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SUMMARY This letter describes a new computational
method to obtain the bifurcation parameter value of a limit cy-
cle in nonlinear autonomous systems. The method can calculate
a parameter value at which local bifurcations; tangent, period-
doubling and Neimark-Sacker bifurcations are occurred by us-
ing properties of the characteristic equation for a fixed point of
the Poincaré mapping. Conventionally a period of the limit cy-
cle is not used explicitly since the Poincaré mapping needs only
whether the orbit reaches a cross-section or not. In our method,
the period is treated as an independent variable for Newton’s
method, so an accurate location of the fixed point, its period and
the bifurcation parameter value can be calculated simultaneously.
Although the number of variables increases, the Jacobian matrix
becomes simple and the recurrence procedure converges rapidly
compared with conventional methods.

key words: limit cycle, bifurcation, characteristic equation, New-
ton’s method

1. Introduction

In high-dimensional nonlinear autonomous systems,
e.g., the coupled electric circuits, coupled neural oscil-
lators, and cellular neural networks, a limit cycle is fre-
quently generated by changing their system parameter.
As is well known, quasi-periodic solution, chaotic at-
tractors and other complicated phenomena are directly
caused via bifurcations. The atlas of bifurcation sets in
the parameter plane — the bifurcation diagram has im-
portant information to understand quickly the changing
of qualitative properties for limit cycles.

To calculate the bifurcation parameter values, we
should provide a cross-section called the Poincaré sec-
tion and define the corresponding Poincaré mapping.
The bifurcation parameter value and the location of the
fixed point on the local coordinate derived from the
Poincaré mapping are solved simultaneously [4]. This
method implicitly requires the accurate location of the
point at which the periodic orbit started from the cross-
section reaches. Thus the Jacobian matrix of Newton’s
method becomes too complicated since the period is a
dependent variable according to the initial point on the
Poincaré section and the method cannot converge when
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the period changes widely.

In this letter we propose a new method to calcu-
late the bifurcation parameter value. The method treats
the period of the limit cycle as an independent variable
for Newton’s method. Its Jacobian matrix becomes sim-
ple and recurrence formula converge rapidly against the
conventional method.

2. Limit Cycle and the Poincaré Mapping

We consider an n-dimensional nonlinear autonomous
system described as:

dx

—-— = f(=z 1

= = f(@) M
where,t € R, ¢ = (z1,22,...,2,) € R". Let f : R" —
R"™ be a C* mapping for any states and parameters. A
solution of Eq. (1) with an initial condition is written
as follows:

:B(t) = Sa(t’ 330), :13(0) =T = ‘P(Ov 330) (2)

Assume that Eq. (1) has a limit cycle with the period L.
Then we define a cross-section IT which is transversal to
the orbit of the limit cycle.

I={xecR" | ¢(z) =0} 3)

The section IT is an (n — 1)-dimensional hypersurface
described by:

g:R" - R
g(x) =0

Since the cross-section is transversal to the periodic or-
bit, thus we have
9q

%-‘f:fzo forall x € II (&)

We choose a suitable section which is parallel with an
orthogonal coordinate of R". Let & € II C II be the
neighborhood of a point  on the cross-section. Then
the Poincaré mapping T is described as:

4

T:11 —- 10
z — p(r(z),)

(6)

Let 7(&) be the return time which is spent during the
orbit started from & € II intersects to the IT again. The
fixed point of the mapping is as:
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T(wo) = g (7)

Then the return time is coincident to the period of the
limit cycle.

To investigate stability of the fixed point (7), we
consider variations for the neighborhood of the fixed
point. Let & be the neighborhood of the fixed point
and £ be the variation.

§o =& — o (8)

By substituting this relations to Eq.(6) and applying
the Taylor-expansion, we have
Op
= - 9
El 81:0 €0 ( )
The Jacobian matrix d¢/dxq is a principal matrix so-
lution obtained by integrating the following variational
equation fromt =0 to t = 7(xp):

d dp _Of Oy

dt 8:1:0 - oz 8:130 (10)
O :

2l g, 1
8:1:0 t=0 ( )

where I,, is the n x n identical matrix. Stability of the
fixed point depends on the roots of the characteristic
equation:

=5~ —un|=0 (12)

Xu 8(130

We attach an (n — 1)-dimensional local coordinate
¥ to the cross-section. A projection IT — ¥ is defined
as:

M = {zcR"|q)=0}

h:Il —» YcR'! (13)

This projection h is often called local coordinate of II.
The embedding map h~! is written as follows:

Al:TSICR? (14)

Suppose that u € ¥ C R™ ! is a location on
the local coordinate, then the relation h(xg) = ug is
held. Let Zl be the neighborhood of uy € %, u; be
a point on 3, and (¢, x1) be the solution starting in
h=Y(u;) = @, € II. Let also the x, € II be a point at
which (¢, ;) intersects with the return time 7(x;):

z2 = p(7(x1), 1) (15)

Then we define the Poincaré mapping on the local co-
ordinate system:
Ty IR
ur = ug = h(p(r(h™H (u1)), A7 () (16)
=hoToh Hu)

The fixed point of the mapping Ty is given by:
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Fig. 1  Cross-section and the Poincaré mapping Tp.

Ty(ug) = ug (17)

Note that the corresponding point o = h™(up) is the
fixed point of mapping 7. Note also that the following
relationship is held.

a(e(r(h™ (u0)), A~ ((uo))) = 0 (18)

3. Computation of Bifurcation Parameter Value
3.1 Recurrence Formula for Newton’s Method

In the case of nonautonomous systems, the bifurcation
parameter value of a periodic solution is calculated eas-
ily since a period of the Poincaré mapping is invariant
and identical to the period of the forcing term. While
in the case of autonomous systems, the period of the
limit cycle is changed as the parameter changes. Con-
ventional method [4] has to detect an accurate location
of the cross point at which the trajectory starting from
¥ returns again. Usually bisection method and Runge-
Kutta method are applied to calculate this location. But
a lot of iterations are spent to calculate the location by
the bisection method, moreover, the period is a depen-
dent variable according to the initial point zy on II,
so that the derivative of the Poincaré mapping becomes
too complicated such that

DT(@) = (I ~ (Da(a) £ f - D@) o2

(19)

The Poincaré mapping does not include information
about the period explicitly. This fact affects the solv-
ability or convergency of Newton’s method, especially
the method sometimes fails when the period changes
widely as the system parameter varies little.

Kawakami et al. showed that the fixed point and
its period can be solved simultaneously by using New-
ton’s method [2]. Kuznetsov introduces some similar
methods in Ref.[3]. In these references, the period 7
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is chosen as an independent variable, so that the de-
pendency of the initial state 2, for the Jacobian matrix
Eq.(19) is simplified as:

¢
DT (x) = — 20
(@)= 57 (20)
In this letter, we apply this method to bifurcation prob-
lems. The fixed point xg, period 7y and bifurcation pa-
rameter value \g are obtained by solving the following
equation:

Ty(u) —u
a(e(r, k71 (w)) | =0 21

Xu(h™H ()
The third equation of Eq. (21) is the characteristic equa-
tion derived from the local coordinate system by using
the embedding map h~!.

The Jacobian matrix of Eq.(21) are needed for

Newton’s method:

F(u,m,\) =

DF(u,T,\)

DT[(’U.) - In—l DT@(T) DTe(/\)
= Dq(u) Dq(r)  Dg()) (22)

Dxp(u) Dx (1) Dxu(X)

where

DTy(u) = Dh(z) - %‘% -Dh™!(u) (23)
DTy(r) = Dh(z) - f (24)
DT,()\) = Dh(z) - g—‘: (25)
Dg(u) = Dg(z) - % -Dh™Y(u) (26)
Dq(r) = Dq(x) f 27
D) = Do(a) - 92 (8)

3.2 Properties of the Characteristic Equation and Its
Derivatives

The characteristic equation x,(h~!(u)) can be ex-
panded as a polynomial such that

Xu = p" +arp" "+ agp" T 4
ot A1+ a, =0 (29)

Since the trajectory is periodic, Eq.(29) must have at
least a root whose value is unity. Thus Eq.(29) can be
resolved into the factors.

X#:(,u—1)(,u"_1+b1,u"_2+b2,u"_3-~-
oot by _op+by_1) =0 (30)

Consequently one can choose an (n — 1)-dimensional
polynomial ¥, as a condition instead of Eq.(29).

Xp = P b b+ b1 =0

k
be=1+ar+a+ - +a=1+Y a (31)
=1
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Mathematically, Eq. (31) is a universal condition to ob-
tain codimension-one bifurcation parameter value be-
cause corresponding Jacobian matrix (22) is always
non-singular even if Eq.(29) has a doubly unity root,
i.e., the tangent bifurcation is occurred.

However, in high-dimensional systems, coefficients
of the polynomial (29) become too complicated com-
binations of the variables. Newton’s method needs the
derivatives of all conditions for all variables, so that
it is very troublesome to calculate each element in the
Jacobian matrix.

After all, we propose to use the matrix form of the
original characteristic equation x,(h~!(u)) = 0 instead
of Eq.(31). For instance, the derivative of x, by z; is
given by the following equation:

dp1 Op1
9z, " Ba,
| B oo
DXu(xi) = Z o, Oxy
=1
Opn Opn
dzy  dzy
Pe O
Orox; ox,
e om
Oz, dx; oz, (32)
82‘Pn Opn,
. 05, 5@-

All columns of the determinant are given by solving
the variational and second variational equations. Equa-
tion (32) indicates that the determinant of Jacobian ma-
trix is calculated from only matrix operations, i.e., ex-
pansion of the characteristic Eq.(29) is not necessary.
Therefore this method is quite suitable for computa-
tional algorithm.

3.3 Period-Doubling Bifurcation

Period-doubling bifurcation is obtained by solving
Eq.(21) for u, 7, and A\ with = —1.

3.4 Tangent Bifurcation

In the case of tangent bifurcation, The characteristic
equation x,(h~*(u)) = 0 has a multiple root whose
value is unity, thus Newton’s method fails because the
Jacobian matrix DF for Eq.(21) becomes singular.
Then we use the following conditions:

Ty(u) —u
Fy = q(p(1, k=1 (u))) -0 (33)

Xp 1y -1
-@(h (u))
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Table 1 Bifurcation of the limit cycle in Eq. (35).
| Bifurcation T c [ 20 | 20 ] T l I [ g2 | ps ]
Period doubling 5.42787 | 3.50257 | 3.06504 6.50433 | —1.00002 | 0.0 | 1.0
Tangent bifurcation | 9.84900 | 5.57657 | 3.77715 13.63128 0.99991 | 0.0 | 1.0

with i = 1. Each factor of the Jacobian matrix of New-
ton’s method is given by solving variational equations.
dDx,(x)/0u is a derivative of the characteristic equa-
tion and it can be obtained as matrix form like Eq. (32).

4. An Example

As an illustrated example of the method, we consider a
Réssler equation described by the following equation:

dz

@~ V7
dy

dz
E:w—cz—%:z:z

Now we show briefly numerical results of a limit cy-
cle observed in Eq.(35). Assume that we can choose a
cross-section y = 0 for a limit cycle:

I={zeR|q)=y=0} (35)

By solving Egs. (21) and (33), we obtain parameter val-
ues of the period doubling and tangent bifurcation of
the limit cycle. Table 1 shows their values. Iteration
of these Newton’s recurrent formula is a few times and
accuracy is given by their value of pu;, ¢ = 1,2,3. We
would like to report about their convergence abilities in
future.

5. Conclusions

We proposed a method to obtain the bifurcation pa-
rameter value and investigate its mathematical prelimi-
naries. Similar method is introduced in Ref.[3], how-
ever, the method uses a periodic boundary-value prob-
lem which needs some analytical considerations. Our
method is simple and universal for any nonlinear au-
tonomous systems given by Eq.(1) without analytical
information.
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