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Abstract : Brown adipose tissue (BAT) is believed to function by dissipating excess energy
in mammals. It is very important to understand the energy metabolism held in BAT since
disorder of its energy-dissipating function may cause obesity or lifestyle-related diseases such
as hypertension and diabetes. This function in BAT is mainly attributable to uncoupling protein
(UCP), specifically expressed in its mitochondria. This protein consumes excess energy as
heat by dissipating the H" gradient across the inner mitochondrial membrane that is utilized
as a driving force for ATP synthesis. In this review article, in addition to providing a brief
introduction to the functional properties of BAT and UCP, we also describe and discuss properties
of cultured brown adipocytes and the results of our exploratory studies on protein components
involved in the energy-dissipating function in BAT. J. Med. Invest. 51:20-28, February, 2004
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INTRODUCTION

In mammals, 2 kinds of adipose tissues are known
to exist, i.e., white (WAT) and brown (BAT) adipose
tissues. WAT is widely distributed throughout the
body, but BAT is observed only in limited parts of
the body such as interscapular, axillary, superior cer-
vical, and perirenal regions. The physiological roles
of these adipose tissues are completely opposite :
WAT functions to store excess energy as fat, whereas
BAT acts to consume excess energy as heat. Since the
energy-dissipating function of BAT is very important
to maintain the homeostasis of energy balance in the
body, the functional properties of BAT and molecular
mechanisms of energy expenditure in BAT have been
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extensively investigated (for reviews, see refs. [1-4]).
In this article, to promote a better understanding
of the unique function of BAT, the functional properties
of BAT and the structural properties of uncoupling
protein (UCP), known as a key component of the
molecular machinery in BAT, and its homologues
were described in sections 1 and 2, respectively. Fur-
thermore, in section 3, various properties of cultured
brown adipocytes are stated, since culture system of
brown adipocytes is very important for the purpose
of characterization of energy metabolism in BAT.
Finally, in section 4, the protein machinery that seems
to be involved in the specific metabolism occurring
in BAT, mainly revealed by our studies, is considered.

1. Functional properties of BAT

1.1. Uncoupling of oxidative phosphorylation and
thermogenesis in BAT mitochondria

As mentioned above, BAT functions to dissipate

excess energy in the body. This unique function of

BAT is mainly attributable to the mitochondrial un-
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coupling protein (UCP), specifically expressed in BAT.
In the process of mitochondrial oxidative phospho-
rylation, H" is pumped out from the mitochondrial ma-
trix to the cytosol, which activity is accompanied by
oxidation of the respiratory substrates. Using the elec-
trochemical potential gradient of H'(AuH") thus formed
across the inner mitochondrial membrane, ATP is syn-
thesized from ADP and inorganic phosphate (Pi). How-
ever, in mitochondria of BAT, UCP mediates H'" trans-
port across the inner mitochondrial membrane, by-
passing ATP synthase, and dissipates the AuH". Con-
sequently, the chemical energy of respiratory substrates
is released as heat without the formation of ATP.

1.2. Regulation of thermogenic function in BAT

The energy-dissipating function in BAT is known
to be mainly regulated by the sympathetic nervous
system (5). Norepinephrine, a typical neurotransmitter
of the sympathetic nerves, is released from nerve
endings and binds to the B-adrenergic receptor (-
AR) in the cell membrane of brown adipocytes. Next,
the occupied B-AR activates adenylate cyclase to in-
crease the intracellular level of cyclic AMP (CAMP).
Thereafter, CAMP activates protein kinase A (PKA),
and then the activated PKA phosphorylates hormone-
sensitive lipase (HSL) and cAMP response element
binding protein (CREB), a transcriptional factor. HSL
activated by PKA hydrolyzes stored fat and produces
fatty acids (FAs) and glycerol. FAs are not only utilized
as a metabolic substrate but also directly activate
UCP (6, 7). Furthermore, phosphorylated CREB binds
the cCAMP response element (CRE) in the promotor
region of the Ucp gene and accelerates the transcrip-
tion of this gene (8-10).

Experimental up-regulation of thermogenic function
of BAT is often achieved just by exposing animals
to cold environment, since cold exposure is well es-
tablished to stimulate thermogenic function of BAT
via sympathetic nervous system.

2. UCP1 and its homologues

Until recently, UCP in BAT had been believed to
be the sole protein showing uncoupling activity. How-
ever, in 1997, cDNA clones encoding proteins similar
to UCP were successively identified. In light of these
findings, the UCP specifically expressed in BAT was
renamed UCP1, and these newly identified UCPs
were named UCP2 and UCP3 (11-15). Similarities
of the primary structures of UCP2 and UCP3 with
the primary structure of UCP1 were 59% and 56%,
respectively. UCP2 was expressed not only in BAT
but also in other tissues such as brain, liver, kidney,

and heart ; and UCP3 was expressed in BAT and skeletal
muscle. Furthermore, from analyses made by using
the yeast expression system, these UCP isoforms were
also shown to have uncoupling activity (11,15). In ad-
dition to UCP 2 and UCP 3, 2cDNA clones referred
to as brain mitochondrial carrier protein 1 (BMCP1)
(16) and UCP4 (17), both of which were predominantly
expressed in brain, were identified. BMCP1 and UCP4
also showed significant uncoupling activity in yeast
cells ; however, they are distinguished from the other
UCP isoforms by their lower structural similarities
(31-34%) to UCP1.

The physiological roles or mechanisms of functional
regulation of these UCP homologues are still unclear.
However, knockout studies (18-24) suggested that
UCP2 is involved in inflammation-related thermo-
genesis or insulin secretion and that UCP3 is related
to the control of reactive oxygen species (ROS) pro-
duction in the body.

3. Culture of brown adipocytes

For an understanding of how thermogenesis in
BAT is regulated, the study of brown adipocytes in
culture is required. As is the case for white adipocytes,
it is impossible to cultivate well-differentiated (ma-
ture) brown adipocytes in a culture dish. Thus, to obtain
cultured brown adipocytes, one must first start with
preadipocytes, which have a phenotype similar to that
of fibroblast cells. Then, they are caused to undergo
terminal differentiation. Two kinds of preadipocytes
are utilized for this purpose : immortalized preadi-
pocytes and preadipocytes isolated from BAT.

3.1. Immortalized brown preadipocytes

To obtain highly reproducible results, an estab-
lished cell line is desirable. However, as passage of
brown adipocytes in culture results in lack of their
ability to express UCP1, establishment of a useful cell
line of brown adipocytes has been difficult. To date,
however, several cell lines of brown preadipocytes
have been established, mainly by using transgenic
animals (27-29); and they were reported to be capable
of differentiation into mature brown adipocytes ex-
pressing UCP1. Of these cell lines, HIB 1B showed
significant expression of UCP1, especially when it was
stimulated by cAMP, norepinephline or certain 3
agonists. Therefore, this cell line is useful for studies
on properties of BAT such as regulation of UCP1 ex-
pression.

3.2. Preadipocytes obtained from BAT
The other source of brown preadipocytes is BAT,
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and preadipocytes could be obtained by digestion of
BAT with collagenase. However, only a small number
of brown preadipocytes can be obtained from BAT,
and so a large number of animals are required to set
up primary cultures. Furthermore, experimental results
are dependent upon the animals used. Despite these
demerits, brown preadipocytes are often obtained from
BAT for the following 2 reasons : First, cell lines of
brown preadipocytes mentioned above are not com-
mercially available. Second, the expression level of
UCP1 in brown adipocytes derived from immortalized
preadipocytes is often lower than that in brown adi-
pocytes generated from preadipocytes in primary
culture.

Phenotypes of cultured brown adipocytes are sig-
nificantly dependent upon the culture conditions, and
optimization of them was mainly achieved by Ricquier
et al . (25). Their culture conditions are suitable for
significant expression of not only UCP1 but also physi-

Recommended
medium

Primary
culture

ological isoforms of a glucose transporter (GLUT4)
(26).

3.3. Commercialized brown preadipocytes
Recently, brown preadipocytes from rats and their
culture kits were commercialized by 2 Japanese com-
panies, and this has made the culture of brown pread-
ipocytes easier. The contents of culture media included
in these cell culture kits are identical, but are different
from those utilized in our studies. Thus, we examined
the effects of the difference between these commercial
media and ours on the differentiation of these brown
preadipocytes. We refer to these 2 commerical Kits
as A and B systems and the culture medium included
in these Kits and that used in our studies & recom-
mended medium” and our medium,” respectively.
When the recommended medium was utilized, 30-
50% and 80-90% of the total cells in the A and B sys-
tems, respectively, showed fat droplets (Fig. 1). On

Our

Figure. 1. Effects of difference in the culture medium utilized on the microscopic appearances of brown
adipocytes obtained from 2 companies and from newborn rats

Brown preadipocytes obtained from 2 companies (A-and B systems) were cultured in either the recommended
medium or our medium. Photographs were taken at 3 to 5 days after induction of differentiation:* Primary
culture” indicates the preadipocytes obtained from newborn rats.
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Figure. 2. Effects of difference in the culture medium used on the transcript level of UCP1 in brown adipocytes
from obtained commercially and from newborn rats.

Precursor cells of brown adipocytes were cultured in recommended medium (R) or in our medium (O), and
RNA samples were obtained from these cultured cells. RNA samples were also prepared from these cells that
had first been treated with 200nM norepinephrine for 4 hours (NEO ) and from cultured precursor brown fat cells
obtained from newborn rats (P). Each RNA sample was subjected to 1% denatured agarose gel electorophoresis,

transferred onto a nitrocellulose membrane, and probed with a *P-labelled cDNA fragment of UCP1.

the contrary, when our medium was used for culture
of preadipocytes in A and B systems, the degrees of
differentiation was slightly improved.

We also examined the transcript level of UCP1 in
these brown adipocytes (Fig. 2). When recommended
medium was utilized, no message corresponding
to UCP1 was detected in cells of either A or B system,
even when the cells were treated with norepinephrine
(NE). On the contrary, when our medium was utilized,
a definite signal corresponding to UCP1 was observed
in the cells of the B system, and its level was signifi-
cantly increased by the treatment with NE. Faint
signals of UCP1 were also detected in the cells of the
A system ; however, their level was apparently lower
than that observed with the cells in the B system. There-
fore, with respect to the expression level of UCPL, our
medium is more suitable than the recommended me-
dium. Furthermore, cells in the B system are better
than those in the A system. It should be also noted
that the level of UCP1 mRNA in cells of the B system
cultured in our medium was still significantly lower
than that in primary cultures of brown adipocytes in
our laboratory.

For primary cultures, we usually obtain the brown
preadipocytes from 6-or 7-day-old male rats. When
precursor cells were obtained from 4-week-old rats,
the transcript level of UCP1 was decreased (unpub-
lished). Furthermore, when precursor cells were frozen,
their ability to express UCP1 was decreased. These
factors may contribute to the lower expression level
of UCP 1 in the commercialized brown adipocytes.
Furthermore, as indicated above, the composition of

the culture medium also affected the expression level
of UCP1. Therefore, all of these factors should be taken
into account when commercialized brown preadipocytes
are used.

4. Unique energy metabolism in BAT

4.1. Exploration of the characteristic proteins ex-
pressed in BAT

As stated in section 1, the energy-dissipating func-
tion of BAT has been mainly attributed to the UCP1
specifically expressed in BAT mitochondria. However,
UCP1 just dissipates AuH" at the final step of the en-
ergy conversion, and many other enzymes or proteins
would be expected to be involved in the metabolic
processes in BAT to enable efficient energy dissipation.
To understand how energy dissipation is achieved
in BAT, we have investigated the differences in ex-
pression patterns of various proteins between BAT
and WAT. As a result, we succeeded in identifying a
novel cDNA clone expressed in BAT but not in WAT
[30]. Sequence analysis suggested that this newly
identified cDNA encodes a protein showing high struc-
tural similarity to liver-type carnitine palmitoyltrans-
ferase | (L-CPTI). CPTI is an enzyme involved in the
transport of long-chain fatty acids into mitochondria,
and the possible existence of an isozyme of CPTI ex-
pressed in heart has been reported. The message
corresponding to the novel protein was not only ex-
pressed in BAT but also in heart and skeletal muscle
(30). Therefore, the newly identified cDNA was con-
cluded to be one encoding heart/muscle-type of CPTI
(M-CPTI) ; and this conclusion was confirmed by ex-
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pression analysis in COS cells (31). Different from the
significant expression of M-CPTI in BAT, L-CPTI was
predominantly expressed in WAT. Therefore, we
concluded that 2 different isozymes of CPTI, i.e., M-
CPTI and L-CPTI, are utilized in BAT and WAT, re-
spectively.

4.2. Energy metabolism in BAT is similar to that in
muscle especially under the conditions in which
the thermogenic function in BAT is elevated

We also examined the transcript levels of numerous
other proteins, especially those involved in energy
metabolism between BAT and WAT. RNA samples
were prepared not only from rats fed at room tem-
perature (250 ) but also from those exposed to a cold
environment (40 ) and then analyzed, because the
thermogenic function of BAT is known to be elevated
when animals are exposed to the cold. As a result,
with cold exposure, the transcript levels of certain
proteins involved in the metabolism of fatty acids and
glucose were elevated only in BAT (Fig. 3)(32). We
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concluded that energy metabolism in BAT is similar
to that in muscle tissues, since most of these proteins
were isoforms known to be expressed in heart and
skeletal muscle (32). Of these, fatty acid-binding pro-
tein (FABP) showed the most interesting expression
profile (32, 33). In mammals, 8 isoforms of FABP are
known to exist. Our studies revealed that the transcript
level of the adipose-type FABP (A-FABP) was almost
the same in RNA samples prepared from either BAT
or WAT of animals regardless whether they were fed
at room temperature or exposed to the cold. On the
other hand, the transcript level of heart/muscle-type
FABP (H-FABP) in BAT was increased about 100-fold
by cold exposure, whereas that in WAT was negligible.
These results indicate that the expression of H-FABP
in BAT is regulated in a synchronized manner, like
that of UCP1.

4.3. PCR-select subtraction for characterization of
messages remarkably expressed in BAT
The above-mentioned results strongly support our

BAT WAT BAT WAT BAT WAT

-+ -+ -+ -+ -+ -+
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Figure. 3. Steady-state transcript levels of various proteins in BAT and WAT obtained from rats fed at room temperature or

exposed to the cold

RNA samples were prepared from interscapular BAT or epididymal WAT of rats fed at room temperature (coldo) or exposed
to cold (cold ), and Northern analyses were performed by using 1 pg of poly (A)” RNA. Abbreviations of probes are as follow :
H-FABP, heart-type fatty acid-binding protein ; A-FABP, adipose-type FABP ; FATP, fatty acid transport protein ; FAT, fatty acid
translocater ; mMASPAT, mitochondrial asparatate aminotransferase ; LPL, lipoprotein lipase ; ACC, acetyl-CoA carboxyrase ;
FAS, fatty acid synthase ; LCAS, long-chain acyl-CoA synthase ; M-CPTI, muscle-type carnitine palmitoyltransferase | ; L-CPTI,
liver-type CPTI ; CC, carnitine carrier ; MCAD, medium-chain acyl-CoA dehydrogenase ; LCAD, long-chain acyl-CoA dehydroge-
nase ; KACT, ketoacyl-CoA thiolase ; GLUT, glucose transporter ; HK, hexokinase ; UCP, uncoupling protein ; ANT, adenine
nucleotide translocator ; COX, cytocrome c oxidase ; B-AR, B-adrenergic receptor ; C/EBP, CCAAT enhancer binding protein.

(modified from reference 32)
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working hypothesis. Thus, to understand the unique
energy metabolism in BAT, we decided to isolate cDNA
clones significantly expressed in BAT but not in WAT
of rats by using a PCR-select cDNA subtraction method
(34, 35). As aresult, we succeeded in identifying more
than 30 cDNA clones that were significantly expressed
in BAT but not in WAT. Of these, 75% of the isolated
clones were found to code mitochondrial proteins such
as NAD"-dependent isocitrate dehydrogenase (34). It
is well known that BAT has a much higher content of
mitochondria than WAT. Thus, these results might
to just reflect the differences in the mitochondrial
content between BAT and WAT. To examine this pos-
sibility, we measured the amount of mitochondrial
DNA in various rat tissues. As a result, the estimated
mitochondrial content in BAT was only 3.5times higher
than that in WAT. Since the transcript levels of several
mitochondrial proteins in BAT were more than 3.5-
fold higher than those in WAT, we concluded that the
observed differences in the transcript levels of certain
proteins between BAT and WAT do not reflect the dif-
ference in mitochondrial content between BAT and
WAT but reflect the functional differences between
BAT and WAT (35).

4.4. Systematic comparison of gene expression
between BAT and WAT by microarray analysis

We further analyzed the gene expression profiles
between BAT and WAT by use of the cDNA microarray
technique [36]. RNA samples obtained from BAT
and WAT of 4-week-old male rats were hybridized to
an Agilent Rat cDNA Microarray that contained about
15,000 cDNA probe sets. As a result, the expression
levels of about 500 cDNAs or ESTs (expressed se-
guence tags) were more than 5-fold higher or lower
in BAT than in WAT. Proteins described in the above
sections appeared to be highly expressed in BAT,
indicating the accuracy of the microarray analysis. On
the contrary, the expression levels of genes such as
liver mitochondrial aldehyde dehydrogenase (LMADH)
and dicarboxylate carrier (DIC) were significantly lower
in BAT than in WAT, although both of these genes
encode mitochondrial proteins. Furthermore, Western
analysis of e-subunits of F,-ATPase and 1 subunit of
NADH dehydrogenase gave results contradictory to
those obtained by microarray analysis : transcript levels
of both of these proteins were higher in BAT than in
WAT, but their protein levels were not markedly dif-
ferent between BAT and WAT. The physiological mean-
ings of these unexpected expression profiles of mito-
chondrial proteins in BAT are under investigation.

4.5. Expression profile of inositol-1,4,5-trisphosphate
receptor in BAT

We also examined the expression profiles of proteins
involved in the regulatory pathway of themogenic
function in BAT. As mentioned in section 1.2., theth-
ermogenic function of BAT is known to be mainly con-
trolled by a signal transduction cascade triggered
by the B-adrenoceptor (B-AR). Of the 3 known B-AR
isoforms, type 3 B-AR (B-AR), specifically expressed
in adipose tissues [37,38], has been regarded as main
gate for the regulatory signal into BAT. However, recent
studies indicated that a-AR and its downstream sig-
nal transduction cascade are also important for the
regulation of thermogenic function of BAT (39-43).
Of proteins involved in the downstream cascades
of a-AR, we focused on the inositol-1,4,5-trisphosphate
receptor (IP:R), which is expressed on the surface of
the endoplasmic reticulum and regulates the intracel-
lular Ca*concentration. The IP;R is known to function
in its tetrameric form in membrane systems such as
the endoplasmic reticulum and was reported to exist
as a heterotetramer of 3 isoforms (44). Furthermore,
it was also reported that various combinations of the
isoforms comprising the tetrameric form produce
differences in the functional properties of IP:R (45).
However, the expression profiles of these 3 isoforms
of IPsR in BAT had never been investigated. Our study
clearly demonstrated that the type-2 isoform (IPsR2)
was the one most significantly expressed in BAT (46),
suggesting the importance of this isoform of IPsR
in the regulation of thermogenesis in BAT.

All animal experiments were performed according
to the guideline for the care and use of laboratory ani-
mals by University of Tokushima. We thank Dr. Akira
Unami (Fujisawa Pharmaceutical Co. Ltd.) and Pro-
fessor Yoshinobu Baba (Faculty of Pharmaceutical
Sciences, The University of Tokushima) for their help
in microarray studies.
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