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ABSTRACT 

 

Natural fibers are increasingly being used in fiber-reinforced composites (FRCs) due to their 

high tensile strengths, light weight, low cost and non-toxicity. Abaca, also known as Manila 

hemp, is a native plant of the Philippines where it is grown as a commercial crop. Abaca fiber 

has a high cellulose content and very good mechanical properties, including a high tensile 

strength and high Young’s modulus. Chemically modified abaca fibers demonstrate 

enormous potential as natural reinforcing agents in composite materials, though little work to 

date has been reported on the effect of different chemical treatments on abaca fiber structure, 

composition and mechanical strength, motivating a detailed investigation. 

This thesis systematically explored the effects of alkali concentration and treatment time on 

the microstructure and tensile properties of abaca fibers. Further, the interfacial bonding 

mechanism in abaca fiber-reinforced epoxy was also studied. Scanning electron microscopy 

(SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), fiber 

tensile tests and fiber composite pull-out tests were used to obtain a detailed picture of 

different alkali treatments on abaca fiber properties and composite performance.  

The effect of NaOH concentration and treatment time on the mechanical properties of abaca 

fibers was first investigated. Abaca fibers were immersed in 3, 5, 7, 9, 11, 13 and 15 wt. % 

aqueous NaOH solutions for 5 min, and 5, 10 and 15 wt.% aqueous NaOH solutions for 5, 10, 

15, 20, 25 and 30 min. The mechanical properties of the fibers increased after each alkali 

treatment. The highest Young’s modulus and tensile strength was achieved after 7 wt.% 

NaOH treatment for 5 min. The effect of treatment time on fiber properties was modest 

compared to the effect of alkali concentration. 

The effect of NaOH concentration (5, 10 and 15 wt. %) and treatment time on abaca fiber 

microstructure and chemical composition was subsequently studied. The abaca fibers were 
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immersed in different NaOH solutions for specific times, rinsed with water and dried. The 

morphology of the treated abaca fibers were then characterized in detail. After alkali 

treatment, it was found by SEM that the lumen (the hollow core in the center of the 

elementary abaca fibers) had completely disappeared due to the swelling of surrounding cell 

walls. The abaca fiber bundles also became twisted after 10 and 15 wt. % NaOH treatments. 

The XRD measurements revealed that cellulose I in the abaca fibers was partially 

transformed to cellulose II after 15 wt. % NaOH treatments. Meanwhile, FT-IR analysis 

revealed that the alkali treatments caused gradual removal of the binding materials, such as 

hemicelluloses and lignin from the abaca fibers, resulting in the separation of abaca fiber 

bundles into individual elementary fibers. The Young’s modulus of the abaca fibers treated 

with 5 wt. % NaOH for 30 minutes increased by 30-40% compared to the native fibers, 

whereas the Young’s modulus of fibers treated with 10 and 15 wt. % NaOH decreased by 20-

25% and 25-30%, respectively, compared to the native fibers. A non-linear behavior was 

observed in the stress-strain curves of the abaca fibers after 10 and 15 wt. % alkali treatments, 

which is explained by alkali-treated fiber twisting.  

The effect of NaOH treatment on the abaca fiber-epoxy interface was then studied. The 

crystallinity index, microstructure, surface morphology, chemical composition, and 

mechanical characteristics of the untreated and alkali-treated abaca fibers were evaluated, 

along with the interfacial adhesion with epoxy and interfacial shear strength (IFSS). Results 

showed that the degree of crystallinity in the abaca fibers increased by 12% following 5 

wt. % NaOH treatment for 2 hours. This treatment also increased the tensile strength and the 

Young’s modulus (increased by 37.8%) of the fibers. However, the Young’s modulus of abaca 

fibers decreased by 34% and 49% after 10 and 15 wt. % NaOH treatments for 2 hours, 

respectively, indicating that strong alkali treatments negatively impacted fiber stiffness and 

suitability for use in composite applications. The 5 wt. % NaOH treatment improved the 
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interfacial shear strength (IFSS) of abaca fiber-reinforced epoxy by 32 %. It can be concluded 

that pre-treatment of raw abaca fibers with 5 wt. % NaOH is highly beneficial for the 

fabrication of abaca fiber-reinforced composites. 

Results guide the development of improved abaca fiber-reinforced composites for automotive 

and other high-value applications. 
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hemicelluloses, lignin, pectin, waxes, and water soluble substances [16], which will be 

introduced in the next chapter. 

1.2 Objective 

A focus of this work is the understanding of microstructure and mechanical properties of 

abaca by different alkali concentration with different treating time. Furthermore, we also 

investigated their chemical components and crystalline structure related to alkali treatment. 

From these studies, several objectives were established. They are as follows: 

1. To evaluate mechanical properties of alkali-treated abaca fibers by different concentration 

and different treatment times compared with untreated abaca fibers. 

2. To explore why the lumen of fiber disappears after alkali treatment, and to explain how the 

lumen was affected. 

3. To assess how the fiber was twisted by alkali treatment, and to explain how the fiber 

twisting occurred by alkali treatment. 

4. To evaluate the crystallinity of cellulose in alkali-treated abaca fiber by XRD and to 

explain the transformation of cellulose I to cellulose II.  

5. To demonstrate that the chemical components of hemicellulose, lignin and pectin et. al. 

were removed, using FT-IR after alkali treatment. 

6. To investigate the interfacial adhesion of alkali-treated abaca fibers by different 

concentrations, comparing to untreated abaca fibers. 

1.3 Scope of project 

This research provides a comprehension of lumen shrinking after alkali treatment. The 

mechanical behavior of alkali-treated abaca fiber is studied and the interfacial properties of 

fiber reinforced composite is also evaluated. 
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1.4 Chapter outline 

Chapter 2 is titled, “Literature Review” and outlines abaca fibers and types of chemical 

treatments for plant fibers. It describes the advantages and challenges of abaca fiber.  

Chapter 3 is titled, “Influence of Different Alkali Concentrations on Morphology and Tensile 

Properties of Abaca Fibers”. It describes the results of SEM, FT-IR, XRD, and tensile testing 

of alkali-treated abaca fibers and offers a discussion of the results.  

Chapter 4 is titled, “Influence of Different Alkali Treatment Time on Morphology and 

Tensile Properties of Abaca Fibers”. It describes the results of the SEM and tensile testing of 

the alkali-treated abaca fibers.  

Chapter 5 is titled, “Influence of Alkali Treatment on Internal Microstructure and Tensile 

Properties of Abaca Fibers”. It discusses the mechanism of the effect of the microstructure 

and mechanical properties of alkali-treated abaca fibers. It also demonstrates the conversion 

of cellulose I to cellulose II as a means of alkali treatment. Moreover, its relationship with the 

structural form of cellulose was studied. 

Chapter 6 is titled, “Influence of Alkali Treatment on interfacial bonding in abaca fiber 

composites”. It conducted the evaluation of interfacial properties of alkali-treated abaca fibers 

reinforced epoxy. 

Chapter 7 is titled, “Conclusions and Suggestions for Future Work”. It furnishes a summary 

of the results of this study and suggests directions for future work, e.g. measurement of the 

MFA and the application of cellulose II  

The “Appendix” provides a supplement of Chapter 3. It gives the details of the tensile results 

and microstructure of the abaca fibers. 
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2.2 Natural fibers and their chemical components 

A single natural filament generally has a diameter on the order of about 10 μm and is itself a 

type of natural composite material. Each fiber contains a primary cell wall and three 

secondary cell walls. The cell walls are made up of a lignin-hemicellulose matrix and 

microfibrils, which are oriented in different directions in each cell wall. The microfibrils each 

have a diameter of the order of 10 nm, and are made up of around 30-100 cellulose molecules 

[25,26]. These microfibrils have been found to possess better mechanical properties for 

manufacturing composites alone than combined in an individual fiber. Filaments are bonded 

into a bundle by lignin and then attached to the stem by pectin. The lignin and the pectin are 

both weaker polymers than the cellulose, so they must be removed if the fibers are going to 

be effective as composite reinforcements. Most of the pectin is removed when the bundles are 

separated from the rest after alkali treatment. 

These cells are cemented together by an intercellular substance, which is isotropic and non-

cellulosic in nature [25]. Individual cells consist of primary wall and secondary wall as 

shown in Figure 2.1 [26]. The secondary wall is made up by three layers and the thick middle 

layer determines the mechanical properties of the fiber. The layers differ in the composition 

and orientation of cellulosic microfibrils. The angle between the fiber axis and the 

microfibrils is called microfibrillar angle [14]. The microfibrillar angle, or the average angle 

at which the microfibrils are oriented off of the axis of the filament, is thought to be 

responsible for a number of mechanical properties of the fiber, as smaller angles generally 

lead to higher strength and stiffness and larger angles to better ductility. Among plant species, 

and even fibers of the same species, the fiber cell walls differ in their compositions and their 

microfibrillar angles. The central hollow structure of each cell is named lumen [27].  
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Table 2.1 Composition of natural fibers [16] 

 

Fiber Cellulose 

(%) 

Hemicelluloses 

(%) 

Lignin (%) Pectin (%) Ash (%) 

Flax 71 18.6-20.6 2.2 2.3 -- 

Kenaf 31-57 21.5-23 15-19 -- 2-5 

Jute 45-71.5 13.6-21 12-26 0.2 0.5-2 

Hemp 57-77 14-22.4 3.7-13 0.9 0.8 

Ramie 68.6-91 5-16.7 0.6-0.7 1.9 -- 

Bamboo 60.8 6.8 32.2 -- -- 

Abaca 56-63 15-17 7-9 -- 3 

Sisal 47-78 10-24 7-11 10 0.6-1 

 

 Natural fibers from plants can be grouped into bast, leaf, seed or fruit fibers. The elementary 

unit of a cellulose macromolecule is the anhydro D-glucose, which contains three hydroxyl (-

OH) groups as shown in Figure 2.2(a) [27]. The hydroxyl groups form hydrogen bonds inside 

the macromolecule itself (intramolecular) and between other cellulose macromolecules 

(intermolecular) [30]. Cellulose microfibrils have amorphous and crystalline domains and a 

high degree of organization. Cellulose fibers interact with water molecules on the surface and 

the bulk. Moisture from the atmosphere comes into contact with the fibers hydroxyl groups 

forming hydrogen bonds with water molecules [25]. All these factors play an important role 

when the fiber is in contact with the matrix which affect the interface adhesion of the 

composites. 
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Waxes are the part of the fibers that can be extracted with organic solutions. Waxy materials 

consist of different types of alcohols, which are insoluble in water as well as in several acids 

[17]. 

2.3 Abaca fibers 

Among all the natural fiber-reinforcing materials, abaca appears to be a promising material 

because it is low cost and abundantly available. Abaca fibers are extracted from the stalks of 

plants. Abaca belongs to the Musasea family of plant native to Asia and is planted in humid 

areas including the Philippines and east Indonesia. The Philippines is the world’s largest 

source and supplier of abaca fibers for cordage and pulp for specialized paper. It supplies 85% 

of the global abaca fiber market [31]. 

2.3.1 Properties of abaca fibers 

The need for using abaca fibers in place of the traditional glass fiber partly or fully as 

reinforcing agents in composites stems from their characteristics:  

 Lower specific density (1.25 g/cm3) and higher specific Young’s modulus (48.5 GPa) 

of abaca compared with those of glass (2.5 g/cm3 and 28 GPa, respectively).  

 Abaca fiber is 100% bio-degradable. 

 It has good insulating and antistatic properties, as well as low thermal conductivity. 

2.3.2 Advantages of abaca fibers 

 Abaca is considered one of the strongest plant fibers. Abaca fiber has high tensile strength, 

and is resistant to rotting, and its specific flexural strength is near to that of glass fiber [32].  

2.3.3 Uses and application of abaca fibers 

Abaca is a versatile plant with several uses. Abaca fibers are removed from the abaca’s stalk 

to produce products such as tea and coffee bags, sausage casing paper, currency notes 



11 
 

(Japan’s yen banknotes contain up to 30% abaca), cigarette filter papers, medical/food 

preparation/disposal papers, high-quality writing paper and more.  

Currently abaca is being used for interior trim parts in the automotive industry as a filling 

material. However, it can also be used for structural applications in automotive industry given 

its strong tensile strength. Nowadays, abaca fiber reinforced composites are gaining interest 

due to their innovative application in under-floor of Daimler AG vehicles [5, 32, 33]. 

Abaca fibers reinforced polypropylene thermoplastic composites have been used in 

automobile body parts of Mercedes Benz. It can be used to reduce the weight of automotive 

parts and to facilitate more environmentally friendly production and recycling of the car parts. 

Owing to the extremely high mechanical strength of the fiber as well as its length, abaca 

offers great potential for different industrial applications even in highly stressed components. 

2.4 Advantages and disadvantages of natural fibers 

The majority of natural plant fibers have been utilized for composite. The strengths and 

Young’s modulus of plant fibers have been recognized and utilized. Seat backs, boot liners 

and aviation interior are some of the present applications that take advantage of the good 

mechanical properties of plant fibers. Furthermore, there are several other advantageous 

characteristics that plant fibers have over traditional fibers. Plant fibers are typically derived 

from the renewable plants which is significantly cheaper and subjected less to economic 

fluctuations. Meanwhile, the lower density of cellulose plant fibers can be a half of traditional 

fiber such as glass fiber. Therefore, the resulting plant fiber reinforced composites can be 

lighter than traditional composites. They are more efficient systems and have lower costs 

with material transportation. Plant fibers use as non-toxic materials can be occupationally 

safer compared to glass fibers which can cause allergic reaction, irritation to the respiratory 
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system or skin irritation. Plant fibers are also known as being biodegradable, environmentally 

friendly and sustainable.  

However, the disadvantages of natural fibers still exist for composite reinforcement. The first 

difference compared to traditional fiber-reinforced composite is the processing and 

manufacture of plant fibers. This may require companies to develop new methods and 

machines for manufacture of natural fiber reinforced composite for widespread 

implementation. 

Secondly, the synthetic fibers can be repeatedly produced with bearing structure. However, 

the plant fiber-reinforced composites show large scatter in properties due to varying fiber 

properties due to growing conditions, harvesting and processing techniques. Thirdly, the 

more serious problem with using plant fibers in composites is their strong water absorption. It 

leads to the poor interfacial adhesion by hydrophilic plant fiber with hydrophobic matrix. 

Therefore, for plant fiber to be successful used, it is essential that weaknesses are addressed 

in terms of efficient solution by thorough research.   

2.5 Fiber-Matrix adhesion 

A strong interface adhesion of natural fiber-matrix is needed for high strength properties of 

composites, due to the effective stress transfer from the matrix to the fiber. Many research 

related to natural fibers-reinforced composites that there is weak adhesion between the 

hydrophilic fiber and hydrophobic matrices. Interface adhesion is one of the key technology 

of composite materials. Meanwhile, mechanical properties of the composites improve with 

interface adhesion [25]. However, the main chemical composition of plant fiber is cellulose 

which contains a large number of hydroxyl groups. It leads to the incompatibility between 

hydrophilic fiber and hydrophobic matrix, further weak interfacial adhesion and eventually 

low mechanical properties. Therefore, it is crucial to obtain improved interfacial properties 
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and mechanical properties of plant fiber reinforced composites so that more applications 

could be realized. Furthermore, these hydroxyl groups of the plant fiber could be removed by 

chemical modification. 

2.6 Chemical modification of natural fibers 

The chemical modification is a common way to improve the mechanical properties of natural 

fiber-reinforced composites.  

Natural fibers are hydrophilic due to hydroxyl groups in their structure which are easy to 

react with water molecules. Therefore, natural fibers are incompatible with hydrophobic 

polymer resins because hydrophilic fibers absorb moisture. This is the reason for poor 

interfacial adhesion between the polar, hydrophilic fiber and the non-polar, hydrophobic 

matrix [25]. Interface adhesion between hydrophilic natural fibers and the hydrophobic 

polymer resins can be improved by chemical surface treatment. Chemical pretreatments can 

clean the fiber surface, stop the moisture absorption process and increase the surface 

roughness to increase the interlocking with the matrix [14]. 

When the fiber is subjected to chemical treatment, the hydroxyl groups are broken and 

replaced by a new reactive functional group. The hydrophilic character of the fiber is 

therefore reduced, which results in improved fiber-matrix adhesion characteristics of the 

composites. Therefore, the problem can be solved by treating natural fibers with suitable 

chemicals to decrease the number of hydroxyl groups on the fiber surface. Several chemical 

treatment methods have been introduced as the following. 

2.6.1 Alkali treatment 

Alkali treatment of natural fibers is known to improve stiffness, strength, and dynamic 

flexural modulus of the composites [32]. Alkali treatment of cellulosic fibers, also called 
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mercerization, is a classic method to improve interfacial bond strength and adhesion between 

the matrix and the fibers [29].  

In addition, alkali treatment leads to fibrillation which causes the breaking down of the 

natural fiber bundle into elementary fibers. Due to the mercerization process, it also takes out 

certain portion of hemicelluloses, lignin, pectin and other chemical components [13]. 

Therefore, the aspect ratio is increased and a rough fiber surface topography is developed [13, 

29]. When the hemicelluloses as bonding materials are removed, the interfibrillar region 

becomes less dense and less rigid, making the fibrils more capable of rearranging themselves 

along the direction of tensile deformation. In contrast, softening of the interfibrillar matrix 

negatively affect the fiber bundle under tensile deformation [17]. 

 Moreover, moisture resistance of the fiber is improved because hydrophilic hydroxyl groups 

are partially removed [13]. Fiber-matrix adhesion consequently improves. Alkali treatment 

changes the orientation of highly packed crystalline cellulose order and forms amorphous 

region by swelling the fiber cell wall. The (OH) groups present among the molecules from 

the fiber are broken down by alkali treatment, then reacting with water molecules (H-OH). 

The remaining reactive molecules form fiber-O-Na groups and water molecules. Thus, the 

(OH) group was moved out from the fiber structure [27]. This process is described in the 

following reaction [16, 29]:  

Fiber-OH + NaOH          Fiber-O-Na+ + H2O                                                                        (1) 

The efficiency of the alkali treatment depends on the type, concentration, and time of the 

alkaline treatment. The immersion in alkaline solution leads to formation of high amounts of 

voids and makes the surface rougher. The effective surface area is increased, which improves 

mechanical interlocking between the fibers and the matrix [30]. The alkali treated fibers have 

better tensile properties compared to the untreated fibers. The presence of crystalline 
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celluloses is higher in treated fibers than untreated fibers. The alkali treated natural fibers 

have good mechanical properties which are comparable to the man-made fibers [25].  

2.6.7 Silane treatment 

Silane treatment is an effective method to chemically modify both the hydroxyl groups of 

cellulose and the functional groups of the matrix. Silane is a coupling agent which improve 

the degree of cross-linking in the interface region and offer better bonding [29].  

 Coupling agents are molecules possessing two functions. The first is to react with the OH 

groups of cellulose and the second is to react with functional groups of the matrix. The silane 

molecules act as a bridge between the matrix and the cellulose. The organo-functional group 

bonds between the hydrophilic fiber and hydrophobic matrix are formed through a siloxane 

bridge. The general chemical formula of silane is X3Si-R [25, 30]. R is a reactive group that 

reacts with the resin, and X is a group, which reacts with hydroxyl groups of the cellulose 

surface [30]. Silane coupling agents form a bridge to bond the cellulose fibers to the matrix 

by covalent bonds.  

2.6.8 Acetylation treatment 

Acetylation is an effective way to reduce the moisture absorption by the fibers. It esterifies 

the hydroxyl groups on the fiber surface [25]. 

 Acetylation consists of a reaction introducing an acetyl functional group (CH3COO-) to 

replace the OH- of cellulose. The fibers become hydrophobic because they are treated with 

acetic anhydride substitutes. The polymer hydroxyl groups react with the acetyl groups 

(CH3COOH) [16]. Acetylation is based on the reaction between the cell wall hydroxyl groups 

and acetic or propionic anhydride at elevated temperature. The reaction of acetic anhydride 

with the fiber is shown below [16, 31]: 

Fiber-OH + CH3 – C (=O) – O – C(=O)          CH3 – Fiber – OCOCH3 + CH3COOH      (2) 
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It is possible to speed up acetylation by using a catalyst. The hydroxyl groups are acetylated 

in different ways. The moisture absorption by the cell wall is reduced if the hydroxyl groups 

in the cellulose are substituted with acetyl groups. The acetylation was used in surface 

treatment of natural fiber-reinforced composites in several studies [31]. 

2.6.9 Benzoylation treatment 

 Benzoylation is an important chemical treatment method in organic synthesis. Benzoylation 

treatment uses benzoyl chloride (C6H5C=OCl) to reduce the hydrophilic nature of the treated 

fiber and improve fiber matrix adhesion, thereby increasing the strength of the composite [16]. 

It also enhances thermal stability of the fiber. Before the benzoylation treatment alkali 

pretreatment is used to activate the hydroxyl groups of the fiber. Then the fiber is soaked in 

benzoyl chloride solution for 15 min. Afterwards ethanol solution is necessary for 1 h to 

remove benzoyl chloride that adhered to the fiber surface followed by washing with water 

and oven drying [13].  

2.6.10 Other chemical treatments 

Isocyanate is a compound containing the isocyanate functional group –N=C=O, which is 

highly reactive with the hydroxyl groups of cellulose and lignin in fibers and reduce the 

hydrophilic tendency [34].  

Permanganate is a compound that contains permanganate group MnO4
-. The potassium 

permanganate (KMnO4) solution has been used in most permanganate treatments. As a result, 

the hydrophilic tendency of the fibers was reduced by permanganate treatment; therefore, the 

water absorption of fiber-reinforced composite decreased [16]. 

2.7 Research focus 

The purpose of this study is thus to clarify the effect of alkali treatment on the microstructure 

and mechanical properties of abaca fibers. However, there have been many studies on alkali 



17 
 

treatment of natural fibers but very limited information is available on the effect of lumen 

size of the alkali treated-abaca fiber. More importantly, the hollow microstructure of natural 

fiber affects the thermal conductivity, sound absorption, mechanical properties etc. of the 

natural fiber-reinforced composites. Therefore, it is important to explore the effect of the 

alkali treatment on microstructure and mechanical properties of the natural plant fibers. The 

interfacial properties were also assessed in this thesis. 
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as aeronautic and building industries. Especially, it has been used in automobile industry such 

as door panels, seat backs, headliners, package trays, dashboards, and interior parts [33, 36]. 

In recent years, many investigations have been done to analyze the different properties of 

different natural fibers in different ways [12]. H. Takagi and others had researched and 

contributed with the recent developments of natural fiber composites [1, 37]. 

One difficulty that has prevented the use of natural fibers is the lack of good adhesion with 

polymeric matrices. In particular, the great moisture sorption of natural fibers adversely 

affects adhesion with hydrophobic matrix leading to premature ageing by degradation and 

loss of strength. Interfacial adhesion and resistance to moisture absorption of natural-fiber 

composites can be improved by treating these fibers with suitable chemical reactions. In fact, 

many studies have been reported concerning the chemical treatments of natural fibers [18, 38-

40]. 

Gomes et al. [41] analyzed the mechanical properties of alkali-treated curaua fiber reinforced 

cornstarch-based resin. It was found that the tensile strength of the treated fibers decreased in 

comparison to untreated fibers, whereas the fracture strain increased two to three times after 

alkali treatment. Boopathi et al. [42] studied the Borassus fruit fibers treated with 5, 10 and 

15 wt.% NaOH solutions. It was found that the 5 wt.% NaOH treatment significantly 

improved tensile properties of the Borassus fruit fibers than other alkali concentrations. 

The study by Mylsamy and Rajendran [43] focused on the Agave Americana natural fibers. 

In their study it was found that hemicellulose, lignin, and wax content of the fibers were 

reduced by the alkali treatment. The surface smoothness and impurity removal of the fiber 

were also observed. Sghaier et al. [44] studied the characteristics of doum palm fiber after 

chemical treatment and found that the alkali treatment removed only the residual impurities, 

not affecting the microfibrils of cellulose.  
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Although a great deal of research over the past decade has demonstrated the efficiency of the 

use of chemical treatment of natural fibers, little work has been conducted on the morphology 

and the internal structure of the fiber affected by the chemical treatment. 

The objective of this chapter was to study the abaca fiber was treated by different alkali 

concentrations and evaluate the changes in the morphology and mechanical properties of 

abaca fiber. The morphological properties show that the lumen was gradually shrunk by 

different alkali concentrations. The tensile strength showed the peak at 7 wt.% NaOH 

treatment, Young’s modulus increased with increased concentration until 7 wt.%, then 

decreased with increased the alkali concentration, and the strain at break increased with 

increased alkali concentration over 7 wt.% NaOH treatment. The FT-IR and XRD analyses 

were conducted for the chemical components and crystallinity. 

3.3  Materials and Experimental 

3.3.1 Materials 

Single fiber bundles were extracted from untreated and treated abaca fibers to carry out 

tensile tests. Single fiber bundle was bonded to a paper with rectangular holes of 10 mm in 

length, as shown in Figure 3.1. 
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Where a and b are dimensions in Figure 3.2. They were measured by digital microscope 

VHX-600(Keyence, Japan). 

The diameter (d) of abaca fiber is calculated approximately as follows: 

d ൌ √ab 

The length of abaca fibers exceeded 20 mm and diameters varying from 200 to 400 μm were 

selected carefully to be used in this study. 

3.3.2 Alkali treatment of abaca fiber 

The abaca fibers were treated with different NaOH concentration (3, 5, 7, 8, 9, 10, 11, 13 and 

15 wt.%) for 5 min under vacuum condition. The fibers were taken out of the solution, 

washed several times with fresh water to take away NaOH sticking on the fiber surface. Then 

the fibers were dried in the vacuum drying oven for 2 hours at 80ºC. The reaction of sodium 

hydroxide with abaca fiber is described as follows: 

            Abaca-OH + NaOH→ Abaca-O- Na+ + H2O                                                              (1) 

3.3.3 Mechanical properties of single fiber bundle 

According to the preparation procedure described in ASTM D 3822 standard, the fiber 

bundles were glued to paper frames with 10 mm gauge length. Following the standard, tensile 

tests of abaca fibers were carried out on a universal testing machine (Instron model 5567). 

The tests were performed using a load cell of 500 N at a cross head speed of 1.0 mm/min. 

Before each testing, the edge of the supporting paper was cut in the middle. The gauge length 

was set at 10 mm. The specimens that fractured at the end of the paper frame or near the 

glued clamp were excluded from the data for the tensile test. Tensile strength was obtained 

from the maximum stress of stress-strain curves and the Young’s modulus (E) was provided 

by the tangent at the origin of the stress-strain curve.  
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3.3.4 Micro-structural examination of fracture cross section of abaca fiber  

The cross section of the test specimens was examined by scanning electron microscopy 

(PCSEM) (JEOL-JSM-6390). Each sample was deposited on carbon tape mounted on stubs 

and then gold-coated. Specimens were observed at an accelerating voltage of 5 kV and 

emission current of 47 μA. Specimens were analyzed at magnifications of 350 X for different 

alkali concentrations. 

3.3.5 Fourier Transform Infrared Spectrometry (FT-IR) 

The Fourier Transform Infrared Spectrometry was performed using the Thermo Fisher 

Scientific NICOLET IS10 spectrometer at room temperature. The infrared spectra of 

untreated fiber and after treatment fiber were measured by scratching a fiber with a knife and 

collecting some powdered sample. Then potassium bromide (KBr), which acts as a reagent, 

was mixed (at a ratio; KBr: Sample =100:1) with sample with a mortar and pestle. The 

mixture was then taken in a dice of specific dimensions. The pellet was formed by pressing 

with a hand press machine and was placed on the sample holder. The IR spectrum obtained in 

this study is presented in the results and discussion section. 

3.3.6 X-ray Diffractometer (XRD) 

The XRD data was obtained at room temperature on a Rigaku SmartLab X-Ray 

Diffractometer (Rigaku Corporation, Japan), equipped with the Cu K X-ray source. X-ray 

tube was operated at 45 kV and 200 mA with a detector placed on a goniometer scanning the 

range from 5º to 50º, at a scan speed of 2º/min, with the wave length λ ൌ 1.54059Å. 
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Cross section of untreated and alkali-treated abaca fibers was observed using a scanning 

electron microscope. Figure 3.3(a) – (h) show SEM photographs of untreated fiber and 5 min 

treated fiber with 3, 5, 7, 9, 11 13 and 15 wt.% NaOH solution. It can be seen that the lumen 

is observed in the cross section of the untreated fiber (Figure 3.3(a)). During the alkali 

treatment, the lumen size was gradually decreased with increasing the alkali concentrations, 

as shown in the Figure 3.3(b) - (d). After higher than 7 wt.% NaOH treatment, the lumen was 

shrunk until disappearing when the alkali treatment reached 15 wt.% NaOH concentration 

(Figure 3.3(e) - (h)). As we can see the diameter of the fiber was decreased following this 

shrinkage. Moreover, the cell wall of each lumen swelled with increasing alkali 

concentrations. However, it has been reported that the differences of single fiber shape and 

lumen diameter strongly influence fiber density and mechanical and dimensional properties 

[18]. 

There are two possible reasons for lumen shrinkage and cell wall swelling. One possible 

reason may be that the pectin, hemicelluloses and lignin were removed from the abaca fiber 

during alkali treatment. Observations of the lumen of the cross section of the treated fiber 

revealed that the fiber is not truly a monofilament. It is a bundle of monofilaments bonded 

and covered by lignin. Therefore, alkali treatment is inferred to provoke removal of a great 

amount of lignin from the untreated fiber surface. Alkali treatment changes the bundle 

structure into an element structure, which comprises monofilaments that are barely bonded to 

each other by a small amount of lignin. Not only the chemical structure change mentioned 

above, but also such morphological change brings a decrease in strength of the fibers. 

Moreover, another possible reason for lumen shrinkage may be that the sodium ion entered 

the cell wall; the cell wall thickness increased and the lumen size decreased after alkali 

treatments [18, 45, 46].  
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changes in the structure of the cell wall and the morphology of the fiber as we mentioned in 

section 3.1.  

There are two explanations, which can be offered for the contraction during the alkali 

treatment in the present report. One is the conformational change of cellulose chains in 

disordered or amorphous regions. The other one is, the structural changes in the microfibrils 

themselves are expected to affect the changes in the mechanical properties of abaca fiber. 

This led to an investigation of the dependence of the changes in crystal structure and degree 

of crystallinity in natural fiber as a function of NaOH concentration. In addition, the 

relationships between the changes in cellulose structure or longitudinal contraction, and the 

changes in the mechanical properties during alkali treatment have been reported [47, 48]. 

 

Table 3.1 Tensile properties of untreated and alkali-treated abaca fibers 

NaOH concentration  

(%) 

Tensile strength   

(MPa) 

Young’s modulus 

(GPa) 

Elongation at 

break (%) 

Untreated 900േ100 22േ2 5.0േ0.5 

3 860േ110 25േ4 3.81േ0.28 

5 883േ24 28.7േ0.6 3.55േ0.17 

7 1010േ90 31.7േ1.5 3.82േ0.25 

8 900േ80 25േ5 5.0േ0.5 

9 660േ50 14.4േ1.2 7.3േ1.1 

10 870േ30 15േ2 7.8േ0.9 

11 690േ40 10.4േ0.6 8.4േ0.5 

13 810േ60 13േ5 9.0േ1.3 

15 800േ80 15േ3 10.6േ0.9 
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Table 3.2 FT-IR spectral data of abaca fibers [49-51] 

Position/cm-1 Band type Possible Assignment 

~3600-3200 –OH 
strong band from the cellulose, 

hemicellulose and lignin of abaca 

~3000-2900 C–H in aromatic rings and alkanes 

~1730 C=O 
most probably from the lignin and 

hemicelluloses 

~1635 C=C 
aromatic skeletal ring vibration due to 

lignin 

~1246 =C–O–C= aliphatic unsaturated carbonate 

 

Figure 3.9 shows the FT-IR spectrum of abaca fiber at different NaOH concentration 

treatments. As discussed in chemical analysis, the main components in the abaca fiber are 

cellulose, hemicellulose and lignin. These three components are mainly composed of esters, 

aromatic ketones and alcohols, with different oxygen-containing functional groups. 

The spectral data peaks as Table 3.2 shows, lignin present in the abaca fiber gives 

characteristic peaks at 1246, 1635 and 1730 cm-1 corresponding to the aromatic skeletal 

vibration and carbonyl group. The peak present at 1635 cm-1 in the spectrum corresponding 

to the raw fiber is due to the presence of C=C linkage, which is a characteristic group of 

lignin and at 1730 cm-1 is due to hemicellulose. The reduction in the peak intensity found at 

around 2903 cm-1 in alkali treated abaca fiber indicates the partial reaction of the C-H bonds. 

Alkali treatment reduces hydrogen bonding due to removal of the hydroxyl groups by 

reacting with sodium hydroxide. This result in the decrease of the –OH concentration, evident 

from the decreased intensity of the peak between 3300 and 3400 cm-1 bands compared to the 
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3.5 Conclusions  

In this study, abaca fibers were treated by NaOH solutions with different concentrations. The 

major changes in morphology, chemical and mechanical properties are summarized below: 

(1) The lumen size decreased with increasing alkali concentration above 7 wt. %. 

(2) The mechanical properties increased after alkali treatments. Young’s modulus and tensile 

strength reached the highest value after 7 wt. % NaOH treatment for 5 min. 

(3) The chemical components such as pectin, lignin and hemicelluloses were removed from 

the abaca fiber by alkali treatments. 
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Significant research has been carried out recently to study the physical and thermal properties 

of abaca fiber by Takagi et al.[15, 54]. However, the hollow structure of the fiber and the 

mechanical properties are rarely studied by the academic research.  

Because of these concerns, this study investigates the microstructure and mechanical 

properties of the abaca fiber as the main focus when subjected to alkali solution treatment 

with different treatment times. It is through this research that the effect of the alkali treatment 

time will be ascertained. 

4.3 Materials and experimental  

The abaca fibers were treated with 5, 10 and 15 wt. % NaOH solution separately for 0 min, 5 

min, 10 min, 15 min, 20 min, 25 min and 30 min under vacuum condition. The fibers were 

then washed with fresh water to take away NaOH sticking on the fiber surface. Then the 

fibers were dried in the vacuum drying oven for 2 hours at 80ºC. 

4.3.1 Diameter measurement 

The fiber cross sectional area (A) and the diameter of abaca fiber were measured by a digital 

microscope VHX-600 (Keyence, Japan). The abaca fibers whose length exceeded 20 mm and 

diameter varying from 240 μm to 280 μm were selected to be used in this study. 

4.3.2 Tensile test 

Tensile tests of abaca fibers were carried out on a universal testing machine (Instron model 

5567). The tests were performed using a load cell of 500 N at a cross head speed of 1.0 

mm/min. Before each test, the mean diameter was calculated from microscopic analysis. The 

gauge length was 10 mm. Determination of the Young’s modulus (E) was provided by 

tangent at the origin of the stress-strain curves. Scanning Electron Microscopy images were 

taken by an SEM model JEOL-JSM-6390 and FESEM S4700.  
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Figure 4.2 shows that the fiber lumen size decreased and completely collapsed during the 

different alkali treatment times with 5 wt. % alkali concentration. After 5 wt. % NaOH 

treatment, it can be seen that the lumen is shrunk and it is visible in the cross-section for 5 

and 10 min. treated (Figure 4.2(a) - (b)) compared to the untreated fiber (Figure 4.1). After 15 

min; we can see a few lumen in the cross-section of the abaca fiber (Figure 4.2(c)). Moreover, 

the lumen size almost collapsed during the alkali treatment process over 15 min. treatment 

(Figure 4.2(d) - (f)). Meanwhile, the cell wall of abaca fibers swelled with each alkali 

treatment time. 

Figure 4.3 shows that the fiber lumen size decreased and completely collapsed during the 

different alkali treatment times with 10 wt. % alkali concentration. After 10 wt. % NaOH 

treatment, we can see that few lumen is visible in the middle of the cross-section for 5 min. 

treatment (Figure 4.3 (a)). This phenomenon may be attributed to the treatment time of only 5 

min. when alkali solution penetrated from surface to inside. Thus, the lumen still exist in the 

middle of the cross-section of the fiber. However, the lumen completely collapsed during the 

alkali treatment time of more than 5 min. (Figure 4.3(b) - (f)). It means that the 10 wt. % 

NaOH concentration was adequate to completely collapse the lumen.  

Figure 4.4 shows that the fiber lumen size decreased and completely collapsed during the 

different alkali treatment times with 15 wt. % alkali concentration. After 15 wt. % NaOH 

treatment, we can see that the minor lumen is visible in the middle of the cross-section for 5 

min. treatment (Figure 4.4 (a)). This phenomenon is similar with 10 wt. % alkali 

concentration treatment. Meanwhile, the lumen almost completely collapsed during the alkali 

treatment time of more than 5 min. (Figure 4.4(b) - (f)). In addition, lumen exist in the cross-

section of the fiber treated for 10-20 min. (Figure 4.4(b) - (d)). It is due to the non-uniform 

distribution of the fiber by alkali treatment.  
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4.4.2 The tensile properties of alkali-treated abaca fibers 

Table 4.1 The tensile properties of the untreated and 5 wt. % NaOH-treated abaca fibers 

NaOH treatment 

time (min) 

Tensile strength   

(MPa) 

Young’s modulus 

(GPa) 

Elongation at 

break (%) 

Untreated 760േ90 17.1േ2.3 5.8േ0.7 

5 810േ160 22േ3 4.8േ0.3 

10 800േ150 22േ4 4.6േ0.3 

15 930േ120 24േ4 4.5േ0.5 

20 890േ60 25.9േ2.8 4.4േ0.4 

25 830േ120 21.2േ2.7 4.4േ0.6 

30 800േ140 22േ4 4.8േ0.5 
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One of the most important factors of natural fibers is high performance in mechanical 

properties. Figure 4.5 to Figure 4.8 and Table 4.1 show the results of mechanical tests for the 

5 wt. % alkali-treated abaca fibers. The tensile strength slightly increased with increasing 

treatment time. The highest value of the tensile strength occurred after 15 min. alkali 

treatment (Figure 4.5). As shown in Figure 4.6, the Young’s modulus increased with 

increasing treatment time after 5 wt. % NaOH treatment. The strain at break decreased for 

each treatment time after 5 wt. % NaOH treatment (Figure 4.7). The stress-strain curves are 

shown in the Figure 4.8, which show a linear behavior. From 0-0.3% of the strain, the curve 

fluctuates and changes after treatment time for 15 min.  

 

Table 4.2 The tensile properties of the untreated and 10 wt. % NaOH-treated abaca fibers 

NaOH treatment 

time (min) 

Tensile Strength   

(MPa) 

Young’s Modulus 

(GPa) 

Elongation at 

break (%) 

Untreated 760േ90 17.1േ2.3 5.8േ0.7 

5 870േ30 15.1േ2.1 7.8േ0.9 

10 860േ90 15േ4 8.5േ1.3 

15 900േ120 12.8േ2.7 9.2േ0.7 

20 870േ80 14.6േ1.9 8േ1 

25 800േ100 17.9േ2.4 7.6േ1.2 

30 840േ60 13.1േ2.1 9േ1 
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The tensile properties of untreated and 10 wt. % alkali-treated abaca fibers are summarized in 

Figure 4.9 to Figure 4.12 and Table 4.2. After 10 wt. % NaOH treatment, the tensile strength 

increased by 15%. Meanwhile, the tensile strength is consistently unchanged in every 

treatment time (Figure 4.9). Figure 4.10 shows the Young’s modulus after 10 wt. % NaOH 

treatment. It can be seen that the Young’s modulus decreased with increasing treatment time. 

However, it is important to note that the Young’s modulus increased after 25 min. treatment. 

The strain at break increased with increasing treatment time after 10 wt. % NaOH treatment 

(Figure 4.11). The stress-strain curves are shown in the Figure 4.12. We can see that the non-

linear behavior occurred for every treatment time after 10 wt. % NaOH treatment. It is 

showing an initial steep increase followed by a weaker linear increase with strain above 1.5-

3%. The non-linear behavior appears to be the result of fiber twisting, which will be studied 

in detail in Chapter 5. 

 

Table 4.3 The tensile properties of the untreated and 15 wt. % NaOH-treated abaca fibers 

NaOH treatment 

time (min) 

Tensile Strength   

(MPa) 

Young’s Modulus 

(GPa) 

Elongation at 

break (%) 

Untreated 760േ90 17.1േ2.3 5.8േ0.7 

5 800േ80 15േ3 10.6േ0.9 

10 800േ100 14.5േ2.2 10.1േ0.7 

15 800േ100 13േ3 10.5േ0.5 

20 810േ140 13േ4 10.4േ1.3 

25 940േ40 16.0േ1.8 10.0േ0.7 

30 840േ80 12േ3 11.7േ2.1 
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abaca fiber are apparently due to changes in the structure of the cell wall and the morphology 

of the fiber as we mentioned in Chapter 3.  

4.5 Conclusions  

In this study, abaca fibers were treated by 5, 10 and 15 wt. % NaOH solutions with different 

treatment times. The major changes in morphology and mechanical properties are 

summarized below: 

(1) The lumen size decreased with increasing alkali concentration and treatment time. 

(2) The tensile strength slightly increased after 5 and 10 wt. % and was maintained after 15 

wt. % alkali treatments. 

(3) The Young’s modulus increased after 5 wt. % and decreased after 10 and 15 wt. % alkali 

treatments. 

(4) The strain at break decreased after 5 wt. % and remarkably increased after 10 and 15 wt.% 

alkali treatments. 

(5) The effect of treatment time is not evident compared to the effect of alkali concentration. 
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5.2 Introduction 

Due to economic incentives and increasing environmental awareness, natural fiber reinforced 

thermoplastic or thermoset composites have attracted many researchers’ attention [1, 6, 15, 

55]. The advantages of using natural fibers in industrial applications relate to their light 

weight, low cost, nontoxicity, biodegradability and high specific stiffness. These 

characteristics make natural fiber-reinforced composites suitable for application in 

automotive and aircraft industries. The European Union legislation implemented in 2006 has 

expedited the application of natural fiber-reinforced plastics in automobiles. Car 

manufacturers must make vehicles in such a way that more than 85% of the vehicle’s total 

weight can be recycled [8]. Regarding potential industrial application, fiber strength is one of 

the most important characteristics. Natural fibers including sisal [56], flax [6], ramie [57], 

bamboo [58] and abaca [59] exhibit good strength and are thus suitable for fabrication of 

fiber-reinforced composites. 

Abaca (i.e., Manila hemp) is a species of banana and grows as a commercial crop in the 

Philippines. Abaca fiber has a high tensile strength (600-900 MPa) and Young’s modulus 

(30-50 GPa) [60, 61], higher values compared to other strong fibers, such as sisal fiber which 

possess a tensile strength of 511 - 635 MPa and Young’s modulus between 9.4 - 22.0 GPa 

[28]. Abaca fiber reinforced composites have been used for under-floor protection of 

passengers Daimler AG vehicles [53]. Importantly, abaca fibers satisfy the stringent quality 

requirements of road transportation, especially resistance to influences such as dampness, 

exposure to the elements and stone strike [52]. Understanding the unique physical and 

chemical properties of abaca fibers, and the structure-function relationship of the fibers, is 

critical to their effective utilization in industrial applications. 

A weakness of the natural fibers is their high-water absorption characteristics and weak 

interfacial bonding with the matrix material of composites. This is the reason why natural 
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fibers have not completely replaced conventional fiber materials in high-load applications. 

Natural fiber-reinforced composites have been used in the automotive industry, but their 

application is generally limited to parts such as door panels, seat backs and other interior 

panels [8]. Due to the large industrial potential of natural fibers, their surface modification is 

becoming an important field of research. The majority of research in the area of fiber 

improvement focuses on the fiber-matrix interfacial adhesion and decreasing water 

absorption [62-64]. 

Alkali treatment (i.e. mercerization) is one of the most popular and lowest cost methods used 

for surface modification of natural fibers. Many studies have reported that alkali treatment 

increases fiber surface area and improves the interfacial characteristics of the fiber in 

composites [10, 18, 38, 46, 65].  

The lumen of natural fibers contributes to the high sound absorption performance [66] and 

also plays a greater role than crystal structure and chemical compounds, on the transverse 

thermal conductivity of unidirectional composites [7]. The lumen is a hollow structure in the 

center of the abaca fibers that strongly influences the properties of natural fibers. The effect 

of the alkali treatment on the lumen of abaca fibers, and in turn the mechanical strength of 

such alkali-treated fibers, has received little attention in the literature, motivating the current 

study.  

This study aimed to explore the relationship between the internal microstructure and tensile 

properties of abaca fibers by alkali treatment. XRD and FT-IR were used to follow alkali-

induced structural and chemical changes in the fibers, respectively. The obtained structural 

and chemical information, combined with mechanical tests on the same untreated and treated 

fibers, serve to guide the development of the surface modification processes of natural fibers 

for advanced composite applications. 
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5.3.3 XRD measurements 

The XRD data was obtained at room temperature on a Rigaku MultiFlex X-Ray 

Diffractometer (Rigaku Corporation, Japan), equipped with a Cu K X-ray source. X-ray tube 

was operated at 40 kV and 20 mA with a detector placed on a goniometer scanning the range 

from 5º to 40º, at a scan speed of 2º/min. Table 2 shows the 2θ calculated using the following 

equations [67]: 

ߠ2 ൌ 2 sinିଵሺ
ఒ

ଶௗೖ
ሻ                                                                                          (3) 
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                                                            (4)    

where ߠ is the angle of diffraction, n is an integer, ߣ is the wavelength of the X-ray (ߣ ൌ

1.5406	Հ ), and ݀  is the crystallite dimension in the direction perpendicular to the 

crystallographic plane h k l. The cellulose structure is monoclinic, namely ܽ ് ܾ ് ܿ and 

ߙ ൌ ߛ ൌ 90° ്   .ߚ

5.3.4 FT-IR measurements 

  FT-IR was performed at room temperature (20-22ºC) using a Bio-Rad VARIAN FTS 

3000MXT spectrometer (Varian, Inc., USA). The infrared spectra of untreated and 5, 10 and 

15 wt. % concentration alkali-treated abaca fibers were measured using finely powdered 

samples. The powdered samples were mixed with KBr at a weight ratio of KBr : sample = 

100 : 1. This mixture was then pelletized using a hand-operated press. 

5.3.5 Mechanical characterization of abaca fibers 

 To carry out tensile tests, the fibers were split into parcels, of which three were treated with 5, 

10 and 15 wt. % NaOH solution and one was an untreated control sample. Each treated or 

untreated abaca fiber was stuck on a paper frame, as shown in Figure 5.2. 
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Table 5.1 Different cellulose types by crystallographic structure. 

Cellulose type Lattice parameters (Հ)   2ࣂ (deg.) 

 b c  ഥ 002 040 ࢇ

Na-Cellulose I 8.8 10.3 25.3     

Na-Cellulose IV 9.6 10.3 8.7     

Cellulose I 8.3 10.3 7.9  16.0 22.6 34.5 

Cellulose II 8.1 10.3 9.1  20.2 22.2 34.5 

-is the inter ߚ .is the angle of diffraction and was calculated from the lattice parameters ߠ2)

axial angle between a and c. Cellulose I, ߚ ൌ 84°. Cellulose II, ൌ 62° . The geometry of both 

celluloses is monoclinic [71].) 

 
 The spectrum of the 5 wt. % alkali-treated abaca fibers shows the same cellulose I profile as 

the untreated ones (Figure 5.8). In the case of 10 wt. % alkali-treated fibers, the peak (002) 

became sharper than that of the untreated ones and double peaks were found around the peak 

(101ത). We assume that the 10 wt. % alkali treatment increased the cellulose crystallinity by 

removing some parts of chemical components, such as hemicelluloses, pectin, and lignins, 

thus the cellulose content increased, resulting in a sharper (002) peak. The 15 wt. % alkali 

treatment resulted in the increase in the full width at half maximum of the (101ത) and (002) 

peaks. Nishiyama et al. [72] described the mechanism of transformation of cellulose I 

structure into cellulose II structure during mercerization, where Na-cellulose I is an 

intermediate phase in the transformation. In 3 to 5 N (12 – 20 wt. %) NaOH solution, the 

cellulose I transforms to Na-cellulose I. After washing with fresh water, Na-cellulose I 

changes to Na-cellulose IV (without Na+) and after drying Na-cellulose IV changes to 

cellulose II [18, 72]. In our study, the alkali-treated abaca fibers, cellulose I is not completely 

transformed into cellulose II even after alkali treatment higher than 12 wt. % (3N) NaOH. 

The spectrum of 15 wt. % alkali-treated abaca fibers indicates the coexistence of cellulose I 
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and cellulose II. It may be that only part of the cellulose I transforms into Na-cellulose I. 

After washing with tap water and drying, the Na-cellulose IV changes into cellulose II. There 

is a wide peak at (002), which may be comprised of overlapping cellulose I (2ߠ ൌ 22.6°) and 

cellulose II (2ߠ ൌ 20.2 and 22.2°) peaks. Peak at (101ത) is assigned to cellulose I. The peak at 

(040) is formed by overlapping cellulose I (2ߠ ൌ 34.5°) and cellulose II (2ߠ ൌ 34.5°) peaks. 

The cell wall swells in various extent depending on the alkali concentration. In the abaca 

fibers treated with low-concentration alkali solution (5 wt. % NaOH), the large pores in the 

cellulose crystalline structure were occupied with sodium ions. The Na+ seems to have a 

favorable diameter to penetrate the spacing of the lattice planes [45]. With increasing the 

alkali concentration, Na+ (0.276 nm in diameter) advances more easily into small spaces [71]. 

This leads to the formation of new Na-cellulose I lattice with relatively large distances 

between the cellulose molecules (as shown in Table 5.1). The OH-groups of the cellulose in 

the lattice are converted into ONa-groups, thus expanding the dimensions of cellulose 

molecules [73]. Therefore, the alkali treatment causes swelling of the cell wall and enables 

large molecules to penetrate into crystalline regions. The swelling of the cell wall exerts very 

large forces [18] onto the weaker Na-cellulose lattice [46], thus the lumen collapses. The 

cellulose swelling is a complicated process. The cell wall thickening occurs due to the 

presence of swollen cellulose in the cell wall. Similar results were reported by Amel et al. 

[74]. After washing with fresh tap water, the Na+ ions were removed and formed the Na-

cellulose IV with larger crystallite lattice which was the result of swelling of the crystalline 

lattice by the alkali solution [46]. After drying, Na-cellulose IV transforms to cellulose II. 

The swollen cell wall does not revert to the original shape, therefore the cell wall remains 

swollen and the lumen is collapsed. 
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that part of lignin was removed from abaca fibers during alkali treatment. A partial removal 

of hemicelluloses from the fibers after the NaOH treatment also occurred, as it is evident by 

the decreased carbonyl peak at 1500 – 1750 cm-1 [77]. From these results we conclude that 

alkali treatment caused the removal of the binding materials, such as hemicelluloses, pectin 

and lignin, from the abaca fiber bundle. This removal of the binding materials caused a 

separation into elementary fibers [14]. 

Table 5.2 Characteristic bands of the infrared spectra of the abaca fiber. 

 

 
Functional Group Possible Assignment 

3400 -OH Cellulose, hemicelluloses and lignin 

1742 C=O Hemicelluloses and pectin 

1603 C=C Lignin components 

1514 C-H Hemicelluloses and pectin 

1242 C-O Lignin 

1100 C-O-C  Cellulose  

1062 C-O Hemicelluloses and lignin 

5.4.4 Effect of morphological changes on the mechanical properties of abaca 

fibers 

In this study, we found that tensile properties of alkali-treated abaca fibers were significantly 

affected by their morphological changes. Figure 5.10(a) shows typical stress-strain curves of 

alkali-treated (5, 10 and 15 wt.% NaOH) and untreated abaca fibers. The tensile curves for 

abaca fibers treated with 10 and 15 wt.% NaOH solution indicates a non-linear behavior in 
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stress-strain curve in region III drops compared to region II due to the softening of the 

cellulose microfibrils after alkali treatment (softening may be due to the hydrogen bonds 

broken by alkali treatment). After strong alkali treatment, the fibers were twisted like a spiral 

spring (as shown in Figure 5.7) which would lead to the non-linear behavior in the stress-

strain curves. Another possible explanation is that the non-linear stress-strain behavior could 

be induced by non-uniformities in MFA [79].  

 

 

 

 

 

 

Table 5.3 Tensile properties of untreated and alkali-treated abaca fiber bundles. 

NaOH 

concentration 

(wt%) 

Fiber diameter 

 

(mm) 

Tensile strength 

 

(MPa) 

Young’s modulus 

 

(GPa) 

Untreated 0.23 ± 0.03 760 ± 90 17.1 ± 2.4 

5 0.20 ± 0.04 850 ± 70 24 ± 5 

10 0.20 ± 0.03 840 ± 60 13 ± 2 

15 0.19 ± 0.04 840 ± 80 12 ± 3 
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5.11(b) - (c)). Nakagaito and Yano [82] have reported that the Young’s modulus of the 

cellulose nanofibers were decreased by the strong alkali treatment with 20 wt.% NaOH 

solution. Ishikura et al. [47] determined that the changes in the structure of the wood fiber; 

such as MFA and cellulose crystallinity, are major factors that influence the mechanical 

properties in the longitudinal direction of the wood fibers. The alkali treatment leads to a 

removal of hydrogen bonds in the cross-linked networks of cellulose and lignin structure [14, 

83], and this makes the fibers soft [38], resulting in large elongation and reduction in 

Young’s modulus [83]. Another possible reason is that the MFA increased with decreasing 

crystallinity of the fiber, which consequently influenced the mechanical properties of the 

fibers [38, 81].  

5.5 Conclusions  

The effects of alkali concentration on internal microstructure and mechanical properties of 

abaca fibers were investigated. The results obtained are summarized as follows: 

1. The cross sectional area of abaca fiber bundles decreases significantly with alkali treatment, 

which can be attributed to collapse of the lumen through the swelling of the cellulose 

microfibrils, and also the solubilisation of lignin, hemicelluloses and pectins in the native 

fibers. In addition, the abaca fiber bundles become twisted with strong alkali treatment (10 

and 15 wt. % NaOH). 

2. Hemicelluloses, pectin and lignins, were completely removed from the abaca fiber bundles 

after treatment for 30 minutes in 10 or 15 wt. % NaOH solutions.  

3. Alkali treatment affects the tensile properties of the abaca fiber bundles. After strong alkali 

treatment (10 or 15 wt. % NaOH), the associated fiber twisting and softening resulted in non-

linear stress-strain behavior, a lower Young’s modulus and higher strain at break, compared 

to untreated abaca fibers.  



77 
 

4. The tensile strength of abaca fiber bundles did not significantly change with alkali 

concentration (0, 5, 10 or 15 wt. % NaOH). However, both the Young’s modulus and the 

strain at break were dependent on the alkali concentration. Results suggest that by varying the 

alkali concentration, it is possible to tailor the tensile properties of abaca fiber bundles for 

specific applications. 
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produced in the Philippines possesses the most desirable mechanical properties. Abaca fiber 

contains 56-64% cellulose, 25-29% hemicelluloses, 11-14% lignin and a small proportion of 

fats, pectin, ash and waxes [87, 88]. 

Abaca fiber-reinforced composites have been used in automotive applications, including 

under-floor protection in passengers vehicles (e.g. Daimler AG series) [53]. Abaca fiber was 

the first plant fiber to meet the stringent quality requirements of road transportation, which 

can be attribute to its resistance to influences such as dampness, exposure to the elements, 

and stone strike [52]. Obtaining large quantities of high quality abaca fiber with consistent 

characteristics is essential for the industrial composite applications (e.g. variations in fiber 

quality form batch-to-batch or year-to-year is highly undesirable as this could yield 

composites with low or unpredictable strength). The most important factor in obtaining good 

plant fiber reinforcement in a composite is the interfacial adhesion between the matrix 

polymer and the fiber [89]. However, a common shortcoming of many plant fiber-reinforced 

composites is weak interfacial adhesion with the matrix, which generally can be traced to the 

hydrophilic nature of plant fibers. Therefore, in order to develop composites with improved 

mechanical properties, it is necessary to impart a degree of hydrophobicity to the fibers by 

suitable chemical treatments [14, 90, 91].  

Alkali treatment (i.e., Mercerization) is one of the most useful methods for surface 

modification of cellulose fibers. A considerable body of work has been reported on this topic 

[42, 92, 93]. Hossain et al. [94] compared sugarcane fiber bundles treated with 1 wt.% and 5 

wt.% alkali solutions, and found that fibers treated with 5 wt.% alkali solution possessed the 

best mechanical properties. Alkali treatment has been shown to selectively remove lignin and 

amorphous hemicelluloses from the natural fibers, leaving behind the stiffer and more 

crystalline cellulose fibers [95]. Accordingly, the mechanical properties of composites 

containing alkali-treated fibers are generally greatly superior to composites containing raw 
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fibers [41]. Alkali modification of abaca fiber improves the mechanical and physical 

properties of the fiber, and the associated chemical modification enables stronger fiber 

surface adhesion to the surrounding matrix. Optimizing interfacial adhesion between natural 

fibers and matrix polymers is critical for obtaining high performance composites, and it is a 

very active field of research. 

In the present work, we investigate the effect of different alkali treatments on the tensile 

properties of abaca fibers and then explore the interfacial adhesion of the obtained fibers with 

an epoxy resin. SEM, XRD and FT-IR were used to follow structural and chemical changes 

in the fibers after alkali treatment. Tensile strength tests on the fibers, together with interface 

shear strength tests on raw fiber and treated fiber reinforced epoxy composites, guide the 

development of new and improved processes for the surface modification of natural fibers for 

advanced composite applications. 

6.3 Materials and Experimental 

6.3.1 Materials 

Abaca fibers were obtained from the Philippines, and cut to a length of 20 mm. The abaca 

fibers were treated with each one of three different aqueous NaOH solutions (5, 10 and 15 

wt. %) for 2 h under vacuum (around 13 kPa or 98 Torr) to ensure good penetration of the 

alkali solutions into the fiber bundles. The fibers were subsequently removed from the alkali 

solution and washed several times using fresh tap water until the pH was around 7 to 

completely remove NaOH from the abaca fibers. Finally, the abaca fibers were dried in a 

vacuum oven at 80 oC for 2 h. 

6.3.2 X-ray Diffraction 

Wide-angle X-ray diffraction patterns for all samples were obtained on a Rigaku MultiFlex 

X-ray Diffractometer (Rigaku Corporation, Japan). The measurements were carried with the 
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Cu X-ray tube operating at 40 kV and 20 mA, with a detector placed on a goniometer 

scanning the range from 5º to 40º at scan speed of 2º/min.  

6.3.3 FT-IR 

Fourier transform infrared spectra of untreated and alkali-treated fibers were performed by 

dispersing the powdered fiber samples on KBr pellets (mass ratio; abaca fiber:KBr = 1:100), 

and measured using a Bio-Rad VARIANFTS 3000MXT spectrometer (Varian, Inc., USA). 

6.3.4 SEM  

Morphology of the untreated and alkali-treated fibers was examined using a scanning electron 

microscope JEOL-JSM-6390 (JEOL Ltd., Japan). For the SEM study, the fiber samples were 

lightly coated with Pt-Pd to minimize specimen charging under electron beam. Specimens 

were imaged at an accelerating voltage of 1.5 kV. 

6.3.5 Fiber tensile tests 

The mechanical properties of the fibers, including tensile strength, Young’s modulus and 

strain at break, were determined using an Instron model 5567 (Instron Corporation, USA). 

The abaca fiber bundle was glued on a paper frame with 10 mm gauge length (Figure 6.1). 

The tensile tests were performed using a load cell of 500 N at a cross head speed of 1.0 

mm/min. Before each tensile test, the edge of the supporting paper frame was cut in the 

middle. 
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every elementary fiber cell. The untreated fiber diameters were typically in the range of 250-

300 m. For the alkali-treated fibers (Figure 6.3(b)-(d)), the lumen had almost disappeared 

which may have been a consequence of fibers swelling or the lumen collapsing in the alkali 

solutions. Swelling agent is thought to result from the incorporation of sodium ions into the 

cellulose structure which breaks bonds between cellulose sheets [45, 71]. In addition, the 

fiber diameters were generally smaller following alkali treatment. The NaOH treatment of 

abaca fibers caused significant shrinkage and weight loss, as shown in Table 6.1. Both 

shrinkage and weight loss increased with increasing NaOH concentration. This may be a 

result of stripping of the lignin and hemicelluloses from the fibers in alkali solution [40, 90].  

 
Table 6.1 Shrinkage and weight loss of alkali-treated abaca fibers. 

NaOH concentration 
(wt. %) 

Average fiber 
diameter (μm) 

Cross section shrinkage 
(%) 

Weight loss 
(%) 

0 270 ± 60 - - 
5 200 ± 40 36 ± 16 17.7 

10 200 ± 30 47 ±  9 27.7 
15 190 ± 50 44 ± 12 30.5 

 

Figure 6.4 shows the surface morphology of untreated and alkali-treated abaca fibers. The 

untreated fiber consists of bundles of elementary fibers covered with binding components 

which are likely hemicelluloses, lignin, pectin and other substances (Figure 6.4(a)). In 

comparison the 5 wt. % NaOH treated fiber bundles were free of such surface material 

(Figure 6.4(b)) and appeared as bundles of slightly twisted fibers. The well-defined grooves 

between individual fibers in the bundles could be expected to aid adhesion with composite 

matrices. After 10 and 15 wt. % NaOH-treatments, most of the binding material between the 

individual fibers in the bundles was removed (Figure 6.4(c)-(d)), resulting in bundle 

fibrillation (breakdown of the fiber bundle into elementary fibers) [40, 90]. From images of 

Figure 6.4, it can be concluded that 10 and 15 wt. % NaOH alkali treatments compromise the 

integrity of the fiber bundles and induce twisting. Accordingly, 10 and 15 wt. % NaOH 
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conditions [77]. The latter scenario is supported by the SEM and optical images of Figure 6.3 

and Figure 6.4, respectively, which showed that the binding materials around the primary 

fibers in the abaca bundles were removed by alkali treatment. Thus, differences in the FT-IR 

spectra between the untreated and alkali-treated abaca fibers (Figure 6.5) is attributed to the 

removal of the binding materials, such as hemicelluloses, pectin and lignin, from the abaca 

fiber bundle [98]. 

6.4.3 X-ray diffraction analyses of the abaca fibers 

Cellulose crystallinity is an important characteristic of plant fibers. For composite 

applications, plant fibers with high cellulose crystallinity are demanded since the crystallinity 

correlates with fiber strength and stiffness. Any procedure used to prepare plant fibers for 

composite applications should not compromise the native cellulose crystallinity of the fibers. 

Cellulose is characterized by XRD peaks at 2 = 15.5, 16.5 and 22.8º when using a Cu K 

X-ray source, corresponding to (101ത), (002) and (004) reflections, respectively. The (002) 

reflection is the major crystalline peak of cellulose I. The fiber crystallinity index (CrI) of 

abaca fiber was determined by using the Segal empirical method [99]. This method offers a 

quick and simple calculation of the crystallinity index using the following equation. 

CrI ൌ
ሺܫଶ െ ሻܫ

ଶܫ
ൈ 100 

where I002 is the maximum intensity of the (002) crystalline peak and Iam is the minimum 

intensity of the amorphous material between (101ത) and (002) peaks as shown in Figure 6.6. 
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abaca fibers were approximately 52%, 58%, 50% and 47%, respectively. The data shows that 

the degree of crystallinity increased after 5 wt. % NaOH treatment, which is expected since 

this treatment removed hemicelluloses, lignin and other non-cellulosic material from the fiber 

bundles. At higher alkali concentrations, the cellulose fibers themselves may be attacked, 

resulting in a loss of structural conformation and crystallinity [100]. On the basis of the XRD 

data and calculated fiber crystallinity indices, it would appear that the fibers treated with 5 

wt. % NaOH would be most suitable for composite applications. 

 
Table 6.2 Mechanical properties of abaca fibers before and after NaOH treatment. 

NaOH 
concentration 

(wt. %) 

Crystallinity of 
cellulose 

(%) 

Tensile strength 
(MPa) 

Young’s modulus 
(GPa) 

Strain at break 
(%) 

Untreated 52 720 ± 80 18.6 ± 1.9 4.2 ± 0.2 
5 58 770 ± 120 25 ± 6  3.2 ± 0.5 

10 50 680 ± 80 12 ± 3 9.9 ± 2.5 
15 47 670 ± 26 9.4 ± 1.0 12.4 ± 1.2 

 

6.4.4 Mechanical properties 

The tensile properties of untreated and alkali-treated abaca fibers are summarized in Figure 

6.8 and Table 6.2. The untreated abaca fiber had a tensile strength of 717 MPa and a Young’s 

modulus of 18.6 GPa. After 5 wt. % NaOH treatment, the tensile strength of abaca fiber 

improved by ~8% and the Young’s modulus by 36% with respect to the untreated abaca fiber. 

The strain at break decreased slightly following 5 wt. % NaOH treatment. The data is 

consistent with an increase in the stiffness and brittleness of the fiber after mild alkali 

treatment. The improvements in tensile strength and Young’s modulus may result from 

improved ordering of cellulose crystalline chains along the fiber direction. Fibers treated with 

10 and 15 wt. % NaOH maintained good tensile strength. However, the Young’s modulus 

decreased by 34% and 49%, respectively. Interestingly, the strain at break increased by 136% 

and 200%, respectively, compared to the untreated abaca fiber. As hemicelluloses are leached 

out from the fibers, the cellulose chains in the fibers can adopt a more closely packed 
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interfacial adhesion. This presumably arises because of the incompatibility between 

hydrophilic fibers and hydrophobic epoxy matrix, and is probably compounded further by the 

presence of the impurities and topographical irregularities on the abaca fiber surface (as 

shown in Figure 6.4(a)). This was supported by the fact that the untreated abaca fiber could 

be easily pulled out of the epoxy matrix with little resistance. For composites prepared using 

5 wt. % NaOH treated abaca fibers, excellent interfacial bonding between the epoxy resin and 

abaca fiber was observed (Figure 6.10(c) and (d)). In Figure 6.4(b), it was observed that 5 

wt. % NaOH treatment yielded abaca fibers with clean and roughness surfaces (Figure 6.4(b)) 

that resulted in a better mechanical interlocking, which clearly presents a more suitable 

substrate for the epoxy adhesion than the untreated fibers. Fibers treated at higher NaOH 

concentrations twisted and fibrillated, which reduced epoxy adhesion. Figure 6.10 (e) - (h), 

show that fibrillation creates gaps between the individual fibers in each bundle. Epoxy binds 

well to each fiber, but poorly across such gaps, resulting in an overall poor epoxy adhesion to 

the fiber bundle. 

6.4.6 Interfacial shear strength measurement 

The single fiber pull-out test was used to quantify the interfacial adhesion between the abaca 

fibers and the epoxy matrix. Figure 6.11 (a) shows the relationship between the peak force 

and the embedded abaca fiber surface areas. After applying a linear regression to the plots, 

passing through the origin, IFSS was calculated from the slopes (τ ൌ F/A, where F is the 

peak force, and A is the embedded fiber surface area). 
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6.5 Conclusions 

Alkali treatments modify the structure and chemical composition of abaca fibers, with the 

degree of modification increasing with alkali concentration. Immersion of abaca fibers in 5-

15 wt. % NaOH solution for 2 h results in solubilization of hemicelluloses and lignin from 

abaca fibers, and changes the internal structure and surface morphology of the fibers. Abaca 

fiber bundles treated in 5 wt. % NaOH showed high cellulose crystallinity and minimal 

fibrillation, and displayed excellent interfacial adhesion with epoxy resin. Higher NaOH 

concentrations decreased the cellulose crystallinity and caused fibrillation of the abaca fiber 

bundles, which along with possible further surface chemistry changes to the fibers weakened 

the adhesion with the epoxy resin. Results suggest that low concentration alkali treatments 

are highly beneficial for improving the surface properties and performance of abaca fibers for 

advanced composite applications.  
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the native fibers. The chemical components such as pectin, lignin, and hemicelluloses were 

removed from the abaca fiber by alkali treatments. In addition, the abaca fiber bundles 

become twisted with strong alkali treatment (10 and 15 wt. % NaOH). Alkali treatment 

affects the tensile properties of the abaca fiber bundles. After strong alkali treatment (10 or 15 

wt.% NaOH), the associated fiber twisting and softening resulted in non-linear stress-strain 

behavior, a lower Young’s modulus and higher strain at break, compared to untreated abaca 

fibers. The tensile strength of abaca fiber bundles did not significantly change with alkali 

concentration (0, 5, 10 or 15 wt. % NaOH). However, both the Young’s modulus and the 

strain at break were dependent on the alkali concentration.  

4. The interfacial adhesion of the abaca fiber reinforced epoxy using alkali treated fibers was 

assessed. Abaca fiber bundles treated in 5 wt. % NaOH showed high cellulose crystallinity 

and minimal fibrillation, and displayed excellent interfacial adhesion with epoxy resin. 

Higher NaOH concentrations decreased the cellulose crystallinity and caused fibrillation of 

the abaca fiber bundles, which along with possible further surface chemistry changes to the 

fibers weakened the adhesion with the epoxy resin. Results suggest that low concentration 

alkali treatments are highly beneficial for improving the surface properties and performance 

of abaca fibers for advanced composite applications. 

7.2 Suggestions for future work 

Although the research completed in the current investigation has successfully demonstrated 

in this project, it is still recognized that there are some investigations in the field of alkali 

modification of abaca fiber-reinforced composites that requires further studies in the future. 

Further efforts to understand the role of interfaces on composite properties will require 

additional quantitative characterization work on the interface properties of composites. It 

could contribute to establish a suitable multi-scale mechanical model that can accurately 
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predict bulk mechanical properties of composites with the consideration of macroscopic and 

microcosmic interface adhesion. 

The microscopic characterization of abaca fiber structure can be conducted using advanced 

analytical techniques such as atomic force microscopy (AFM) and nanoindentation. The 

macroscopic characterization of abaca fiber-reinforced composites can be investigated by 

tensile, bending and interlaminar shear tests. 

In addition, it is important to understand the effects of interface adhesion on durability and 

long-term mechanical behavior of composites, such as hydrothermal ageing and fatigue 

properties. Furthermore, advances in recyclability and better accounting of a variety of life 

cycle cost options for natural fiber composites for high-value applications. 
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