J. Math. Tokushima Univ.
Vol. 49 (2015), 23-38

Time Decay for Some Degenerate Hyperbolic
Systems with Strong Dissipations

By
Kosuke ONO
Department of Mathematical Sciences
Tokushima University
Tokushima 770-8502, JAPAN

e-mail : k.ono@tokushima-u.ac.jp
(Received September 30, 2015)

Abstract

Consider the initial-boundary value problem for the coupled de-
generate strongly damped hyperbolic system of Kirchhoff type with
a homogeneous Dirichlet boundary condition. We give the polyno-
mially decay estimates of the solutions and their derivatives. More-
over, when either the wave coefficient or the initial data are appro-
priately small, we derive a lower decay rate for the solutions.

2010 Mathematics Subject Classification. 35115, 35B40, 35180

1 Introduction

In this paper we consider the initial-boundary value problem for the coupled
degenerate hyperbolic system with strong damping of Kirchhoff type :
puge — ([[Vu@)|> + |[Vo@)]?)" Au—Auy =0  in Qx(0,00), (1.1)
poee — ([Vu(®)|> + [Vo@)]?)" Av — Avy =0 in Qx (0,00), (1.2)
with
’LL(J,‘,O) = UO(x) ’ Ut(it, O) = Ul(I) ’ ’U($, O) = UO(‘T) ) Ut(za O) = Ul(x) ) (13)
u(z,t) =v(x,t) =0 on IQ x (0,00),

where v = u(z,t) and v = v(x, t) are unknown real value functions, {2 is an open
boundary domain in N-dimensional Euclidean space RY with smooth boundary
0N, A=V-V = Zjvzl 9?97 is the Laplacian, ||-|| = ||-||z2 is the usual norm
of L?(2), and p and v are positive constants. The coupled hyperbolic system
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(1.1)—(1.4) will be useful for the research of amplitude vibrations of two kinds
of elastic stretched strings.

The coupled hyperbolic system (1.1)—(1.4) traces back to the single Kirch-
hoff type wave equation :

.
Pl — <u +/ |Vu(sc,t)|2dx> Au—0Au; =0 in Qx(0,00) (1.5)
Q

with ©(0) = ug, u(0) = w1, and ulso = 0, which is called a non-degenerate
equation when p > 0 and a degenerate one when p = 0. When the dimension
N is one, it is well-known that (1.5) describes small amplitude vibrations of an
elastic stretched string. In the case of non-damping § = 0, (1.5) was introduced
by Kirchhoff [5] (also see [3], [4]), and the problem of local-in-time solvability
has been studied by several authors (see [1], [2] and the references cited there).
In the case of damping d > 0, the problem of global-in-time solvability has been
solved by several authors (see [6], [7], [11], [14] and the references cited there).

By the similar way as in [6] and [7], we see that the problem (1.1)—(1.4)
admits a unique global solution [u(t),v(t)] in the class (C°(]0,00); HE(£2)) N
CL([0, 00); L2(£2)))? if the initial data [ug, vo, u, v1] belong to (H(2))?x (L?(£2))?.
On the other hand, when v = 1, in previous paper [16], we have derived the
upper decay estimates of the solutions and their derivatives of the coupled
hyperbolic system (1.1)—(1.4) (see [8], [18], [12], [13], [15] for single equations).

Our purpose in this paper is to derive the upper decay estimates of the
solutions and their derivatives of the coupled hyperbolic system (1.1)—(1.2)
when any v > 0. Moreover, we will derive a lower decay estimate of the
solutions when either the coefficient p or the initial data are appropriate small,
and we will show a decay property for the H?(Q) norm of the solutions.

In order to derive the energy decay estimate and a lower decay estimate of
the solutions, we will use the following energy and functional associated with
(1.1)—(1.2) :

y+1

1
E(u,v,u,00) = p ([lue]]* + llve]l?) + Po | (IVul® + [IVol?) (1.6)
and
[Jaae [I* + [[ve]? 1-[1—~]*
i) = e ooy + (VI
(1.7)

where [a]T = max{0,a}, and we often write E(t) = E(u(t),v(t),us(t), v (t))
and H(t) = H(u(t),v(t), us(t), v+(t)) for simplicity. In particular, we will use
the following notations related with the initial data [ug, vo, u1,v1] :

1 +1
E(0) = p (Jlua|® + [Jor]*) + por (IVuol* + || Vwo*)
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and
2 2 4
1) = p il Il ——

2 2
= P £ [V VUl 17wlF)

Moreover, we denote the Poincaré constant by ¢, = ¢, (Q), that is,

c. = inf {||o]l/| V|l | ¢ € H5(Q), ¢ # 0} .

Our main results are as follows.

Theorem 1.1 Let the initial data [ug, vo, u, v1] belong to (Hg (2))?x (L?(£2))2.
Then the solutions u(t) and v(t) of (1.1)~(1.4) satisfy

[u(®) |2 + o(@)2 < CL+1)77, (1.8)
()] + o] < C(L+ )77 (1.9)

for t > 0 with some positive constant C.

e ()12 + e ()2 < CL+ )27, (1.10)
gt (D)1 + o ()] < CQ + )47 (1.11)

for t > 0 with some positive constant C.

Theorem 1.2 Let the initial data [ug, vo, u, v1] belong to (Hg (2))?x (L?(£2))2.
Suppose that ug # 0 (or vo # 0) and

(v +2)e)?pH(0) <1 if 7> 1;
(27 + 1)en)2p(H(0) + E()7TB(0)) <1 if 0<~y<1

with B(0) = (22(22¢2p + 1)(1 — v)(E(0)2+0 + 1))2. Then the solutions u(t)
and v(t) of (1.1)~(1.4) satisfy

CHL+ )77 < | Vu)|? + Vo) < O+ )™~ (1.12)

for t > 0 with some positive constant C.
Moreover, if the initial data [ug,vo,u1,v1] belong (H?(Q) N HE ()4, then

lu(®)lI2 + lo@)7 < CA+1)7° (1.13)
lue (D172 + loe()lI72 < CA+6)727° (1.14)

fort >0 with some number 0 < & < 1/ and some positive constant C.
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Theorems 1.1 and 1.2 follow from Theorems 3.4 and 4.4 in the subsequent
sections.

The notations we use in this paper are standard. The symbol (-,-) means
the inner product in the Hilbert space L?() or sometimes duality between
the space X and its dual X’. We put [a]* = max{0,a} where 1/[a]" = oo if
[a]t = 0. Positive constants will be denoted by C and will change from line to
line.

2 Energy Decay

First we introduce the following functions associated with the coupled sys-
tem (1.1)—(1.2) which we will use through this paper :

K@) = [u®)® + @I, L) = [lue@I + [lve ()11,
M(t) = [Vu®)|? + [IVeO1*,  X() = Jua@I + llve ()1

Y(t) = [Vue@OI* + Vo OI*, Z(1) = [[Au(®)]* + | Av(®)]1?,
O(t) = [Vua@)* + [IVoa@*,  ©#) = [Au(®)]* + | Ave ()],
and then, we see from (1.6) and (1.7) that
_ b y+1 _ L(t) 1-[1—~]*
E(t) = pL(t) + Py 1M(t) and H(t) = pM(t)1+[’Y—1]+ + M(t) .
(2.1)

The energy E(t) of (1.1)—(1.2) has the following decay rate.

Proposition 2.1 Suppose that the initial data [ug,vo,uy,v1] belong to
(HY(2))? x (L2(2))%. The the energy E(t) satisfies

. . -1 -
E(t) < (E(O)—w + (2(4c2 F1)2(1 44 ) (E(0)TET 4+ 1)2) It — 1]+)
(2.2)
that is,
M@®) <CA+t)"7 and LE)<CA+t)"""% for t>0.  (2.3)

Proof. Multiplying (1.1) and (1.2) by 2u; and 2v;, respectively, and integrat-
ing them over €2, we have

d
Pt

d
Pt

d
el + M @) — [ Vull* + 20| Vue|* = 0,

d
oell* + M) Vol + 2[[ Vo [|* = 0.
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Adding these two equations, we obtain

d

@L(tHM(t)v%M(t)HY(t):o or %E(t)—i—ﬂ/(t):o, (2.4)

and integrating (2.4) over [0, ], we have
¢
E(t) + 2/ Y(s)ds = E(0). (2.5)
0

For any ¢t > 0, integrating (2.4) over [t,¢ + 1], we have
41
2 Y(s)ds = E(t) — E(t+ 1) (=2D(t)?) . (2.6)
t

Then, there exist 1 € [t,t + 1/4] and t2 € [t + 3/4,t + 1] such that
t41
Y(t;) < 4/ Y(s)ds =4D(t)>  for j=1,2. (2.7)
t

On the other hand, integrating (1.1) and (1.2) by u and v, respectively, and
integrating them over €2, we have

d

Py (s ue) = plluel® + M) | Vull® + (Vu, Vur) = 0,
d

Py (vyve) = plloel* + M(t)|[Vol* + (Vo, Vor) = 0.

Adding these two equations, we obtain

y+1 _ Bi ") — 1 4
M (t) pL(t) 2dtK (1) 2M (t). (2.8)
Integrating (2.8) over [t1, 2], we have from (2.6) and (2.7) that

ta

t2 2 t2
+1 P / 1 /
M(s)" dsSp/ L(s)ds+5 Y |K(tj)\+§/ |M'(s)| ds

t1 t1 j=1 t1
t+1 2 1 1 t+1 1 1
< cip/ Y(s)ds + 23S M)V () + [ M(s)PY(s)hds (29)
t = t
< EpD(t)? + (4c2p +1)D(t) sup M(s)% , (2.10)
t<s<t+1
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Moreover, since M (t) < ((y+ 1)E(t))ﬁ and E(t) is a non-increasing function,
it follows that

" M5 ds < EpD(E + (42 + D) (3 -+ DE() T

t1
and from (2.1) and (2.6) that
to to 1 to
E(s)ds = p/ L(s)ds+ —— M(s)7 Tt ds
t ty y+1Jy
, [t 1 to »
Sc*p/ sts—l—i/ M(s)"ds
v g [T
< 2¢2pD(t)? + (4c2p + 1)D(t)E(t) 77D . (2.12)

Integrating (2.4) over [t,t2], we have from (2.6) and (2.12) that

E(t) = E(t) + 2 /t2 Y(s)ds

t2 t+1
<2 E(s)ds+2 Y(s)ds

ty t

<2(2¢2p+1)D(t)2 + 2(4c2p + 1) D(t) E(t) 57D .

Since D(t) < E(0) 2<77+1>E(t)2<71+1> by (2.5) and (2.6), we observe from the
Young inequality that
E(t) < 2(4c2p + 1)(E(0)™5™ + 1) D(t)E(t) 77
2y +1
~2(y+1)
and from (2.6) that

2(v+1)
23+1 1

(2(4c3p + 1)(E(0)75D + 1)D(t))

2v+1

B(t)* 7 = B+

< (2042 + 1)(E©) ™ + 1)D(B))

< 2(4c?p + 1)(E(0)750 + 1)%(E(t) — E(t+1)). (2.13)

Therefore, applying Lemma 2.2 below together with (2.5) to (2.13), we
obtain the desired estimate (2.2). O

In order to derive the decay estimate of the energy E(t), we used the fol-
lowing inequality in the proof of Proposition 2.1 (see [8], [9], [10] for the proof).

Lemma 2.2 Let ¢(t) be a non-increasing and non-negative function on [0, 00)
and satisfy

S(t)H < k(g(t) — o(t+1))

with certain constants k > 0 and o > 0. Then the function ¢(t) satisfies

6(t) < (6(0)" +ak [t —1*) " for t>0.
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3 Decay for first order derivatives

29

In what follows, we suppose that the initial data [ug,vo, u1,v1] belong to
(HY(Q))? x (L?(Q))?. First we will improve the decay rate of L(t) given by

(2.3).
Proposition 3.1 The function L(t) satisfies

L) <COA+t)2%  for t>0.
Proof. From (2.4) it follows that

p%L(t) F2Y(t) = —M(t)M'(t) < 2M(t) M(t)2 Y (t)?

and from the Young inequality and (2.3) that

d ;
P LB +Y (1) < CMH>P T <C+t) >

and

p%L(t) F 2L <C(+1)2 3

and hence, we obtain the desired estimate (3.1). O

(3.1)

Proposition 3.2 Let M(0) > 0. Suppose that M(t) >0 for 0 <t <T, and

(ve)?pH(0)Y <1 if y>1;
(2¢.)%p(H(0) + E(0)7TB(0) <1 if 0<~y<1

with B(0) = (22(22¢2p + 1)(1 — v)(E(0)T570 + 1))2. Then it holds that

H(t) < {H(O) N Z:f v >1;
H(0)+ E()1B(0) if 0<y<]1

for0<t<T.

Proof. Multiplying (2.4) by M (t)~7~% with k > 0, we have

d L(t) 1 Y(t)
a (pMuw * M(t)k—l) MRSVIDRE:
M’ M’
= —(y+ k:)pWL(t) - kM(Sl .

(3.2)
(3.3)

(3.4)
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(1) When v > 1, we observe

! (AL;(?))% -7

NI
Nl

(rer o) < )

where H(t) is given by (2.1), that is, H(t) = pL(t)/M(t)Y + M(t). From (3.5)
with & = 0, it follows that

d Y(t) M (%) L) \? Y()
@H(t) + 2M(t)‘* = —WPWL(U < 2y¢4p (M )

(3.6)

and from (3.6) that

L) +2(1-ye o))

fort <t<T.
1
If ve.(pH(0)7)2 < 1 (equivalent to (3.2)), then there exists T} such that

0< T <T and
veu(pH(t)? <1 (3.8)
for 0 <t < Ty, and we observe from (3.7) that

%H(t)go and H(t) < H(0) (3.9)

for 0 < ¢ < Tj. Therefore, we see that (3.8) and (3.9) hold true for 0 <t < T,
and hence we obtain (3.4) with v > 1.
(2) When 0 < v < 1, we observe

L(t)\? s
) ( M(t)) < (pH(1)) (3.10)

where H(t) is given by (2.1), that is, H(t) = pL(t)/M(t) + M(t)".
Moreover, from the energy decay (2.2) it follows that

t
/ E(s)771 ds
0

< /Ot (E(O)WL + # (2(4c§p+ 1)2(E(0)7570 + 1)2)_1 = 1}+)77 ds

< B(0) + 2(y + 1)(4¢2p + 1)2E(0) 71 (E(0) 570 + 1)2
< 2(4c2p + 1)2E(0)71 (E(0)T70 +1)2 (= K(0)). (3.11)
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From (3.5) with k = 1 — ~, it follows that

d Y(t) M'(t) M'(t)
£H(t) + QW = —PM(t)g ) —(1- V)W
L) \* V(1) (YD)
< 2c*p (W) m + 2(1 - ’}/)M(t) (]\4@))
and from the Young inequality and (3.10) that
d 1\ Y (1)
ZH() + (1 - 20*(,)1{(15))2) ME
< (1—7)? (1 +9E()77 <2(1—9)*E(t)7 (3.12)

for0<t<T.
1
If 2¢, (p(H(0) 4+ 2(1 —)?K(0)))* < 1 (equivalent to (3.3)), then there
exists To such that 0 <75 < T and

2. (pH(1))? < 1 (3.13)
for 0 <t < Ty, we observe from (3.11) and (3.12) that

%H(t) <21 —7)2E@®) 7 and H(t) < H(0) +2(1 — v)2K(0)  (3.14)

for 0 <t < Ty. Therefore we see that (3.13) and (3.14) hold true for 0 <t < T,
and hence we obtain (3.4) with 0 <y < 1. O

Proposition 3.3 In addition to the assumption of Proposition 3.2, suppose
that

(v+2)e)’pHO) <1 if y>1; (3.15)
(27 +1)e)?p (H(o) n E(o)#B(o)) <1 if O<y<1l  (3.16)
with B(0) = (22(22¢2p + 1)(1 — v)(E(0)T570 + 1))2. Then it holds that
M@®)>C'(1+t)7 (3.17)
for 0 <t < T with a positive constant C' > 0.

Proof. (1) When v > 1, from (3.5) with k& = 2 it follows that

d( L@ 1 Yty M (t) M (#)
i e + ) 23 = 0+ Ve 2
L) \* Y(t Y (¢ L\
<2(y 4+ 2)cup <M((t))> M(t()V“ +4 <M(t()7)+2 M(t)” )
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and from (3.6) and (3.4) that

di < ’y+2 1(t)> +2 (1 —(v+ 2)0*(pH(0)7)%) A;(;()?Jrz
= (Mwm—l) ’
for 0 <t <T.

If (7 +2)e. (pH(0)?)2 < 1 (equivalent to (3.15)), then we observe from the
Young inequality and (2.3) that

d L(t) 1
d ('OMuW - M(t))

<CM@E)Tt <o+

and

L(t) 1 1
<C(1+t
Pty g < G
for 0 <t < T, which implies the desired estimate (3.17) with v > 1.
(2) When 0 < v < 1, from (3.5) with & = v+ 1 it follows that

d L(t) 1 Y(0)
at <”M(t>%+1 YI0% > RTI0EES
~(@y+ Do L) — (4 Do

and from (3.10) and (3.4) that

% <pM(Lt§?v+1 + (1)7)
+2<1(27+1 e (p(H +E(o)+3(o)))§)y(t)

Y )
<2049 ()
for0<t<T.
If (29 + 1)e. (p(H(O) +E(0)ﬁ3(0))) < 1 (equivalent to (3.16)), then
we observe from the Young inequality that

d L(t) 1 L(t) 1
o (pM(t)2’7+1 + M(t)’Y) <C and pM(t)Q’YH + M) <C(1+1t)

[N

for 0 < ¢ < T, which implies the desired estimate (3.17) with 0 <y < 1. O



Time Decay for Some Degenerate Hyperbolic Systems 33

Theorem 3.4 Let the initial data [ug, vo, u1, v1] belong to (Hg (2))?x (L*(2))2.
Then the solutions u(t) and v(t) of (1.1)—(1.4) satisfy

1

=

M#)<CA+t)"7 and LE)<CA+t)"2"%  for t>0. (3.18)
Moreover, suppose that M(0) > 0 and
(Y +2)e)’pH(0) <1 if v>1;

(27 + 1)en)?p (H(O) + E(O)ﬁB(O)) <1 if 0<~y<1

with B(0) = (22(22c¢2p + 1)(1 — 7)(E(0)*@7D +1))%. Then
M@t)>C'(t+1)"5  for t>0 (3.19)
with a positive constant C' > 0.
Proof. (3.18) follows (2.3) and (3.1). Since M (0) > 0, putting
T =sup{t €[0,00) | M(s)>0for0<s<t},

we see that T'> 0 and M(¢) > 0for 0 <¢ < T. If T < oo, then M(T) =
0. However, from the lower estimate (3.17) we observe that lim; ,r M(t) >
> 0.

c'(1 +T)_% > 0, and hence we obtain that 7' = oo and M (t) > 0 for all ¢
Therefore (3.19) follows (3.17). O

4 Decay for second order derivatives

In this section we will derive the decay rate of the functions X (t), Y (¢),
Z(t), and ¥(t).
In what follows, we suppose that the initial data [ug,vo,u1,v1] belong to
(H?(Q) N Hg ()"
Proposition 4.1 The functions Z(t) and Y (t) satisfy
Z(t)<C and Y(#)<CA+t)"2  for t>0. (4.1)
Proof. Multiplying (1.1) and (1.2) by —2Awu and —2Aw, respectively, and

integrating them over €2, and adding the resulting equations, we have

%Z(t) oMY Z(t) = 2;)% (e, Du) + (0, A0)) +20Y (1) (42)

and

Z(t) + 2 /O M(s)' Z(s) ds

N

< Z(0) +2p (L(t)%Z(t)% + L(0)% Z(0) ) +2p /t Y (s)ds.
0
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Thus, from the Young inequality and (2.5) we obtain that Z(t) < C(Z(0) +
L(0) + E(0)) for t > 0.

Multiplying (1.1) and (1.2) by —2Awu; and —2Aw,, respectively, and inte-
grating them over €2, and adding the resulting equations, we have

p%Y(t) F2U(t) = —M(t)Z'(t) < 2M(t) Z(t)Z U ()= .

From the Young inequality it follows that

p%Y(t) +W(t) < M) Z(t)

and from (2.3) that

p%Y(t) F eV () < MO Z() < C(1+1)2,

and hence, we obtain that Y (¢) < C(1+¢)"2 for t > 0. O

Proposition 4.2 The functions X (t), Y (t), and U(t) satisfy
XH <O+t ™7, Y)<Cl+t) 27, (4.3)
V() <CA+t)"2  for t>0.

Proof. Multiplying (1.1) and (1.2) differentiated once with respect to ¢
by 2uy and 2vy, respectively, and integrating them over 2, and adding the
resulting equations, we have

d

pﬁX(t) +20(t) = —M )Y (t) — 2y M ()Y M (t) (Vu, Vug) + (Vo, Vog))

< 2+ 47)M@E)Y (5)2D(t)? .

From the Young inequality it follows that

p DX (1) +0(1) < MY (1)
and from (2.3) and (4.1) that

p%X(t) + 72X <CMO)2Y () <C(141)~ (4.5)
with 8 = 2 + 2 = 4, and hence, we have

Xty <c+t)=, 6 =4. (4.6)



Time Decay for Some Degenerate Hyperbolic Systems 35

From (2.4) it follows that

V() = g (1) — g M()M(1) < copV (X (1) + M() MDY (1)F

and from the Young inequality and (2.3) and (4.6) that

Y(t) <CX(t)+CM@®)> T <Cl+t)™, wi =min{6;,2 +1/7}.
(4.7)

Applying (2.3) and (4.7) to (4.5), we obtain that
Xt <Cl+t)y ™%, fy=24w (4.8)
and from (4.7) that

Y(#) <O +1t)>=, we =min{fy,2+1/v} .

By induction, for m = 2,3,-- -, we observe
Xt)<CA+t)% b, =24wn
and
Y(t)<C(A+t)~“m, Wy, = min{6,,,2 + 1/~} .

Therefore, we arrive at the desired estimate (4.3) for large m.
Moreover, from (1.1) and (1.2) together with (2.3), (4.1), and (4.3) we have

U(t) <2(pPXA)+ M Z(1) <C1+1)? (4.9)
fort>0.0

Proposition 4.3 Suppose that the assumptions of Theorem 3.4 are fulfilled.
Then the functions Z(t) and V(t) satisfy

Zt)<COA+t)"° and V)< COA+t)"2>F  for t>0 (4.10)
with some 0 < e < 1/7.
Proof. From (4.2) it follows that

D 20) + 200 2(8) = 20 (e M) + (v, D)) < 2pX (D} 2(0)%

and

%Z(t) + M) Z(t) < p?
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Since M ()Y > (1 + t)~! with some 0 < ¢ < 1/ by (2.3) and (3.19), we
observe from (4.3) that

%Z(t) te(l+t)'Z) <CA+1)737

and

G072 < O3
and hence,
Z(t)<C(L+t)~=  for t>0. (4.11)
Moreover, using (4.9) together with (2.3), (4.3), (4.11), we obtain
U(t)<2(pP°X(t)+ M) Z(t) <CA+t)7%°

fort>0. O

Theorem 4.4 Let the initial data [ug,vo,u1,v1] belong (H*(QQ)NHE(Q))*. The
problem (1.1)—(1.4) admits a unique global solution [u(t),v(t)] in the class

(C°([0,00); H*(€2) N Hy () N C([0,00); H*(Q) N Hy () N C*([0, 00); L*(2)))
and it holds that
Xt <CO+t)™" 5 and Y)<COU+t)>5  for t>0. (4.12)

2

Moreover, suppose that the initial data [ug,vo, u1,v1] satisfy M(0) > 0 and
(Y +2)e)?pH(0) <1 if v>1;
(27 + D)e)?p(H(0) + E()7TB(0) <1 if 0<~y<1
with B(0) = (22(22c2p + 1)(1 — 7)(E(0)T50 + 1))2. Then
Zt)<COA+t)"° and V)< COA+t)"2>F  for t>0 (4.13)
with some 0 <& <1/v.

Proof. Applying the Banach contraction mapping theorem, we can get a
local existence theorem (see [1], [2], [17] and the references cited there), that
is, there exists a unique local solution [u(t),v(t)] of (1.1)—(1.4) in the class

(C([0,T); HA(Q) 1 HY(9)) N C ([0, T); HX(Q) 0 H () N C*([0,T); LX)

for some T' > 0. Moreover, if ||u(t)||z2 + ||v(€) || 72 + |Jwe () || 772 + Jve () || 72 < o0
for t > 0, then we can take T = oc.

On the other hand, Proposition 4.1 and Proposition 4.2 give the a-priori
estimate for the local solution [u(t), v(t)] of (1.1)—(1.4), and hence, the problem
(1.1)~(1.4) admits a unique global solution [u(t),v(t)]. Moreover, (4.12) and
(4.13) follow from (4.3) and (4.10), respectively. O
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