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Abstract

In this short note, we shall give a result similar to Y. Zhang and T.
Cai [5] which states the diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2

has infinitely many nontrivial positive integer solutions (x, y, z) when
b(≥ 2) is even. We shall show this diophantine equation also has infinitely
many nontrivial positive integer solutions when integers b is divisible by
a prime p(≡ ±1 mod 8).
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Introduction

Recently in their paper [5] (2015) , Y. Zhang and T. Cai proved there exists
infinitely nontrivial positive integer solutions of the diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2

for even number b ≥ 2. Here the integer solutions (x, y, z) are called nontrivial
when b̸ |x or b̸ | y and 0 < x− b < x < x+ b < y− b < y < y+ b. We note that,
for the case b = 1, K. R. S. Sastry showd the above diophantine equation has
infinitely many positive integer solutions (x, y, z) (see for example [3] or [5]).
The proof of [5] depends on Sastry’s idea when y = 2x− 1 the product of the
left-hand side of the above diophantine equation is square if (x+1)(2x−1) = m2

for some integer m. Here we shall use the fact that any prime p ≡ ±1 mod 8
completely decomposes in Q(

√
2). Let p ≡ ±1 mod 8 and suppose p|b. In
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the following, we shall verify the above diophantine equation have infinitely
many nontrivial positive integer solutions for any such b. We note the problem
asking when the product of two or more disjoint blocks of consecutive integers
are power of integers was originally stated by P. Erdös and R. L. Graham in
[2].

1 Proof of Main Theorem

Since the class number Q(
√
2) is one and

(
2

p

)
= 1 ⇐⇒ p ≡ ±1 mod 8, the

following norm equation has infinitely many positive integer solutions,

x2 − 2y2 = ±p.

Let (a0, b0) be the positive integer solutions a
2
0−2b20 = p and put a1 = a0+2b0

and b1 = a0 + b0. Define the binary recurrence sequences {an} and {bn} by
putting

an+1 = 2an + an−1, bn+1 = 2bn + bn−1 for n ≥ 1.

Then (an, bn) are the positive integer solutions of x
2 − 2y2 = (−1)np. Since

(a2n + b2n
√
2)2 = a22n + 2b

2
2n + 2a2nb2n

√
2, we shall put x = 3b22n + p and

y = 2x + p = 3(2b22n + p) = 3a22n. Then except for first few (an, bn) the
condition 0 < x− p < x < p < y − p < y < y + p is always satisfied. Moreover
the direct calculation shows that (x, y) satisfy the following equality

(x− p)x(x+ p)(y − p)y(y + p) = 22 · 32x2(x+ p)2(a2nb2n)
2,

where p̸ |xy. Multiplying the both sides of the above equality by (b/p)6, one
shall obtain infinitely many nontrivial positive integer solutions of the diophan-
tine equation

(X − b)X(X + b)(Y − b)Y (Y + b) = Z2,

where X = bx/p, Y = by/p and Z = 6(b/p)3x(x+ p)a2nb2n.
In the same way as above, (a2n+1, b2n+1) is the positive integer solutions x

2 −
2y2 = −p. Now put x = 3b22n+1 − p and y = 2x− p = 3(2b22n+1 − p) = 3a22n+1.
Then similarly

(x− p)x(x+ p)(y − p)y(y + p) = 22 · 32x2(x− p)2(a2n+1b2n+1)
2,

where p̸ |xy. In the same way as above, using these sequences of integers,
one can also obtain infinitely many nontrivial positive integer solutions for any
odd(or even) b which is divisible by p.

Theorem 1.1. Let b be a positive integer with a prime divisor p ≡ ±1 mod 8.
Then there exists infinitely many nontrivial positive integer solutions (x, y, z)
of the diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2.

Remark. If we assume a0, b0 are the minimal postive integer solution of the
norm equation x2 − 2y2 = p with the condition 0 < 2b0 < a0. Since the ideal
(p) of Q(

√
2) decomposes into (p) = ℘℘̄, where ℘ = (a0 + b0

√
2). Then the

conjugate ideal ℘̄ = (a0 − b0
√
2) = ((a0 − b0

√
2)(1 +

√
2)) = (a0 − 2b0 + (a0 −

b0)
√
2). Put c1 = a0 − 2b0 and d1 = a0 − b0. Then, from the assumption

0 < 2b0 < a0, (c1, d1) are the positive integer solutions of the norm equation
x2 − 2y2 = −p. Put c2 = c1 + 2d1 and d2 = c1 + d1 and define the binary
recurrence sequences cn and dn by putting

cn+1 = 2cn + cn−1, dn+1 = 2dn + dn−1 for n ≥ 2.

Then (cn, dn) are also positive integer solutions of x
2−2y2 = (−1)np. Therefore

in the same way as above, we can obtain other infinite series of nontrivial
positive solutions of the same diophantine equation

(x− b)x(x+ b)(y − b)y(y + b) = z2.

Example. Consider the case b = 7. From the facts 32− 2 = 7 and (3+
√
2)(1+√

2) = 5 + 4
√
2, binary recurrence sequences {an} and {bn} are defined by

an+1 = 2an + an−1, bn+1 = 2bn + bn−1,

with initial terms a0 = 3, a1 = 5 and b0 = 1, b1 = 4. Similarly binary recurrence
sequences {cn} and {dn} is defined by

cn+1 = 2cn + cn−1, dn+1 = 2dn + dn−1,

with initial terms c1 = 1, c2 = 5 and d1 = 2, d2 = 3. Then the first three non-
trivial positive integer solutions are (x, y, z) = (10, 27, 3060), (34, 75, 125460)
and (41, 75, 167280). Actually, in the case (x, y, z) = (10, 27, 3060), the direct
calculation shows that

(3× 10× 17)(20× 27× 34) = (22 × 32 × 5× 17)2 = 30602.
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Abstract

In this note, we consider the Cauchy problem of nonlinear degenerate
parabolic equations including the level set equation of the mean curvatue
equation and the p-Laplace diffusion equation with p ≥ 2. We shall give
existence and uniqueness results to such equations provided that the
initial data is uniformly continuous.
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Introduction

We consider the Cauchy problem of nonlinear degenerate parabolic equations
of the form

(1) ut + F (∇u,∇2u) = 0 in QT := (0, T )×RN ,

(2) u(0, x) = a(x) on RN ,

where u : QT → R is an unknown function, F = F (q,X) is a given function,
a(x) is uniformly continuous and T > 0. Here ut = ∂u/∂t, ∇u and ∇2u denote,
respectively, the time derivative of u, the gradient of u and the Hessian of u in
space variables. The function F = F (q,X) needs not to be geometric in the
sense of Chen, Giga and Goto [1], i.e.,

F (λq, λX + µq ⊗ q) = λF (q,X) for all λ > 0, µ ∈ R, q ∈ RN\{0}, X ∈ SN ,


