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Steady State Analysis of the TCP Network with RED Algorithm

Daisuke ITO†a) and Tetsushi UETA††, Members

SUMMARY The transmission control protocol with a random early de-
tection (TCP/RED) is an important algorithm for a TCP congestion control
[1]. It has been expressed as a simple second-order discrete-time hybrid dy-
namical model, and shows unique and typical nonlinear phenomena, e.g.,
bifurcation phenomena or chaotic attractors [2], [3]. However, detailed be-
havior is unclear due to discontinuity that describes the switching of trans-
mission phases in TCP/RED, but we have proposed its analysis method in
previous study. This letter clarifies bifurcation structures with it.
key words: TCP/RED, S-model, border-collision bifurcation

1. Introduction

With the progress of computer technology, packet routing
methods have become serious problems. Especially, a net-
work congestion avoidance technology is one of the critical
issues [4], [5]. If many senders transmit a lot of packets to
a network at the same time, tandem switches and receivers
will overflow with them, disorderly transmissions of senders
will decrease throughputs of local or global computer net-
works drastically. Thus, appropriate protocols that guaran-
tee the throughput are necessary, and the congestion avoid-
ance technology that routers monitor and adjust the flow of a
network has been proposed [6]. In 1988, the TCP Tahoe was
proposed as the congestion avoidance with a slow-start al-
gorithm [7]. This is a simple window-based process: at first,
the sender sets the window size as a narrow value since it has
no information about a network condition. After that, the
upload bandwidth (the window size) is expanded gradually.
If the congestion occurs by an excessive expansion of win-
dow sizes and a lot of packets, senders will reset the window
size as the slow-start phase. Hence, the increase of packets
can be suppressed. The TCP Reno, which has a fast recov-
ery algorithm, was introduced in the early 1990 [8]. When a
packet drop occurs, the TCP Tahoe has tendency decreased
the window size too small. The TCP Reno has alleviated this
problem by the fast recovery phase. These techniques are
based on the window-based congestion controlling method
[7]. On the other hand, the Random Early Detection (RED),
is an Active Queue Management (AQM) scheme, was pro-
posed in 1993 by Floyd [1], [9]. This method is employed
along with the TCP congestion control mechanisms in order
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to increase further the throughput of the computer network.
It is conceivable that this method improves the performance
of network and fairness to senders [10]. Thus, it is the im-
portant algorithm for the congestion avoidance.

In recent year, there have been many investigations of
TCP/RED with numerical simulations [2], [11]. Mathemat-
ical models of these techniques are studied actively to in-
vestigate reliance with parameters [12]. The S-model, pro-
posed by Zhang et al., has good approximation of TCP/RED
without random numbers, and it is used for numerical sim-
ulations [2]. It is described as a discrete-time hybrid dy-
namical system, and occurs global bifurcation phenomena;
border-collision (BC) bifurcation phenomena are reported in
Ref. [3]. However, most of previous studies are focused on
the performance with varying parameters and the its design
because the configuration of TCP/RED parameters requires
an empirical knowledge. On the other hand, the investiga-
tion of these bifurcation structures helps an understanding
of global behavior. The analysis of bifurcation structures
of the model is seldom studied, because we had no way to
determine parameter sets of bifurcation phenomena for hy-
brid dynamical systems due to non-smoothness on the state
space. Hence, the detailed investigation of bifurcation struc-
tures of the S-model was not enough.

In our previous study, we have proposed the analysis
method based on the Newton’s method for determination of
bifurcation parameters of hybrid dynamical systems [13]. It
is accomplished owing to an extent border line defined by
threshold values, and can analyze approximately detailed bi-
furcation structures of border collision bifurcations for hy-
brid dynamical systems. In this letter, we try to clarify the
bifurcation structure of the S-model in detail. At first, we
explain the analysis method for them, after that we show
some bifurcation structures, and demonstrate behavior of the
model with varying parameters.

2. S-Model Constructed from TCP/RED

First of all, let us explain the S-model constructed from
TCP/RED [2]. Assume that pk is the drop probability of
a packet, Wk and qk mean the window size and the average
queue size, respectively, and they are state variables of the
model q = (W, q)⊤. The S-model is shown below.

• The drop probability of a packet pk
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Fig. 1 Structure of the drop probability of a packet. When q is less than
qmin, p is set for zero, thus all packets will be received without loss of
packets.

pk+1 =


0 if qk+1 ≤ qmin
1 if qk+1 ≥ qmax
qk+1 − qmin

qmax − qmin
pmax otherwise

(1)

where, qmin and qmax are the minimum and maximum
queue threshold values, respectively. pmax is the max-
imum packet drop probability. They determine the
value of pk. Figure 1 sketches the shape of Eq. (1).
• Case 1: pkWk < 0.5 (No loss)

Wk+1 =


min(2Wk, ssthresh)

if Wk < ssthresh,
min(Wk + 1, rwnd)

otherwise

,

qk+1 = (1 − wq)Wk+1 qk + (1 − (1 − wq)Wk+1 )

·max
(
Wk+1 −

C · d
M
, 0

)
.

(2)

• Case 2: 0.5 ≤ pkWk < 1.5 (One-packet loss)

Wk+1 =
Wk

2
,

qk+1 = (1 − wq)Wk+1 qk + (1 − (1 − wq)Wk+1 )

·max
(
Wk+1 −

C · d
M
, 0

)
,

ssthresh =
Wk

2
.

(3)

• Case 3: 1.5 ≤ pkWk (At least two-packet loss)

Wk+1 = 0,
qk+1 = qk.

(4)

ssthresh means the threshold value of a congestion window
size, and rwnd, C, d, and M are parameters of the TCP net-
work, and we employ these parameters as Table 1 [2]. wq is
the weight factor of a low-pass filter to get the average queue
size qk. Especially, qmax, qmin, pmax and wq are adjustable pa-
rameters of TCP/RED, and others are constant parameters.
The S-model can be considered as a two-dimensional hy-
brid dynamical system, and it is composed of 11-tuple maps
from Eqs. (1)–(4). Subspaces for each map are shown in

Table 1 Parameters of the TCP network.
Receiver advertised window size

(rwnd[packets]) 1, 000
Link capacity (C[bps]) 1.54 × 106

Round-trip propagation delay (d[sec]) 22.8 × 10−3

Packet size (M[bits]) 4, 000

Fig. 2 Subspace for 11-tuple maps. This figure indicates seven sub-
spaces only. The others are located in outside of this range, or they have
no areas, e.g. generally rwnd is set as large value, and Wk is always smaller
than it.

Fig. 2. Note that, subspaces are illustrated only seven areas
because some maps have no regions in which the conditions
of some maps are satisfied on the state space with normal
settings of parameter values.

3. Bifurcation Analysis

It is generally difficult to determine bifurcation parame-
ters in hybrid dynamical systems by discontinuity of a state
space, e.g., a hysteresis or a switch [14]. Discrete time hy-
brid dynamical systems are described as piecewise smooth
functions, and they have an interrupt characteristic. It causes
some problems for the analysis of bifurcation structures, but
in our previous study analysis method for discrete time hy-
brid dynamical systems has been proposed [13].

The hybrid system is defined as follows:

xk+1 = f (xk) = fi(xk) if xk ∈ Di, (5)

where xk ∈ Rn is the state, f is a function satisfying f :
Rn 7→ Rn. fi, i = 1, 2, . . .m are C∞-class functions that
are used on subspace Di. Thus, the applied functions are
selected from fi, depending on the location of the current
state xk.

The solution φ is defined as

xk = φ(x0, k), (6)

where x0 is the initial value, which satisfies x0 = φ(x0, 0).
The detection of bifurcation parameters is difficult because
Eq. (6) has non-smoothness on boundaries between two sub-
spaces.

If periodic points that satisfy Eq. (7) exist, the Jacobian
matrix of a discrete time system is expressed as:

x∗0 = φ(x∗0, p). (7)
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∂φ

∂x0
(k + 1) =

∂ f
∂x
∂φ

∂x0
(k),

∂φ

∂x0
(0) = I, (8)

where ∂φ/∂x0(k) represents the Jacobian matrix, which can
estimate the stability of periodic points. However, in the
case of a hybrid dynamical system, f is a C0-class function.
To analyze the stability of the solution and to detect its bi-
furcation parameters, the Jacobian matrix is necessary, but
it accomplished by using derivative of Eq. (6).

In hybrid dynamical systems, function f is selected
from fi, according to the state x. Additionally, the derivation
of maps can be expressed by the same way. The Jacobian
matrix is also calculated as follows:

∂φ

∂x0
(k + 1) =

∂ fi

∂x

∣∣∣∣∣
xk∈Di

∂φ

∂x0
(k),

∂φ

∂x0
(0) = I. (9)

The shooting method can be applied to solve Eq. (7) by us-
ing these equations.

The border-collision bifurcation is the characteristic
phenomena in the hybrid dynamical system, and it occurs
when periodic points across the border that defines each sub-
space. It can be analyzed by adding the function defines the
border to the recurrence formula of the shooting method,
and they are expressed as follows:

F(λ) = η(φ(λ)) = 0 (10)

F′(λ) =
∂η(λ)
∂q
∂φ

∂λ
= 0 (11)

where λ is the parameter, e.g., wq, pmax and so on. The
Jacobian matrix is computed by Eq. (8). Note that, ∂φ/∂λ is
given by

∂φ

∂λ
(k + 1) =

∂ fi

∂x

∣∣∣∣∣
xk∈Di

∂φ

∂x0
(k) +

∂ fi

∂λ

∣∣∣∣∣
xk∈Di

, (12)

∂φ

∂λ
(0) = 0. (13)

Additionally, in analysis of the border collision bifur-
cation, there is the serious problem explained, but we pro-
posed the its workaround technique [13]. In this letter we
use above shooting method and expansion borders for the
BC bifurcation analysis.

4. Analysis Results

We analyze bifurcation structures of the S-model. Figure 3
shows the two-parameter bifurcation diagram in the pmax–
wq plane. The system with parameters on gray regions oc-
curs the “At least two-packet loss”. The time out occurs be-
cause of dropping some consecutive packets; hence senders
close the window size and have to wait the idle time. As
a result, the throughput of the router will decrease. All bi-
furcation phenomena in this parameter ranges are border-
collision (BC) bifurcations, and some bifurcation sets have
Arnold tongue structures. Figure 4 shows the magnification
diagram of Fig. 3. It is confirmed that various periodic re-
gions exist and they have an Arnold tongue structure. These

Fig. 3 Bifurcation diagram in the pmax–wq plane. other parameters are
qmin = 5, qmax = 15, ssthresh = 20, and Table 1. All of bifurcation
phenomena in this parameter ranges are BC-bifurcations.

Fig. 4 Magnified figure of rectangle A in Fig. 3. Various periodic at-
tractors are embedded in this region. The numbers in the figure show the
periods of attractors.

parameter sets are also BC bifurcations.
The one-dimensional bifurcation diagram varied the

parameter pmax on the line (i) (wq = 0.002) in Fig. 4 is shown
in Fig. 5. Figures 5(a) and (b) shows Wk and qk respectively.
Many BC bifurcations happen, and they cascade with var-
ied pmax. The average queue size decreases slowly. There-
fore, the BC bifurcation phenomena affect the performance
of TCP/RED. Figure 6 shows one-dimensional bifurcation
diagram with wq = 0.13 on the line (ii). When wq is in-
creased, Wk and qk has constant values against varying wq.
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Fig. 5 One-dimensional bifurcation diagram varied the parameter pmax
on the line (i) in Fig. 4. (wq = 0.002) (y-axis: the window size Wk and the
average queue size qk [packets]).

Fig. 6 One-dimensional bifurcation diagram varied the parameter pmax
on the line (ii) in Fig. 4. (wq = 0.13) (y-axis: the window size Wk and the
average queue size qk [packets]).

On the line (ii), BC bifurcations do not occur with vary-
ing wq, and it is easy to see by the comparison with Fig. 4.
Therefore steady state of the model is not changed, and state
variables have the same vale for various wq. However, the
average queue sizes have sparse values than the wq = 0.002
case, and include small values. Thus the throughput of the
model is lower than previous one. Moreover, the time out
happens at the middle value of pmax (the shaded region). As
a result, in the S-mode, it can be considered that the weight
wq should be set as lower value, e.g. wq = 0.002, thus weak
low-pass filter is suitable for this network [2].

5. Conclusion

In this letter, we have investigated the stability and bifurca-

tion structures of the S-model constructed from TCP/RED.
From analysis results observed bifurcation phenomena in
this mathematical model are mainly BC-bifurcations. From
bifurcation diagram Fig. 4, they have formed Arnold tongue
structures. From bifurcation structures and one-dimension
bifurcation diagrams, the tendency of the performance and
parameter regions in which the TCP/RED system occurs the
time out and the idle time are clarified. As a result, to al-
leviate the timeout, and to keep the average queue size, the
weight factor should be set as lower values, i.e. wq = 0.002,
but the timeout caused by dropping multi packets will occur
when the max drop probability pmax is set as the large value
by BC bifurcations.
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