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Abstract

We show a connection formula of a linear q-differential equation satis-
fied by 1ϕ1(0; a; q, x). The basic hypergeometric series 1ϕ1(0; a; q, x) repre-
sents the Hahn-Exton q-Bessel function. Since the q-differential equation
has a divergent series solution, a q-analogue of the Stokes phenomenon
appears. We give a resummation procedure of the divergent series by
means of the q-Borel-Laplace transformation of order 1/2.

2010 Mathematics Subject Classification. 34M40, 33D15.

Introduction

We study the following q-difference equation

ay (qz) + [z − (a+ q)]y(z) + qy(z/q) = 0, (1)

which has a solution y(z) = 1ϕ1(0; a; q, z). We assume that a ̸= 0. The ba-
sic hypergeometric series 1ϕ1(0; a; q, z) is related to the Hahn-Exton q-Bessel
function [15], one of the three different types of Jackson’s q-analogue of the
Bessel function. We solve the connection problem of (1), which gives relations
between solutions around the origin and solutions around the infinity. Since
(1) has a solution represented by a divergent power series around the infinity,
a q-analogue of the Stokes phenomenon appears when we give a resummation
of the divergent series. We show a resummation of the divergent solution by
means of the q-Borel-Laplace transformation of order 1/2, which is studied by
Dreyfus and Eloy [1, 2].



It is known that there exist three different types of q-analogues of the Bessel
function. Jackson defines his first q-analogue of the Bessel functions in [6], and
the second q-Bessel function is introduced in [7]. Following the modern notation
by Ismail [5], we denote

J (1)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

(x
2

)ν

2ϕ1

(
0, 0; qν+1; q,−x2

4

)
,

J (2)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

(x
2

)ν

0ϕ1

(
−; qν+1; q,−qν+1x2

4

)
,

J (3)
ν (x; q) =

(q2ν+2; q2)∞
(q2; q2)∞

xν
1ϕ1

(
0; q2ν+2; q2, x2q2

)
.

Since the third one is found by Hahn [4] and Exton [3], it is called the Hahn-
Exton q-Bessel function, which satisfies the q-difference equation

f(xq2) + q−ν(x2q2 − 1− q2ν)f(xq) + f(x) = 0. (2)

Any linear q-difference equation has two singular points, the origin and the
infinity. Local solutions around each singular point are represented by a product
of theta functions and a formal power series. A connection problem of a linear
q-difference equation is to give a relation between the system of local solutions at
the origin and the infinity. When the power series is divergent, the the q-Stokes
phenomenon appears by a resummation procedure.

A connection formula of the first Jackson q-Bessel function is shown by
Zhang [19]. Since the second Jackson q-Bessel function is related to the first
Jackson q-Bessel function

J (2)
ν (x; q) = (−x2/4; q)∞ · J (1)

ν (x; q),

the connection formula of J
(2)
ν (x; q) follows from the connection formula of the

first Jackson q-Bessel function.
But the connection problem for the third Jackson q-Bessel function has not

been solved completely. Solutions of the Hahn-Bessel equation (2) has two inde-

pendent solutions represented by J
(3)
ν (x; q) around the origin. One local solution

around the infinity is represented by a convergent power series, and the other is

represented by a divergent power series. The asymptotic behavior of J
(3)
ν (x; q)

around the infinity is studied by Olde Daalhuis [13], but the connection problem
is not treated. One connection formula only for the convergent series around
the infinity has been shown by Morita [11]. But the q-Stokes phenomenon of
the divergent power series solution is not studied.

In section two we show a q-difference equation satisfied by 1ϕ1(0; a; q, x). In
section three we review the q-Borel transformation and q-Laplace transforma-
tion. In section four we give a resummation of the divergent solution of (1). For
divergent power series which satisfy q-difference equations, the q-Borel-Laplace



transformation is a powerful tool to give a q-summation procedure [14]. The
Newton diagram of (1) has two segments at the infinity. The slopes of two seg-
ments are 1 and −1. Since the difference of the two slopes are two, we need the
q-Borel resummation of order 1/2 [1, 2]. For q-difference linear equations, the
Stokes region is not an angle domain, but an open dense set C∗ \λqZ for λ ∈ C∗

[18, 14]. By using the q-Borel-Laplace resummation method of order 1/2, we
show the q-Stokes phenomenon of the divergent series solution of (1) and the
q-Stokes region is not outside of a q-spiral λqZ but outside of a

√
q-spiral λ

√
qZ.

We remark that a Borel transformation for q-series is also studied by Jackson
[8].

In section five we show a connection formula for the convergent solution of
(1) around the infinity. This formula is essentially shown in [11]. Thus we obtain
a complete connection formula of (1).

In the case a = −q, (1) reduces to the q-Airy equation studied by Hamamoto,
Kajiwara and Witte [10]. The q-Stokes phenomenon of the q-Airy equation is
also studied by Morita [12]. Our results contains the connection formula for the
q-Airy equation.

The author gives his gratitude to Professor Changgui Zhang and Professor
Jean-Pierre Ramis for fruitful discussions. Most of works has done during his
stay at Institut de Mathématiques de Toulouse on September 2016. The author
also expresses his appreciation for the kind hospitality to Professor Jacques
Sauloy. This work is supported by JSPS KAKENHI Grant-in-Aid for Scientific
Research (C) Number 6K05176.

1 Notations and Preliminary

In the following we assume that q ∈ C∗ and 0 < |q| < 1. For n = 0, 1, 2, ..., we
set the q-shifted factorial

(a; q)n =
n−1∏
j=0

(1− aqj), (a; q)∞ =
∞∏
j=0

(1− aqj).

We set (a1, a2, ..., am; q)n =
∏m

j=1(aj ; q)n for n = 0, 1, 2, .. or n = ∞.
We set the theta function

θq(x) := θ(x) =
∑
k∈Z

qk(k−1)/2xk = (q,−x,−q/x; q)∞ .

The theta function satisfies

θ(qkx) = q−k(k−1)/2x−kθ(x) (k ∈ Z),
xθ(1/x) = θ(x), θ(1/x) = θ(qx).

It is easy to show the following lemma on relations between different bases
q.



Lemma 1. We have

(x; q)∞ = (x; q2)∞(xq; q2)∞,

(x; q)∞(−x; q)∞ = (x2; q2)∞,

(q2; q2)∞θq(x) = (q; q2)∞θq2(x)θq2(xq),

(−q; q)∞θq(x)θq(−x) = (q; q)∞θq2(−x2).

1.1 Transformation of q-difference equation

The q-difference operator σq is given by σq[f(t)] = f(tq). We use the following
lemma frequently in this paper. The proof is evident.

Lemma 2. We transform a second order q-difference equation[
a(z)σq + b(z) + c(z)σ−1

q

]
y(z) = 0.

(1) We set t = 1/z and v(t) = y(1/t). Then v(t) satisfies[
c(1/t)σq + b(1/t) + a(1/t)σ−1

q

]
v(t) = 0.

(2) We set y(z) = θ(rz)y1(z). Then y1(z) satisfies[
a(z)

rz
σq + b(z) +

rzc(z)

q
σ−1
q

]
y1(z) = 0.

(3) We set y(z) = (rz; q)∞y2(z). Then y2(z) satisfies[
a(z)

1− rz
σq + b(z) + (1− rz/q)c(z)σ−1

q

]
y2(z) = 0.

1.2 Basic hypergeometric series

The basic hypergeometric series [9] is defined by

rϕs(a1, . . . , ar; b1, . . . , bs; q, x)

:=
∑
n≥0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n(q; q)n

{
(−1)nq

n(n−1)
2

}1+s−r

xn.

Heine’s basic hypergeometric series 2ϕ1(a, b; c; q, z) satisfies the equation[
(c− abqz)σ2

q − (c+ q − (a+ b)qz)σq + q(1− z)
]
2ϕ1(a, b; c; q, z) = 0.

A connection formula of 2ϕ1(a, b; c; q, z) is shown by Thomae [16] and Watson
[17] :

2ϕ1 (a, b; c; q;x) =
(b, c/a; q)∞
(c, b/a; q)∞

θ(−ax)

θ(−x)
2ϕ1 (a, aq/c; aq/b; q, /cq/abx)

+
(a, c/b; q)∞
(c, a/b; q)∞

θ(−bx)

θ(−x)
2ϕ1 (b, bq/c; bq/a; q, cq/abx) . (3)



It is known that there exist many relations between hypergeometric series.
The relation

0ϕ1(−; a2q; q2, a2qx2) = (x; q)∞ · 2ϕ1(a,−a; a2; q, x) (4)

is shown in [19].

1.3 Formal q-Borel transformation

We review the q-Borel transformation and the q-Laplace transformation. See
[14, 18, 20] for detail.

The q-Borel transformation B±
q : C[[t]] → C[[τ ]] is defined by

B±
q

[ ∞∑
n=0

ant
n

]
:=

∞∑
n=0

anq
±n(n−1)/2τn.

In usual we identify a germ of holomorphic functions at the origin OC,0 as a
subset of C[[t]]. As a linear operator on C[[t]], we have

B±
q (t

mσn
q f) = q±m(m−1)/2τmσn+m

q B±
q (f).

The q-Laplace transform of φ(τ) is given by the Jackson integral

L
[λ]
q;1φ(t) :=

1

1− q

∫ λ∞

0

φ(τ)

θq(τ/x)

dqτ

τ
=

∞∑
n∈Z

φ(qnλ)

θq(qnλ/x)
.

When f(t) ∈ C[[t]] is a convergent power series,

L
[λ]
q;1 ◦ B+

q (f) = f.

In this sense, L
[λ]
q is a formal inverse of B+

q .
The following lemma is useful to calculate the q-Laplace transform. We can

prove by direct calculations.

Lemma 3. 1) Assume that

φ(ξ) =
θ(aξ)

θ(bξ)

∑
m≥0

cmξ−m.

Then

L
[λ]
q;1φ(x) :=

θ(aλ)θ(qax/bλ)

θ(bλ)θ(qx/λ)

∑
m≥0

cmq−m(m−1)/2(b/aqx)m.

In the case a = b, we obtain

L
[λ]
q;1

∑
m≥0

cmξ−m

 =
∑
m≥0

cmq−(−m)(−m−1)/2x−m,



which gives a formal q-Borel transformation B−
q .

2) Assume that

φ(ξ) =
θ(aξ)

θ(b1ξ)θ(b2ξ)

∑
m≥0

cmξ−2m.

Then

L
[λ]
q;1φ(x) :=

θq(aλ)θq2(aq
2x/b1b2λ

2)

θq(b1λ)θq(b2λ)θq(qx/λ)

∑
m≥0

cmq−m(m−1)(b1b2/aq
2x)m.

2 q-difference equation satisfied by 1ϕ1(0; a; q, z)

We assume a ̸= 0. We consider the following q-difference equation

ay (qz) + [z − (a+ q)]y(z) + qy(z/q) = 0, (5)

which has a solution y(z) = 1ϕ1(0; a; q, z). Since the degree of the coefficients
of (1) is up to one, we study (1) instead of the Hahn-Exton equation (2).

We set t = 1/z and v(t) = y(1/t). Then v(t) satisfies

qtv(tq) + [1− (a+ q)t]v(t) + atv (t/q) = 0. (6)

In the following, we study a connection problem and the q-Stokes phenomenon
of (6). Since (6) has a divergent series solution around the origin, the q-Stokes
phenomenon appears when we give a resummation of the divergent series.

Local solutions of (6) around t = ∞ are

v
(∞)
1 (t) = 1ϕ1(0; a; q, 1/t), v

(∞)
2 (t) =

θ(−qt)

θ(−at)
1ϕ1(0; q

2/a; q, q/at).

Local (formal) solutions of (6) around t = 0 are

v
(0)
1 (t) = θ(−qt)

∞∑
m=0

bmtm, v
(0)
2 (t) =

1

θ(−aqt)

∞∑
m=0

cmtm.

We assume that b0 = 1 and c0 = 1. Here u1(t) =
∑

bmtm is divergent and
u2(t) =

∑
cmtm is convergent. The q-Borel transforms of u1(t) and u2(t) are

given by

B+
q (u1)(τ) = (−aτ ; q)∞(−qτ ; q)∞,

B−
q (u2)(τ) =

1

(−q2τ ; q)∞(−aqτ ; q)∞
. (7)



3 q-Stokes phenomenon

We give a resummation procedure of the divergent power series u1(t) by the
q-Laplace transformation and study the q-Stokes phenomenon. We set v(t) =
θ(−qt)u(t) in (6). Then u(t) satisfies

{σq − [1− (a+ q)t] + at2σ−1
q }u(t) = 0. (8)

The series u1(t) is a unique formal power series solution of (8) around the origin
with b0 = 1.

The q-Borel transform of u1(t) is given by

B+
q (u1)(τ) = (−aτ,−qτ ; q)∞.

But the q-Laplace transform of (−aτ,−qτ ; q)∞ is divergent. We apply a q-
analogue of Borel transform of order 1/2 studied in [1, 2] in order to obtain a
resummation of u1(t).

We set p2 = q. We consider the p-Borel-Laplace transform of u1(t)

fp(t, λ) = L
[λ]
p;1 ◦ B+

p (u1)(t).

The two choices of p give the different p-Borel-Laplace transforms. Since p2 = q,

L
[λ]
p;1 is considered as the p-Borel-Laplace transform of order 1/2.
Our main result is as follows.

Theorem 4. The p-Borel-Laplace transform fp(t, λ) is a meromorphic function
on C∗ and has at most a simple pole on t = −λpZ:

fp(t, λ) =
θq(aλ)θq(apλ)

(q/a; q)∞θq(−apλ2)

θq(−pt/λ2)

θq(pt/λ)θq(qt/λ)
1ϕ1 (0; a; q, 1/t)

+
θq(qλ)θq(qpλ)

(a/q; q)∞θq(−apλ2)

θq(−pqt/aλ2)

θq(pt/λ)θq(qt/λ)
1ϕ1(0; q

2/a; q, q/at).

Proof. The divergent series u1(t) satisfies the p-difference equation

{σ2
p − [1− (a+ p2)t] + at2σ−2

p }u1(t) = 0.

The p-Borel transform of φ(τ) = B+
p (u1)(τ) satisfies

{σ2
p + (a+ p2)τσp − (1− apτ2)}φ(τ) = 0. (9)

The power series φ(τ) give a unique holomorphic solution around the origin of
(9) with φ(0) = 0. We set c2 = ap. Then g(τ) = (−cτ ; p)∞φ(τ) satisfies

{(1 + cpτ)σ2
p +

(
c2/p+ p2

)
τσp − (1− cτ)}g(τ) = 0,



which has a solution g(τ) = 2ϕ1

(
−c/p,−p2/c;−p; p, cτ

)
. Therefore we have

φ(τ) =
1

(−cτ ; p)∞
2ϕ1

(
−c/p,−p2/c;−p; p, cτ

)
.

We study the asymptotic behavior of φ(τ) around the infinity. It is evident
that

1

(−cτ ; p)∞
=

(p; p)∞
θp(−cτ ; p)

(−p/cτ ; p)∞.

By the connection formula (3), we have

2ϕ1

(
−c/p,−p2/c;−p; p, cτ

)
=

(p2/c,−p2/c; p)∞
(−p, p3/c2; p)∞

θp(c
2τ/p)

θp(−cτ)
2ϕ1

(
c/p,−c/p; c2/p2; p,−p/cτ

)
+

(c/p,−c/p; p)∞
(−p, c2/p3; p)∞

θp(p
2τ)

θp(−cτ)
2ϕ1

(
p2/c,−p2/c; p4/c2; p,−p/cτ

)
. (10)

By (4), we have

(−p/cτ ; p)∞ 2ϕ1

(
c/p,−c/p; c2/p2; p,−p/cτ

)
= 0ϕ1

(
−; c2/p; p2, p/τ2

)
.

(−p/cτ ; p)∞ 2ϕ1

(
p2/c,−p2/c; p4/c2; p,−p/cτ

)
= 0ϕ1

(
−; p5/c2; p2, p7/c4τ2

)
.

Therefore the behavior of φ(τ) at the infinity is as follows.

φ(τ) =
(p, p2/c,−p2/c; p)∞
(−p, p3/c2; p)∞

θp(c
2τ/p)

θp(cτ)θp(−cτ)
0ϕ1

(
−; c2/p; p2, p/τ2

)
+

(p, c/p,−c/p; p)∞
(−p, c2/p3; p)∞

θp(p
2τ)

θp(cτ)θp(−cτ)
0ϕ1

(
−; p5/c2; p2, p7/c4τ2

)
.

We calculate the p-Laplace transform fp(t, λ) of φ(τ) by Lemma 3:

fp(t, λ) =
(p, p2/c,−p2/c; p)∞
(−p, p3/c2; p)∞

θp(c
2λ/p)θp2(−pt/λ2)

θp(cλ)θp(−cλ)θp(pt/λ)
1ϕ1

(
0; c2/p; p2, 1/t

)
+
(p, c/p,−c/p; p)∞
(−p, c2/p3; p)∞

θp(p
2λ)θp2(−p4t/c2λ2)

θp(cλ)θp(−cλ)θp(pt/λ)
1ϕ1(0; p

5/c2; p2, p3/c2t).

By Lemma 1, we have

(p; p)∞
(−p; p)∞

1

θp(cλ)θp(−cλ)
=

1

θp2(−c2λ2)
=

1

θq(−apλ2)
,

(p2/c,−p2/c; p)∞
(p3/c2; p)∞

=
(p4/c2; p2)∞
(p3/c2; p)∞

=
1

(p3/c2; p2)∞
=

1

(q/a; q)∞
.

And
θp(aλ)θq(−pt/λ2)

θq(−apλ2)θp(pt/λ)
=

θq(aλ)θq(apλ)θq(−pt/λ2)

θq(−apλ2)θq(pt/λ)θq(qt/λ)
.

Applying Lemma 1 to the second term, we obtain Theorem 4.



4 Connection formula of convergent series

We show a connection formula between v
(0)
2 (t) and solutions of (6) around the

infinity.

Theorem 5. The solution v
(0)
2 (t) is written by the sum of v

(∞)
1 (t) and v

(∞)
2 (t)

on t ∈ C∗:

v
(0)
2 (t) =

1

(q; q)∞(q/a; q)∞
v
(∞)
1 (t) +

q

a · (q; q)∞(a/q; q)∞
v
(∞)
2 (t).

Remark. This relation is essentially obtained by Morita [11].

Proof. By (7), u2(t) has an integral representation

u2(t) =
1

2πi

∫
|τ |=ε

1

(−q2τ ; q)∞(−aqτ ; q)∞
θq(t/τ)

dτ

τ
,

by the residue calculus around the origin. Here ε is sufficiently small so that
(−q2t; q)∞(−aqt; q)∞ does not have zeros in |τ | ≦ ε.

If we take R so that the circle |z| = R does not pass through the poles, we
have

1

2πi

∫
|τ |=R

1

(−q2t; q)∞(−aqt; q)∞
θq(t/τ)

dτ

τ
→ 0

when R → ∞. Therefore

u2(t) = −
∞∑

n=0

Res

{
1

(−q2t; q)∞(−aqt; q)∞
θq(t/τ)

dτ

τ
: τ = −q−n−2

}

−
∞∑

n=0

Res

{
1

(−q2t; q)∞(−aqt; q)∞
θq(t/τ)

dτ

τ
: τ = −q−n−1/a

}
.

We can calculate the residues by the following lemma [18].

Lemma 6. We assume that b, c ∈ C∗, c ̸∈ qZ and n = 0, 1, 2, 3, .... Then we
have

Res

{
1

(bz; q)∞

dz

z
: z = q−n/b

}
=

(−1)−n+1qn(n+1)/2

(q; q)∞(q; q)n
,

θq(bq
nt) = q−n(n−1)/2b−nt−nθq(bt),

1

(cq−n; q)∞
=

(−c)−nqn(n+1)/2

(c; q)∞(q/c; q)n
.

By the lemma above we have

u2(t) =
θq(−q2t)

(q; q)∞(a/q; q)∞
1ϕ1(0; a/q; q, q/at) +

θq(−aqt)

(q; q)∞(q/a; q)∞
1ϕ1(0; a; q, 1/t).

Since u2(t) = θ(−aqt)v
(0)
2 (t), we obtain Theorem 5.



5 Summary

We have shown a connection formula of a second order q-difference equation
whose solution is represented by 1ϕ1(0; a; q, t):

qtv(tq) + [1− (a+ q)t]v(t) + atv (t/q) = 0.

Local solutions around t = ∞ are

v
(∞)
1 (t) = 1ϕ1(0; a; q, 1/t), v

(∞)
2 (t) =

θ(−qt)

θ(−at)
1ϕ1(0; q

2/a; q, q/at).

Local (formal) solutions around t = 0 are

v
(0)
1 (t) = θ(−qt)

∞∑
m=0

bmtm, v
(0)
2 (t) =

1

θ(−aqt)

∞∑
m=0

cmtm.

Here
∑

bmtm is divergent,
∑

cmtm is convergent. We assume that b0 = 1,

c0 = 1. We set ṽ
(0)
1 (t, λ; p) = θ(−qt)fp(t, λ) for p2 = q. Here fp(t, λ) is a

resummation

fp(t, λ) = L
[λ]
p;1 ◦ B+

p

[ ∞∑
m=0

bmtm

]
.

Theorem 7. The connection formulae between ṽ
(0)
1 (t, λ; p), v

(0)
2 (t) and v

(∞)
1 (t),

v
(∞)
2 (t) are given as follows.

ṽ
(0)
1 (t, λ; p) =

θq(aλ)θq(apλ)

(q/a; q)∞θq(−apλ2)

θ(−qt)θq(−pt/λ2)

θq(pt/λ)θq(qt/λ)
v
(∞)
1 (t)

+
θq(qλ)θq(qpλ)

(a/q; q)∞θq(−apλ2)

θ(−at)θq(−pqt/aλ2)

θq(pt/λ)θq(qt/λ)
v
(∞)
2 (t),

v
(0)
2 (t) =

1

(q; q)∞(q/a; q)∞
v
(∞)
1 (t) +

q

a · (q; q)∞(a/q; q)∞
v
(∞)
2 (t).

The second connection formula is already shown by Morita [11]. The case
a = −q is obtained in [12]. A connection formula of the Hahn-Exton q-Bessel
equation is derived from the theorem above by simple calculations.

The q-Laplace transform of order 1/2 is shown in [1, 2] is necessary to deter-
mine the q-Stokes coefficients. Our results is the first example to calculate the
q-Stokes coefficients when the slope of the Newton diagram is two in q-difference
equations. Our method would be useful to study the q-Stokes phenomenon of
other q-difference equations with slopes higher than two.
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