unstable manifold of the
saddle flips its direction of the approach to the node as
B varies. Note that the saddle-node connection is struc-
turally stable itself as a connection orbit because the it
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is not disconnected by small parameter perturbations.

Figure 5 shows a schematic diagram of the upper-
right portion of Fig.2. The characteristics of flows in
the regions I-IVa are topologically equivalent to the
classification of the flows in an averaged van der Pol
Eq.[4]. In Eq.(8), the region IVb classified in Ref.[4]
is split into two parts by S,N,. We label their two
regions IVb-1 and IVb-2. Thus we can obtain a com-
plete topological classification of flows and list out all
codimension-one bifurcations in the averaged DR equa-
tion. These are sketched in balloons of Fig. 5.

Note also that the lines SS and S, N,, approach the
point S tangentially for saddle-node bifurcation G, in
other words, the SS and S,N,, bifurcations are connect
at S smoothly.

These results become a help to concern differentia-
bility of the closed loop which is composed by orbits
started from the unstable manifolds of the saddle.

7. Conclusions

In this paper, we found a novel connecting orbit and
calculated the bifurcation diagram of the equilibria and
limit cycles in the averaged DR equation. From these
results we can obtain the bifurcation diagram and topo-
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logical classification of the flows completely. To inves-
tigate a role or property of the orbit in the original DR
system is a future problem.

References

[1] H. Kawakami and Y. Katsuta, “Computation of a separa-
trix loop of a saddle point,” IECE Trans., vol.J64-A, no.10,
pp. 860861, 1981.

[2] T. Ueta and H. Kawakami, “Heteroclinic orbits in a circuit
containing a Josephson junction element,” IEICE Trans.,
vol.J-76, n0.10, pp.1450-1456, 1993.

[3] J. Guckenheimer, “Dynamics of the van der Pol equation,”
IEEE Trans. Circuit & Syst., vol.CAS-27, no.11, 1980.

[4] J. Guckenheimer and P. Holms, “Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields,”
Springer-Verlag, 42, 1983.

[5] Y. Ueda, “Appearance and disappearance of limit cy-
cle correlated with the phenomenon of synchronization,”
IECE Trans. vol.J59-A, no.12, pp.1128-1130, 1976.

[6] C. Hayashi and H. Kawakami, “Behavior of solutions for
Duffing-van der Pol equation,” Proc. Int. Conf. of Nonlin-
ear Oscillations, Varna, 1984.

[7] V.I. Arnold, “Ordinary Differential Equations,” The MIT
Press, 1973.

[8] Y.A. Kuznetsov, “Elements of Applied Bifurcation The-
ory,” Springer-Verlag, AMS112, 1995.




