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Abstract 1 

Our purpose in this study was to reduce the noise in order to improve the SNR of Dw 2 

images with high b-value by using two correction schemes. This study was performed 3 

with use of phantoms made from water and sucrose at different concentrations, which 4 

were 10, 30, and 50 weight percent (wt%). In noise reduction for Dw imaging of the 5 

phantoms, we compared two correction schemes that are based on the Rician 6 

distribution and the Gaussian distribution. The highest error values for each 7 

concentration with use of the Rician distribution scheme were 7.3% for 10 wt%, 2.4% 8 

for 30 wt%, and 0.1% for 50 wt%. The highest error values for each concentration with 9 

use of the Gaussian distribution scheme were 20.3% for 10 wt%, 11.6% for 30 wt%, 10 

and 3.4% for 50 wt%. In Dw imaging, the noise reduction makes it possible to apply the 11 

correction scheme of Rician distribution. 12 

key words: magnetic resonance imaging (MRI); diffusion weighted imaging; 13 

probability distribution function (PDF); Rician distribution; Gaussian distribution; 14 

correction scheme 15 
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1 Introduction 1 

Diffusion weighted (Dw) magnetic resonance (MR) imaging has recently become a 2 

useful technique for evaluating various diseases, e.g., acute cerebral infractions and 3 

tumors [1]. Dw MR imaging is a method for imaging of incoherent motions. In Dw MR 4 

imaging, the b-value represents the intensity of the gradient magnetic field. Dw images 5 

with high b-value are influenced less by perfusion but more by diffusion. It is becoming 6 

more important to apply an analysis method with high b-value, e.g., q-space -analyzed 7 

Dw MRI [2], diffusional kurtosis imaging [3], and modified tri-exponential analysis of 8 

intravoxel incoherent motion [4]. The signal intensity (SI) of the Dw image is decreased 9 

by echo time (TE) prolongation, and this leads to a low signal-to-noise ratio (SNR) [5]. 10 

Additionally, it has been reported that a low SNR influences the determination of the 11 

apparent diffusion coefficients (ADCs) [6], or leads to failure in measuring diffusion 12 

anisotropy [7]. 13 

MR images are commonly presented as magnitude images. The magnitude 14 

images are made by reconstruction of real images and imaginary images [8]. These 15 

images are acquired by a quadrature detector system; they are influenced by the 16 
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statistical image noise.  Before reconstruction, the noise from these images has 1 

characteristics of a Gaussian distribution.  On the other hand, the magnitude image has 2 

not only the characteristics of a Gaussian distribution, but also these of a Rician 3 

distribution [9]. The characteristics of a Rician distribution indicate that the magnitude 4 

image does not have a negative value. This distribution has characteristics that differ 5 

from those of the Gaussian distribution.  Many reports referred to the Rician 6 

distribution, e.g., 𝑅"∗estimation of the liver [10], and determination of the optimal b-7 

value in diffusion tensor imaging [11]. Thus, it is important with MR imaging to assess 8 

the relationship between the signal values and the Rician distribution. 9 

Therefore, the signal correction in high b-value images is expected to yield 10 

improved images, i.e., noise reduction images, as a consequence of application of the 11 

Rician distribution. We became interested in correction schemes from past reports of 12 

Henkelman [8] and/or Gudbjartsson and Patz [9], because it makes it possible to correct 13 

the signal when the SNR is low. Previous articles [6] did not describe high b-value Dw 14 

noise reduction with use of these schemes. Our purpose in this our study was to reduce 15 

the noise in order to improve the SNR of Dw images with a high b-value by using two 16 
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correction schemes based on the probability distributions. 1 

2 Materials and methods 2 

2.1 Magnitude image of MR imaging 3 

MR images consist of reconstruction of real images and imaginary images. The SI from 4 

the pixel (𝑥, 𝑦) in a complex MR image was described by Henkelman [8]: 5 

𝑆(*,+) = 𝐴(*,+) + 𝑁0(*,+) + 𝑖𝑁2(*,+),      (1) 6 

where 𝑆(*,+) is the measured SI, 𝐴(*,+) is the true SI of the pixel (𝑥, 𝑦), and 𝑁0(*,+)and 7 

𝑁3(*,+) are the noise components. The magnitude of the SI, 𝑀(*,+), is described as 8 

follows: 9 

𝑀(*,+) = 𝑆(*,+) = [(𝐴(*,+) + 𝑁0(*,+))" + 𝑁"
2(*,+)]7 ".   (2) 10 

2.2 Probability distribution  11 

The probability density function (PDF) for the Gaussian distribution for the measured 12 

magnitude SI M is given by 13 

𝑃(𝑀) = 7
"9:;

exp(− (@AB);

":;
),      (3) 14 

where 𝜇 is mean, and 𝜎 is the standard deviation (SD). 15 

The PDF for the Rician distribution for M is given in reference [9]: 16 
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𝑃@(𝑀) =
@
:;
exp(− (@;EF;)

":;
)𝐼H(

F・@
:;

) ,     (4) 1 

where A is the true SI, and 𝐼H  is the modified zeroth-order Bessel function. The 2 

characteristics of the Rician distribution differ from those of the Gaussian distribution 3 

when the SNR is low. However, when the SNR is high, it is approximately equal to the 4 

Gaussian distribution [9]. When the SNR is high, the Rician distribution is 5 

approximated by Eq. (5) [9]: 6 

𝑃@(𝑀) ≈
7
"9:;

exp(− (@A F;E:;);

":;
).      (5) 7 

The noise distribution of a magnitude image at a high SNR can be regarded as 8 

the  Gaussian distribution with mean 𝐴" + 𝜎" and variance 𝜎", as determined by Eq. 9 

(5). The postprocessing correction scheme introduced by Gudbjartson and Patz 10 

suggested that it was possible to reduce noise by using the following relationship [9]: 11 

𝐴7 = 𝑀" − 𝜎"  ,        (6) 12 

where  𝐴7 is the corrected SI. We used Eq. (6) as behaving the correction scheme based 13 

on the Rician distribution. 14 

There is a relationship,  𝑀" = 𝐴" + 2𝜎", between the mean of the measured SI 15 
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and the true SI in the magnitude image [8]. Then, the following correction scheme has 1 

been established [9]: 2 

𝐴" = 𝑀" − 2𝜎" ,        (7) 3 

where  𝐴" is the corrected SI. We established Eq. (7) as behaving the correction scheme 4 

based on the Gaussian distribution. 5 

2.3 MR imaging  6 

On a 1.5T MRI system (Signa HDxt, GE Healthcare, Waukesha, WI, USA), Dw 7 

imaging of a phantom was performed with single-shot spin-echo echo planar imaging 8 

(SS-SE-EPI). To acquire Dw images of ADC, we made phantoms by using sucrose 9 

solutions of different concentrations (10, 30, and 50 wt%) [12]. Each phantom was 10 

placed in the center of a standard head coil.  The imaging parameters of Dw imaging 11 

were repetition time, 5000 ms; TE, 129.2 ms; slice thickness, 10 mm; field of view, 12.8 12 

× 6.4 cm2; and b-values, 0, 20, 200, 500, 1000, 2000, 3000, 4000, 4500, 5000, 5500, 13 

6000, 6500, and 7000 s/mm2. 14 

2.4 Data analysis   15 

A typical example of the region-of-interest (ROI) setting is shown in Fig. 1. We 16 
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measured SIs at the ROI (for the size of 15 × 15 pixels).  Then we measured the mean 1 

SI M and SD σ in the ROI. Next, we calculated each PDF by using an in-house program 2 

from MATLAB (MathWorks, Natick, MA, USA). We derived the most frequent value 3 

a from a peak value of fitting each PDF. Furthermore, we calculated each corrected SI 4 

(𝐴7 and 𝐴") from Eq. (6) and Eq. (7). 5 

To assess the results of correcting the measured SI in Dw imaging, we evaluated 6 

error values in each b-value Dw image. The error value is defined by Eq. (8): 7 

𝑒𝑟𝑟𝑜𝑟	[%] 	= 	 PAF	
P

	×100.       (8) 8 

When the error was small, we regarded the effect as accurate performance.  9 

 10 

3 Results 11 

Table 1 shows the relationship between b-values and several signal-to-standard 12 

deviation ratios for each phantom.  13 

Figure 2 shows the Dw images (a, b, and c) of each sucrose phantom. Each SI 14 

for a Dw image was shown to decrease at the higher b-values. Some white arrows show 15 

Nyquist N/2 ghosting artifacts. 16 
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Figure 3 shows the PDFs from the Rician distribution (a, b, and c). The PDFs 1 

shifted to low intensity, and the variances were low at higher b-values. 2 

Figure 4 shows the error between the corrected SI and the most frequent value of 3 

SI. The highest error values for each phantom concentration (10, 30, and 50 wt%), in 4 

correction by the correction scheme based on the Rician distribution, were 7.3, 2.4, and 5 

0.1%, respectively. The highest error values for each of the three phantom 6 

concentrations, in correction by the correction scheme based on the Gaussian 7 

distribution, were 20.3, 11.6, and 3.4%, respectively. When a/σ was lower than 1.4, the 8 

error value was determined by application of the correction scheme based on the Rician 9 

distribution, which was higher than 5.0%. In addition, when a/σ was lower than 3.0, the 10 

error values were determined by application of the correction scheme based on the 11 

Gaussian distribution, then were higher than 5.0% (Table 1 and Fig.4).   12 

 13 

4 Discussion 14 

In our study, to investigate the usefulness of two correction schemes, i.e., based on the 15 

Rician distribution or the Gaussian distribution, we compared the most frequent values 16 
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of SI and the corrected SIs. When the b-value was low, i.e., the SNR showed a high 1 

enough value, the errors were almost zero% regardless of the correction methods used. 2 

These results would indicate that the Rician distribution is able to approximate the 3 

Gaussian distribution. However, if the b-value was high, i.e., the SNR showed a low 4 

value, the error values of the corrected SI by use of the Gaussian distribution scheme 5 

showed values higher than 5%.  Nevertheless, the error values of the corrected SI by the 6 

Rician distribution were constantly lower than 5% except in a Dw image of 5500 s/mm2 7 

b-value with a 10 wt% sucrose phantom. Therefore, for correction of the SI of Dw 8 

images, it is possible to apply the Rician distribution correction scheme. 9 

The correction scheme based on the Gaussian distribution was derived from the 10 

relationship between the most frequent value of SI and the measured SI by Henkelman 11 

[8]. This correction scheme involves fitting of a monoexponential function; hence it is 12 

thought to be impossible to use it in unsuitable conditions, e.g., multi-exponential 13 

characteristics [9]. In our study, we defined the SNR as a/σ. Although we applied this 14 

correction scheme to the measured SI of Dw images, we could not correct it when the 15 

SNR values were lower than 3.0. This result would show that the decay of SI did not 16 
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follow a monoexponential function when the SNR was very low.  1 

Dietrich et al. reported that the correction scheme based on the Rician 2 

distribution shows the advantages of easy calculation and ability to handle averaged-3 

magnitude images [6]. However, this scheme is not recommended when the SNR is 4 

very low [6]. In our study, we could not precisely correct the SI, i.e., the error value 5 

became larger than ±5%, for a Dw image of 5500 s/mm2 b-value with a 10 wt% sucrose 6 

phantom. The SNR value for this image was 1.4, which was the smallest value in this 7 

experiment. Consequently, we were not able to correct the measured SI by the Rician 8 

distribution. It may be necessary to acquire Dw images with lower SNR values than 9 

those used in our study.  10 

There were several limitations to our study. First, we performed experiments by 11 

using the SS-SE-EPI sequence. Here, the images which we used appeared as the 12 

Nyquist N/2 ghosting artifacts of low b-value in the phase encoding direction (Fig. 2, 13 

white arrows). Because the phantom size was small, it was not affected by the Nyquist 14 

N/2 ghosting artifacts; if a subject size is larger, we would have to be careful. The SS-15 

SE-EPI sequence, moreover, has often been selected for Dw MR imaging and reduces 16 
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the imaging time and motion artifacts [13]. However, this sequence is sensitive to some 1 

artifacts such as image ghosts, which are caused by gradient pulse switching delays and 2 

eddy currents [14]. The Dw images in our study had much noise, and it was difficult to 3 

distinguish between the phantom signal and noise in a high b-value image. Although we 4 

attempted to correct the SI, we should consider other factors for improving Dw images; 5 

it may be necessary use with other pulse sequences, e.g., dual-spin-echo EPI [15] or 6 

PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced 7 

Reconstruction) [16]. Second, in Dw MR imaging of human subjects, the SI follows a 8 

non-monoexponential decay. Kristoffersen reported that the statistical models of signal 9 

decay of the human brain are non-monoexponential models with several parameters 10 

[17]. It would be difficult to define the noise level because the SI decreases with the 11 

non-monoexponential model. The phantoms consisting of sucrose in our experiments 12 

tended to follow the monoexponential decay of SI, and they were intended for use in 13 

evaluation of the potential of each correction scheme. However, we did not consider the 14 

non-monoexponential decay seen in the human body. Besides, it was not obvious 15 

whether the correction schemes we used are useful in non-monoexponential decays of 16 
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the SI. It may be necessary to apply a non-monoexponential phantom model composed 1 

of multiple materials like those in a clinical environment. Third, there was an opinion 2 

that our approximation of the Rician distribution was inaccurate [18]. Andersen showed 3 

another approximation, which is also accurate. However, we applied the approximation 4 

proposed by Gudbjartsson because the equation was simple and fitted the Rician 5 

distribution properly. It may be necessary to compare the two approximations.                                                                                           6 

5 Conclusion 7 

We tried to improve the SNR of Dw images with high b-value by using two existing 8 

correction schemes, i.e., the Gaussian PDF and the Rician PDF. In our phantoms 9 

experiment, we found that the correction scheme based on the Rician PDF is better than 10 

that based on the Gaussian PDF at a low SNR. In Dw imaging, the correction of the SI 11 

makes it possible to apply a correction scheme based on the Rician distribution. 12 

 13 
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Figure legends 4 

Figure 1 ROI setting for Dw images. The ROI size of all analyzed images was 5 

fixed at 15 × 15 pixels (outlined by the black square box). 6 

Figure 2 The Dw MR images of each b-value from 0-7000 s/mm2 are shown in 7 

the left-to-right direction. In the top-to-bottom direction, different sucrose 8 

concentrations were shown. a Sucrose concentration 10 wt%, b Sucrose concentration 9 

30 wt%, c Sucrose concentration 50 wt%. White arrows show Nyquist N/2 ghosting 10 

artifacts. 11 

Figure 3 The p Probability distributions of measured SI for Dw images of each 12 

sucrose phantom. Here, the probability distributions are shown in specific data because 13 

we focused on the points to distinguish between signal and noise. a. Sucrose 14 

concentration 10 wt% phantom; b-values = 2000, 3000, 4000, 4500 s/mm2. b. Sucrose 15 

concentration 30 wt% phantom; b-values = 4000, 4500, 5000, 5500 s/mm2. c. Sucrose 16 
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concentration 50 wt% phantom; b-values = 5500, 6000, 6500, 7000 s/mm2.  1 

Figure 4 Error values between correction SI and most frequent value of SI. a 2 

Sucrose concentration 10 wt%, b Sucrose concentration 30 wt%, c Sucrose 3 

concentration 50 wt%. The dashed lines in these figures represent error values of ± 5%. 4 

When the error values were higher than these lines, the SI correction was considered a 5 

failure. 6 

Table 1  Relationship between b-value and several signal-to-standard deviation 7 

ratios for each phantom.  8 
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Fig. 1 2 
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Fig. 2 2 
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1 

Fig. 3  2 
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Fig. 4 2 
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Table 1 Relationship between b-value and several signal-to-standard deviation ratios for each 1 

phantom. 2 
b-values 
[s/mm2] 

10 wt% sucrose 30 wt% sucrose 50 wt% sucrose 

a/σ	 𝐴7/σ	 𝐴"/σ	 a/σ	 𝐴7/σ	 𝐴"/σ	 a/σ	 𝐴7/σ	 𝐴"/σ	

0 51.5 51.5 51.4 58.0 58.0 58.0 87.5 87.5 87.5 

20 94.4 94.4 94.4 79.0 79.0 79.0 139.4 139.4 139.4 

200 76.7 76.7 76.7 82.6 82.6 82.6 100.9 100.9 100.9 

500 60.2 60.2 60.2 73.1 73.1 73.1 87.7 87.7 87.7 

1000 34.1 34.1 34 48.8 48.8 48.8 94.6 94.6 94.6 

2000 8.1 8.1 8.1 14.0 14.0 14.0 34.5 34.5 34.5 

3000 2.6 2.6 2.5 8.8 8.8 8.7 15.4 15.4 15.3 

4000 3.8 3.8 3.7 2.6 2.6 2.4 16.7 16.7 16.7 

4500 6.2 6.2 6.1 5.8 5.8 5.8 17.5 17.5 17.5 

5000 3.0 3.0 2.8 3.7 3.7 3.6 5.0 5.0 4.9 

5500 1.4 1.5 1.1 3.2 3.2 3.1 5.8 5.8 5.7 

6000 2.4 2.4 2.2 2.8 2.8 2.6 3.8 3.8 3.6 

6500 2.4 2.4 2.2 1.9 2.0 1.7 5.0 5.0 4.9 

7000 2.6 2.6 2.4 2.4 2.4 2.2 5.0 5.0 4.9 

a,	 the	 most frequent value of signal value on fitting probably density function; 𝐴7, the corrected signal 3 

value derived from the Rician distribution scheme; 𝐴" , the corrected signal value derived from the 4 

Gaussian distribution scheme; σ,	standard	deviation. 5 
 6 


