3d 遷移金属のX線吸収スペクトルのプレエッジピークは 電気四重極遷移か電気双極子遷移か?

山本 孝

What is the Origin of Pre-edge Peaks in K-edge XANES Spectra of 3d Transition Metals: Electric Dipole or Quadrupole ?

Takashi YAMAMOTO

X線分析の進歩 第38集(2007)抜刷

Copyright © The Discussion Group of X-Ray Analysis, The Japan Society for Analytical Chemistry

3d 遷移金属の X 線吸収スペクトルのプレエッジピークは 電気四重極遷移か電気双極子遷移か?

山本 孝

What is the Origin of Pre-edge Peaks in K-edge XANES Spectra of 3d Transition Metals: Electric Dipole or Quadrupole ?

Takashi YAMAMOTO

Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan

(Received 7 December 2006, Revised 29 January 2007, Accepted 3 February 2007)

The features of pre-edge peaks in K-edge XANES spectra of 3d transition metal compounds were classified by kinds of elements, the coordination numbers, the symmetry and the number of d-orbital occupied. The electric dipole and quadrupole contributions were reviewed based on polarized spectra, group theory, and theoretical calculations. The transition of a 1s electron to 3d orbital gives weak preedge peaks due to the electric quadrupole transition for any symmetries. An intense preedge peak is assigned to an electric dipole transition to p-character in the d-p hybridized orbital. The mixing of a metal 4p orbital with the 3d orbital strongly depends on the coordination symmetry, the degree of which is predictable with group theory. The polarized spectrum is effective for assignment of preedge peaks.

[Key words] XANES, Pre-edge peak, 3d transition metals, Electric-dipole transition, Electric-quadrupole transition

3d 遷移金属 K 殻 XANES スペクトルのプレエッジピークについて,元素,配位数,対称性,d 電子数ごとに整理した.プレエッジピーク強度,電気双極子,四重極遷移成分の寄与を偏光ス ペクトル,群論および理論計算をもとに解説した.1s電子の励起ではd軌道へは対称性とは無 関係に電気四重極遷移しか起こらないが,d-p混成軌道を形成すれば軌道中のp成分への電気双 極子遷移はXANES スペクトル中に強いピークとして観察される.d軌道へのp成分の混成程度 は対称性に支配され,群論により説明可能である.偏光スペクトルはプレエッジピークの評価 に極めて有効である. [キーワード]XANESスペクトル,プレエッジピーク,3d 遷移金属,電気双極子遷移, 電気四重極遷移

1. はじめに

X線吸収スペクトルの吸収端付近では電子の多重散乱,空準位への遷移など複雑な 現象が起こっている.吸収端直後の光電子の運動エネルギーは小さく,原子の作るポ テンシャルから束縛を受けること,空準位は配位子,対称性,原子価状態等,化学環 境に大きく影響されることからXANESスペクトルは数 程度までの幾何学的構造に 敏感である.3d遷移金属のK-edge XANESスペクトルでは吸収端の前に現れるピーク (プレエッジピーク)の特性が対称性や価数により変化することは古くから知られて いた¹⁾.たとえば1949年にはマンガン化合物のXANESスペクトルに観察されるプレ エッジピーク強度(当時は white line と記述されている)が配位環境によって著しく 異なること,酸化状態により吸収端がシフトすることが Hanson らによって示されて いる²⁾.このピークは1924年にCosterが KMnO4のX線吸収スペクトルの吸収端前に 見出したことが最初の報告であるとされており³⁾,バナジウム化合物ではピークおよ び吸収端のエネルギーが価数と比例関係にあることがWong らによって示されてい る⁴⁾.Fig.1は近年 Farges らによってまとめられた配位数の異なるチタン酸化物の

Fig.1 Ti K-edge XANES spectra of titanium oxides containing four (a), five (b) and six coordinated Ti (c). (Reprinted from F.Farges *et al.*⁵⁾, "Coordination chemistry of Ti(IV) in silicate glasses and melt. 1. XAFS study of titanium coordination in oxide model compounds" *Geochim. Cosmochim. Acta*, **60**, 3023, © 1996, with permission from Elsevier.)

XANESスペクトル, Fig.2はプレエッジピークのエネルギーおよび高さをプロットしたものである⁵⁾.彼らはモデル構造のFEFF計算を行い,四配位化合物のプレエッジ ピークが五配位化合物より2.5倍強く2eV低いところに出現すること,六配位化合物 では強いプレエッジピークは観察されないことを示し⁵⁾,さらに鉄⁶⁾やニッケル⁷⁾化 合物についても同様の関係を導いている(ただし鉄化合物ではピークエネルギーはシ フトしない).このように配位数とプレエッジピーク強度に相関があることは周知の 事実である.

この特徴的なプレエッジピークは理論研究のみならず,他の方法では構造決定が 困難である触媒や環境試料など多くの系のキャラクタリゼーションに利用されてき た⁸⁻¹¹⁾.一例としてチタン含有ゼオライトTS-1中のチタン配位数と気体との相互作 用についてBordigaらが検討した結果をFig.3に示す¹²⁾.この試料はシクロへキサノ ンとアンモニアからナイロン原料であるシクロへキサノンオキシムを合成する工業

Fig.3 Ti K-edge XANES spectra of Ti-incorporated zeolite TS-1 outgassed at 400 K (a), followed by dose of NH₃ (b), after adsorption-desorption procedure of NH₃ at room temperature (c), and TiO₂ (anatase) (d). (Reprinted with permission from S.Bordiga *et al.*¹²), *J. Phys. Chem.*, 98, 4125, © 1994 American Chemical Society.)

プロセスなど,部分酸化触媒として幅広く利用されているものである.400 K で脱 気した試料のプレエッジピークは非常に大きく,二酸化チタン(アナタース)との 違いは一目瞭然である.このピークはアンモニアガス導入により小さくなり,排気 するとある程度の強度まで回復する.一連の変化は四配位であるチタン種にアンモ ニアニ分子が吸着して六配位となり,再び真空にすると一分子が脱離して五配位と なっていると解釈される.この結果は EXAFS 解析結果からも支持されている.

プレエッジピーク強度の変化は構造相転移の研究にも応用されている 圧電素子と して利用される強誘電体 PbTiO₃ は室温では正方晶であり 763 K 以上で立方晶へと相 転移する. Miyanaga らは測定温度を制御した PbTiO₃の XAFS 測定を行い,低温では 二本のプレエッジピーク強度が強く 転移温度以上ではその強度が減少することを明 らかにした¹³⁾. チタンと鉛の EXAFS 解析結果とあわせて,相転移には変位型と秩序 - 無秩序型が混在する機構を提案している.

ではこのプレエッジピークは何に帰属されるのであろうか.3d 遷移元素 K-edge XANESに観察されるプレエッジピークを1s-3d遷移とのみ記述している論文は現在で も多く出版されている.1s電子の励起を考えた場合,3d軌道への遷移は電気双極子禁 制であるものの四重極遷移は許容である、対称性が低下するあるいは四面体配位では p軌道が混成して禁制が解けた結果プレエッジピーク強度が増加すると記述されてい ても,禁制が解ける意味,実際に混成しているのか,どの軌道へ遷移しているのか等 について言及している,あるいは適切な文献を引用している報告はまれである XAFS が物性評価の有効な手段として手軽に利用できるようになりつつある現在,特に化学 状態の変化に敏感なXANESスペクトルは今後一層の利用の拡大が予想されるにもか かわらず,観察されるピークの起源についてあいまいに取り扱われ、誤解も多いこと が問題である.そこで本総説では3d遷移金属のK吸収端XANESスペクトルに観察さ れるプレエッジピークに焦点をしぼり,その強度および帰属について解説した.まず 元素ごとに代表的なスペクトルを文献から抜粋し,群論,偏光実験および理論計算結 果についてまとめた.

2. X 線吸収の概略

まずX線吸収による内殻電子の非占有軌道への遷移について簡単に記す.X線吸収 の遷移モーメントには電気双極子遷移,電気四極子遷移および磁気双極子遷移の項が 存在するが,磁気双極子遷移は無視しうるほど小さい¹⁴⁾.またEXAFSの解析には電 気双極子遷移のみを考慮した双極子近似が一般的に利用されているが,XANESスペ クトルの解釈には電気四重極遷移も重要となってくる¹⁴¹⁶⁾.とはいえ電気四重極遷移

Fig.4 The shape of typical atomic orbitals.

の遷移確率は電気双極子遷移と比較して著しく弱く、たとえば銅の1s吸収では振動子 強度がおよそ1000分の1であることがKawai¹⁷⁾、Blairら¹⁸⁾により報告されている. 電気双極子遷移では、その遷移確率は遷移モーメント $\langle \Psi_f | er | \Psi_i \rangle$ の二乗に比例する. この遷移モーメントが値をもつためには被積分関数が変数全体で偶関数でなければならない.電子の位置ベクトルrはp軌道と同じ対称性を持つ関数であること、s,p,d 軌道(Fig.4)はそれぞれ偶、奇、偶関数であることからs-p遷移は許容、s-d遷移は禁制であることは明らかである。各軌道の球面調和関数を実際に代入して計算すると電気双極子遷移の許容条件($\Delta j = 0 \pm 1$, $\Delta l = \pm 1$)が得られる.

3. 群論

群論に基づいたプレエッジピークの帰属はXANESスペクトルがKronig構造と呼ば れていた 1950 年代にすでに Cotton らにより提案されている ¹⁹⁾. 先に 1s から d 軌道へ の遷移確率は p 軌道への遷移と比較して著しく低いと述べたが, d と p 軌道が混成し た分子軌道を形成すれば現実的に観察可能な吸収を示すようになる 分子軌道は同じ 対称型の原子軌道のみから構成されることから 群論の指標表でそれぞれの軌道の対 称性を確認すると容易に混成の可能性を評価することができる 指標表はアトキンス 物理化学²⁰⁾やシュライバー無機化学²¹⁾などに代表的なものが記載されており、Harris の教科書²²⁾にはさらに詳しく70種類掲載されている.指標表の利用方法はKawaiが 解説¹⁷⁾しているが,改めてTa,Ob,Dabの三種類の対称性について例として示す.こ の三種類のd軌道準位をFig.5に,指標表からpおよびd軌道の対称要素を抜粋した ものを Table 1 に示す. T₄では同じ対称性を持つことから t₅軌道に p 軌道成分が混成 可能であるのに対し,O_bでは同じ対称性を持つp,d軌道は存在しないことがわかる. 従って定性的にはT_dのプレエッジピークにはd軌道への電気四重極遷移に加えてp軌 道への電気双極子遷移成分が加算されるため、その強度はO₅よりも大きくなることが 期待される .D₄,ではe。軌道が混成可能であるが ,該当するpとd軌道は直交している ためにプレエッジピーク強度の増加に結びつかないと予想される.

重要な点は1s軌道のp-d混成軌道への電子双極子遷移を考えた場合,遷移先は3d軌 道ではなく混成軌道のp成分であることである^{14,17,23)}.軌道全体の波動関数は中心原

Fig.5 Crystal field splitting of d-orbitals with different symmetries.

Table 1 Lists of character tables.			
T_d		O_h	D_{4h}
	p d	p d	p d
A_1	$x^{2} + y^{2} + z^{2}$	$A_{lg} \qquad x^2 + y^2 + z^2$	$A_{lg} \qquad x^2 + y^2, z^2$
A_2		A_{2g}	A_{2g} R_z
Е	$(2z^2-x^2-y^2, x^2-y^2)$	E _g $(2z^2 - x^2 - y^2, x^2 - y^2)$	$\mathbf{B}_{1g} \qquad \qquad x^2 - y^2$
T_1	(R_x, R_y, R_z)	$T_{1g} (R_x, R_y, R_z)$	B _{2g} xy
T_2	(x, y, z) (xz, yz, xy)	T _{2g} (<i>xz, yz, xy</i>)	$E_g (R_x, R_y) (xz, yz)$
		A _{1u}	A _{lu}
		A_{2u}	A _{2u} z
		Eu	B_{1u}
		T_{1u} (x, y, z)	B_{2u}
		T_{2u}	E_u (x, y)

Table 1 Lists of character tables

子のp,d軌道や配位子のp軌道などの線形結合で表すことができ,遷移モーメントの 積分計算では1sからp,dなど各軌道への遷移の和となることは自明である.このと き選択律を満たさない遷移モーメントはゼロとなり,許容遷移である軌道のみへ電気 双極子遷移が起こるのである.つまりd軌道への電気双極子遷移はT_d対称性でも起こ らないのである.電気双極子遷移が起こる場合には必ず同じエネルギーに電気四重極 遷移が観察されるがその強度は小さい.

4. 理論計算

先の項ではプレエッジピークの遷移について群論である程度の知見が得られること を述べた.しかし完全な対称性をもつ物質は稀有であり,第一近接が完全な対称性で も第二近接以遠や格子振動まで考慮すると厳密な対称性にはならない Fig.1(c)のよう に実際のXANESスペクトルのプレエッジピークは物質によっては三本以上観察され ることがあり,ピーク帰属を正確に行うためには理論計算が必要となる.近年は XANES理論の発展が著しく,特に1990年代後半以降は実際のスペクトルをプレエッ ジ領域から吸収端後数十 eV まで比較的精度よく再現することが可能となり,電気双 極子,四重極遷移を分割した計算例も多数報告されている.

XANESの理論計算には主に分子軌道論的なアプローチとEXAFSの多重散乱理論を 低エネルギーに拡張する方法が提案されている¹⁵⁾.前者の代表例としては密度汎関数 法,差分法,DV-Xα,IVO法,後者はFEFF等が挙げられる.電子状態計算の問題点 は高エネルギーでの基底関数のとり方が不十分であること 散乱理論の問題点はマッ フィンティン近似(全体のポテンシャルが原子核を中心とする球対称のものと,半径 外の平らなポテンシャルから形成されるとする近似法)ではFermiレベル以下のピー クを記述できないことなどが横山により指摘されている¹⁵⁾.日本ではEXAFS解析の 理論計算ソフトとしてRehr教授により開発された多重散乱理論に基づくFEFFが主に 利用されているが,最新版のFEFF8では状態密度や電気四重極遷移などが計算可能と なりXANES計算の精度が飛躍的に向上した²⁴⁾.FEFF8のマニュアルは日本 XAFS 研 究会により訳されホームページ²⁵⁾上に公開されているのでそちらも参照されたい.

5. 3d 遷移金属の XANES スペクトル

5.1 配位数依存性

最も興味があることは配位数によるプレエッジ強度の変化や元素による変化の傾向 であろう.群論よりXANESスペクトルのプレエッジピーク強度は四面体配位物質の 方が八面体配位のものより強くなることが予想されており実際チタン化合物では顕 著に観察されている(Fig.1).各元素の配位数の影響についてこれまで個々に報告さ れているが,改めて全体的な傾向を眺めるために4および6配位のスペクトルを中心 に文献より抜粋してFig.6から14に示した.この項で示したスペクトルでは配位子や 原子価,対称性には特にこだわらず,その詳細は5.2項以降で解説する.

3d 遷移金属の最初の元素であるスカンジウムでは,Linqvist-Reisにより種々の三価 錯体の測定が行われている(Fig.6)²⁶⁾. プレエッジピークは六,八配位化合物で小さ く,七配位化合物のものが最も強かった.六配位化合物ではプレエッジピークの分裂 が観察され,t_{2g},e_gへの遷移に対応すると考察されている.計算化学的なアプローチ は行われていないが,群論から考えて電気四重極遷移に基づくものであろう.チタン 化合物のスペクトルはFig.1に示したとおり,四配位化合物のプレエッジピーク強度 は著しく強い.配位数が大きくなるとピーク強度は減少し,六配位化合物では3本の ピークが観察されている.続く元素としてバナジウム化合物(Fig.7)はYoshidaら²⁷⁾,

Fig.6 Sc K-edge XANES spectra of trivalent compounds. S1: $[Sc(OH_2)_8](CF_3SO_3)_3$, S2: $[Sc(OH_2)_6](CIO_4)_3$, S3: $[Sc(OH_2)_6]$ $[Sc(OSO_2CH_3)_6]$, S4: $[Sc(OH_2)_4 (C_7H_7SO_3)_2]$ $C_7H_7SO_3 \cdot 2H_2O$, S5: $[Sc_2 (\mu - OH)_2(OH_2)_{10}]Br_4 \cdot 2H_2O$, L1: $Sc(CIO_4)_3$ in HCIO₄ aqueous solution. (P.Linqvist-Reis *et al.*²⁶), *Dalton Trans*, 3868 (2006). Reproduced by permission of The Royal Society of Chemistry.)

Fig. 7 V K-edge XANES spectra of vanadium compounds. (Reproduced from S. Yoshida and T.Tanaka²⁷⁾, in "X-Ray Absorption Fine Structure for Catalysts and Surfaces", Chapter 8.2, pp. 304-325, Ed. Y.Iwasawa, © 1996 World Scientific.)

クロム化合物(Fig.8)はFujidalaら²⁸⁾,マンガン化合物(Fig.9)はYamamotoら²⁹⁾の測 定結果をそれぞれ示す.いずれの元素でも四配位化合物のプレエッジピークはチタン化

Fig. 8 Cr K-edge XANES spectra of chromium compounds. (Reprinted from K.L.Fujdala and T.D.Tilley²⁸), "Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane", *J. Catal.*, **218**, 123, © 2003, with permission from Elsevier.)

Fig.9 Mn K-edge XANES spectra of authentic compounds.

合物と同程度に強く、、六配位化合物では弱い、四配位クロム化合物では価数によりプレ エッジピークの形状が異なり、原子価が高いほうがピークエネルギーと強度が高く、半 価幅も小さい、特筆すべきは六配位化合物MgV2O6のプレエッジピークの高さである、チ タン、クロム、マンガン化合物と比べると著しく高く、同じ六配位化合物であるNa6V10O28 も同程度の強度であることがTanakaらにより示されている³⁰⁾.しかしすべてのバナジウ ム六配位化合物のプレエッジピークがこのように強いわけではなく、VO2(ルチル型構 造)やV2O3(コランダム型構造)ではチタン化合物と同程度の強度となる、

Fig.10 Fe K-edge XANES spectra of high-spin Fe(III) complexes compounds with 4, 5 and 6-fold coordination. (Reproduced from A.L.Roe *et al.*³¹), *J. Am. Chem. Soc.*, 106, 1676, © 1984 American Chemical Society.)

3d 遷移金属も VIII 族以降になると傾向は一変する.Fig.10 は Roe らにより報告された 配位数の異なる鉄三価高スピン錯体の XANES スペクトルである³¹⁾.配位数が4から6へ 増加するとプレエッジピーク強度が減少する点は同じであるが,四配位化合物のピーク 強度はこれまで示したチタン,バナジウム,クロムおよびマンガンと比較して極端に小 さい.これは鉄化合物が錯体であるためではなく,三価の複合酸化物^{32,33)} やゼオライト 系³²⁾の試料でも同程度のプレエッジ強度であることがBordiga らが測定したスペクトル から判断することができる.その一方で六価鉄化合物SrFeO4の規格化されたプレエッジ ピーク強度は0.55 と高いことが田中によって示されている³⁴⁾.また Farges に報告された 種々の四面体配位二価マンガン化合物のピーク強度³⁵⁾はKMnO4より著しく低い.結論と してプレエッジピーク強度はd電子密度と関連しており,これについては次項で論ずる. 鉄と同じ VIII 族元素としてコバルト化合物はRodriguez ら(Fig.11)³⁶⁾, ニッケル化合

Fig.11 Co K-edge XANES spectra of divalent compounds. (Reproduced from J.A.Rodriguez et al.³⁶), J. Phys. Chem. B, 102, 1347, © 1998 American Chemical Society.)

物はFarges (Fig.12)⁷⁾らが測定したスペクトルを示す.鉄化合物と同様,四配位でも プレエッジピーク強度は小さく, 六配位化合物はさらに小さい. Yamamoto らによっ て報告された銅化合物(Fig.13)³⁷⁾ではさらに小さく、痕跡程度となる(ただしCuAl₂O₄ 中に含まれる銅種の四配位, 六配位の割合はそれぞれ 66.5, 33.5%). 3d 軌道が完全 に充填されている亜鉛化合物では六配位化合物だけではなく 四配位化合物のスペク トルにもプレエッジピークは観察されない(Fig.14). 亜鉛六配位化合物の XANES ス ペクトルは古くはCottonにより数多く測定されているが³⁸⁾.いずれもプレエッジピー クは確認されない。

5.2 d 電子数依存性

先にクロム、マンガンおよび鉄のプレエッジピークでは同じ四配位化合物でも酸化 数によってプレエッジピーク強度が異なることを示した 強いプレエッジピークが観 察された物質はいずれも高原子価,d軌道の電子密度は低い化合物である,元素種に よるプレエッジピーク強度の変化はすでGarciaらによりまとめられ,原子番号ととも にピーク強度が減少する傾向が示されているが,原子価は考慮されていない100.そこ でd軌道の電子密度とプレエッジピーク強度の関係を明らかにするため,四面体に近 い対称性をもち 結合元素が酸素である化合物のピーク高さを文献から読み取ってま とめた(Fig.15).d⁰化合物の強度が最も高く,d電子数とともに単調に減少してd¹⁰で ゼロとなる.d²化合物のFe⁶⁺およびCr⁴⁺は類似したピーク高さを示し,元素種や酸化 数によらずピーク強度はd電子数に依存することは明らかである .なおピークの半価 幅や実験条件などによる分解能の影響は考慮していない .ピーク強度とd電子数との 関係からプレエッジピークは3d軌道への遷移を観察していると誤解しがちであるが, 先にも述べたように1s-3d遷移はいかなる場合でも電気双極子的には禁制である.こ の場合はd電子が少なければp-d混成軌道中のp成分が空である確率が高くなるので ピーク強度が増大すると考えられる.ところで塩化物()のプレエッジピーク高さ)より低い傾向を示した,これは測定条件が異なることよりも物質自身 は酸化物(の空軌道の広がりによる影響が大きいと考えられる.たとえば Farges らが報告した 種々のチタン酸化物のピーク半価幅はおよそ0.8-0.9eV²⁾であるのに対し,Georgらが

Fig.15 Dependence of preedge peak height of tetrahedral compounds on the number of d-orbital. Ti⁴⁺: ref.5 (chloride: ref.40), V⁵⁺: ref.30, Crⁿ⁺: ref.39, Mn²⁺: ref.35, Mn⁷⁺: ref.29, Fe^{2,3+}: ref.6 (chloride: ref.23), Fe⁶⁺: ref.34, Co²⁺: ref.36, Ni²⁺: ref.7, Cu²⁺: ref.44, Zn²⁺: this work.

測定した塩化チタンの場合は読み取り値で半価幅 1.6 eV40) である.

今度は六配位化合物として岩塩型構造の二価酸化物を取り上げる.この場合でもd 軌道中の電子数が増加するとピーク強度が低下することはTanakaらによって解説され ている^{27,41)}.電気四極子遷移であるプレエッジピークにはt_{2g},e_g軌道への結晶場分裂 が確認され,d⁸である酸化ニッケルでは低エネルギー側の軌道が充填されるために ピークは一本となる.これら岩塩型化合物のプレエッジピークが電気四重極遷移であ ることは,たとえばModrowらによるFEFF計算において CoO や MnO の d-DOS のネ ルギー領域にp成分がほとんど存在しないことからも裏付けられる⁴²⁾.またVedrinskii らはNiO の電気四重極遷移のエネルギー位置が電気双極子遷移よりも約4 eV 低いこ とを理論計算より示し,プレエッジピークは電気四重極遷移成分のみであると結論し ている⁴³⁾.

5.3 対称性依存性

対称性を考慮せずにプレエッジピーク 強度のみで配位数を評価することは極め て危険である、繰り返すがプレエッジ ピーク強度が強くなる原因はd-p混成に 伴い吸収断面積の大きいp軌道成分への 電気双極子遷移が生じるためである 同 じ四配位でもその物質の対称性により形 成する分子軌道が異なることは自明であ り 当然プレエッジピーク強度も変化す る.SanoらはCl-Cu-Cl 二面角の異なる 種々の[CuCl₄]² 四配位銅錯体の XANES スペクトルを測定し、プレエッジピーク 強度と分子軌道との関係について検討し た44).Fig.16は種々の二面角を持つ錯体 のスペクトルであり,平面四配位(0°) では 8974 eVのプレエッジピークは痕跡 程度であった このピークは二面角とと もに大きくなり、この強度は計算より求 められた $\langle \Psi_{p} | \Psi_{L} \rangle^{2} \langle \Psi_{d} | \Psi_{L} \rangle^{2}$ と良い相 関を示すことが見出された、すなわち

Fig.16 Cu K-edge XANES spectra of $[CuCl_4]^{2-}$ compounds with different dihedral angles between the two Cl-Cu-Cl planes. Cl-1: $[(C_6H_5) CH_2CH_2NH_2CH_3]_2CuCl_4$, Cl-2: $[Pt(en)_2Cl_2] CuCl_4$, Cl-3: (N-phenyl-piperazinium)_2CuCl_4, Cl-4: Cs_2CuCl_4. (Reprinted with permission from M. Sano *et al*⁴⁴⁾, *Inorg. Chem.*, **31**, 459, © 1992 American Chemical Society.) 四配位化合物であればプレエッジピークが強いという考えは極めて短絡的であること がわかる.尚8985 eV付近の強いピークは終状態効果により分裂した4pπの低エネル ギー側のピークであり,Kosugi,Yokoyamaらにより詳細に検討されている⁴⁵⁾.

対称性とプレエッジピーク強度の関係は鉄錯体で特に詳しく検討されている. Westreらは49種類の鉄錯体のXANESスペクトルに観察されるプレエッジピーク強 度およびエネルギーを価数,スピン状態,対称性,配位子,核数ごとに分類した²³⁾. さらにDFT計算からd軌道のエネルギー準位を求め,群論に基づいてプレエッジ ピーク中の電気双極子,四重極遷移強度を見積もった.Fig.17はWestreら²³⁾により 対称性ごとにまとられた3d軌道への4p成分の混入割合の計算結果である.この場 合も実際に観察されるプレエッジピーク強度と4p成分の割合には良好な相関関係が あり,Roeらが28種類の鉄錯体について報告した結果³¹⁾と一致している.すなわ ちプレエッジピークが強くなるのは電気双極子遷移成分の増加と対応しているわけ である.

ところで Westre らは $[FeCl_6]^{3-}$ の z 軸方向の結合距離を変えたときの $3d_z^2$ 中への $4p_z$ の混成割合を求める計算を行った²³⁾. Fe-Cl 距離が 2.1-2.6 では $4p_z$ 成分は存在しなかったが,それより短くても長くても $4p_z$ 性が混入する結果を得ている.計算に用いたクラスターの結合距離が記載されていないので詳細は不明であるが, Fe³⁺(高スピン)と Cl⁻のイオン半径の和は 2.46 であるので,対称性が O_h から C_{4v} となると p 性が増加することとなる.このときのエネルギー準位とプレエッジピークのWestreらに

Fig.17 Dependence of symmetry and valence of iron species on calculated total Fe 4p mixing into 3d molecular orbital. (Reproduced from T.E.Westre *et al.*²³⁾, *J. Am. Chem. Soc.*, 119, 6297, © 1997 American Chemical Society.)

Fig.18 Qualitative molecular orbital analysis based upon density functional final state calculations of ferric complexes. Dotted arrows: electric quadrupole transitions; solid arrows: electric dipole + quadrupole transitions. (Reprinted from T.E.Westre *et al.*²³⁾, *J. Am. Chem. Soc.*, 119, 6297, © 1997 American Chemical Society.)

よるシミュレーション結果を Fig.18 に示す²³⁾. C_{4v} の指標表²⁰⁻²²⁾から p と d 軌道が同 じ対称型をもつものは $a_1 (p_z \ge d_z^2)$, $e(p_{x,y} \ge d_{xzyz})$ であることがわかる. a_1 は軌道の 方向が重なるので容易に混成が起こるが, e では軌道の重なりは大きくない. その結 果, a_1 へは p 成分への電気双極子遷移(実線)が起こり, a_1 を含んだその他の d 軌道 へは電気四重極遷移(点線)が起こると説明された. この計算ではピークのエネル ギーがたとえ同じ対称性でも結合長によって変化することを示しており興味深い.

5.4 偏光実験

s 軌道以外はすべて軌道に異方性があり,偏光 XAFS 測定を行えばピークの帰属を より正確に行うことができる¹⁴⁻¹⁶⁾. Fig.19はPenner-Hahnらによって測定された平面四 配位 [CuCl₄]²⁻ユニットを持つ錯体の xy 面に対する偏光 XANES スペクトルおよびプ レエッジピーク強度の角度依存性である⁴⁶⁾. ピーク強度は90°周期で変化し,0°で最 も弱く45°で最も強かった.したがってこのピークは1sからd^{2,2,2}への電気四重極遷移 であると結論された.d 軌道への遷移であるにもかかわらずプレエッジピーク強度が ほぼゼロとならないことに関し,振電相互作用(格子振動によって電子状態が変化す る効果)により誘起された電気双極子遷移成分が起こるとし,その割合は1/3 である と提案している.

平面四配位である $[Ni(CN)_4]^2$ - 錯体 (D_{4h})の XANES スペクトルには強いプレエッジ ピークが観察される.Kosugiらはその偏光スペクトルにおいて,平面と垂直方向(z) には強いピークが観察されるが,平行方向(z)にはかすかなピークが観察され

Fig.19 The polarized Cu K-edge XANES spectra for [CuCl₄]²⁻ and rotation angle dependency of the preedge-peak intensity. (Reprinted from J. E. Hahn *et al.*⁴⁶), "Observation of an Electric Quadrupole Transition in the X-ray Absorption-Spectrum of a Cu(II) Complex ", *Chem. Phys. Lett.*, **88**, 595, © 1982 with permission from Elsevier.)

Fig.20 Polarized Ni K-edge XANES spectra of $K_2Ni(CN)_4$ ·2H₂O single crystal and the powder spectrum. The z-axis is normal to the $[Ni(CN)_4]^2$ · xy plane. (Reprinted from N. Kosugi *et al.*⁴⁷), "Polarization dependence of XANES of square-planar $[Ni(CN)_4]^2$ · ion - A comparison with octahedral $[Fe(CN)_6]^4$ - and $[Fe(CN)_6]^3$ · ions ", *Chem. Phys.*, **104**, 449, © 1986, with permission from Elsevier.)

るのみである結果を得た (Fig.20)⁴⁷⁾. 同じ研究グループの Hatsui らにより , z で観察された小ピーク A は Ni $3d_{x-y}^{2,2*} - L_{x-y}^{2,2}$ (5s)への電気四重極遷移 , z 場での強い ピーク B₁ および B₂ はそれぞれ Ni 4p_z* + L_z*(2 π *) , Ni 4p_z* - L_z*(2 π *)への電気双極子

遷移であることが示された^{16,48)}. すなわち粉体試料に観察されるプレエッジピークは 主に電気双極子遷移によるものであり,四重極遷移成分はわずかに混入するにとど まっている.ところで粉体で観察されたBピークは二種類の分子軌道への電気双極子 遷移B₁ と電気四重極遷移A ピークが同じエネルギーのところに現れたにすぎず,四 面体配位(T_d)のプレエッジピークの場合とは異なる.これは偏光スペクトルを測定 することで初めて明らかとなったものである.

次は特定の結合に局在したプレエッジピークの特性を明らかにしたV₂O₅の偏光ス ペクトル測定の例を示す.Fig.7に示すとおりV₂O₅には強いプレエッジピークが観察 される.このピークはV3dとO2pの軌道から形成される混成軌道への遷移である ことがTullius ら⁴⁹⁾, Wong ら⁴⁾, Tanaka ら³⁰⁾等により提案されていた.この解釈は Grunes ら⁵⁰⁾, Poumellec ら⁵¹⁾によるチタン化合物の強いプレエッジピーク吸収に対す るものと同じである.Fig.21はSiprらによって測定されたV₂O₅単結晶の偏光XAFSス ペクトルと実空間多重散乱法による理論計算結果である⁵²⁾.y およびx方向のスペク トルは70倍に拡大しており,z方向にのみ著しく強いピークが出現していることがわ かる.また計算結果ではd軌道への電気四重極遷移成分はxyz方向いずれにも確認さ れたが,バナジル基(V=O)が配向しているz軸方向のみ,p_z軌道への遷移強度が

Fig.21 Polarized V K-edge XANES spectra of V_2O_5 single crystal, and calculated dipole and quadrupole contributions. The z-axis is set to the direction of vanadyl oxygen. (Reprinted with permission from O. Sipr *et al.*⁵²⁾, *Phys. Rev. B*, **60**, 14115, © 1999 by the American Physical Society.)

Fig.22 Polarized XANES spectra of TiO₂ (rutile) single crystal, results of theoretical calculations, and p_z projected density states on Ti atom. Bottom: (ɛ, k)=([110],[110]), Top: (ɛ, k)=([001],[110]). Quadrupolar (q) and dipolar (d). (Reprinted with permission from Y. Joly et al.⁵⁵), Phys. Rev. Lett., 82, 2398, © 1999 by the American Physical Society.)

際立って強かった.同時に行われたV2O5の局所構造をモデルとしたVO6ユニット(バ ナジル基の反対側に位置するV-Oは結合距離が他より長いためVO5ユニットとして扱 われる場合が多い)から酸素原子を減じたVOxユニット(x=1-4)シミュレーション では,z軸方向に短い結合距離の酸素原子が存在したときのみ強いピークが現れるこ とが示された.このことからプレエッジピークは主にバナジル基に由来する電気双極 子遷移によるものであり、四重極遷移成分はわずかに混合しているにすぎないことが 結論された.これに関連して,Poumellecらはバナジウムの局所構造がV2O5と類似し ているVOPO4·2H2OのXANESスペクトルと理論計算に同様の偏光依存性を見出して いる⁵³⁾.

最後に二酸化チタンのプレエッジピークに関する研究を述べる Fig.1に示されると おりルチルなど六配位のチタン酸化物ではピークが三本に分裂している 八面体配位 であれば3d軌道は配位子場によりt_{2g}およびegと二本に分裂するはずであり,三本の ピークが出現する理由については諸説が提案され統一した見解は得られていなかっ た⁵⁴⁾ Jolyらはルチル型二酸化チタン単結晶の偏光XANESスペクトル測定およびfinite difference method 法による計算を行い,スペクトル全体を再現するとともに三本のプ レエッジピークの帰属をすべて説明可能な結果を得た⁵⁵⁾.プレエッジ部分を拡大した ものがFig.22であり,ここには電気四重極遷移,双極子遷移の寄与をそれぞれ分離し て示している.かれらは同時に FLAPW 法でバンド計算を行い,Ti 2p₂軌道がA2,3 のエネルギー位置に存在すること,A1にはp軌道性が含まれないことを示している. 以上よりピークA1は電気四重極遷移、A2は電気四重極遷移と双極子遷移の混合状態、 A3は純粋な電気双極子遷移であることが明らかとなった。

6. おわりに

以上3d 遷移金属のK 殻XANESのプレエッジピークに関する研究例をまとめた.プ レエッジピークは対称性,元素種,価数を問わずd軌道へは電気四重極遷移が,d-p混 成軌道のp成分には電気双極子遷移が起こることを解説した.この混成軌道形成の可 否は対称性に支配され,群論の指標表を利用することで簡単に調べることが可能であ る特に偏光スペクトルは軌道の方向を反映することからピーク帰属には強力な手段 となり,理論計算との併用は極めて有効である.

本解説で述べたことは決して新しいことではなく、これまで提案されてきたもので ある.Westreらはわずか数%のp成分の混合が1s-3d 遷移とされるプレエッジピーク の特徴に多大な影響を与える²³⁾と述べているが、ここで紹介した以外にもK殻 XANESスペクトルー般にあてはまることである.1s電子の3d軌道への遷移は電気双 極子禁制であり、たとえp-d混成軌道が形成されてもd軌道へは電気四重極遷移がお こるのみである.プレエッジピーク強度に対する電気双極子、四重極遷移の寄与の大 きさは、たとえばチタン⁴⁰⁾や鉄化合物^{23,33)}についてそれぞれ実測スペクトルに重ね て示しているのでわかりやすいかと思う.

この10年間の理論の発展によりXANESの解析精度は著しく向上した.複雑なピークの帰属も進み,プレエッジピークの電気双極子遷移,四重極遷移に関しても精密な解析が可能となってきた.今後は物性と分子軌道との関連性について,より踏み込んだ研究として発展することを期待したい.

謝 辞

本原稿を執筆するきっかけを与えてくださり、ご指導いただいた京都大学工学研究 科河合潤教授に深く感謝いたします、分子科学研究所横山利彦教授には河合教授を介 して文献を多数ご紹介およびコメントをいいただいたことに感謝いたします.

参考文献

- 1) U.C.Srivastava, H.L.Higam: Coord. Chem. Rev., 9, 275 (1973) and references cited therein.
- 2) H.Hanson, W.W.Beeman: Phys. Rev., 76, 118 (1949).
- 3) D.Coster: Z. Phys., 25, 83 (1924).
- 4) J.Wong, F.W.Lytle, R.P.Messmer, D.H.Maylotte: Phys. Rev. B, 30, 5596 (1984).

- 5) F.Farges, G.E.Brown Jr., J.J.Rehr: Geochim. Cosmochim. Acta, 60, 3023 (1996); F.Farges, G.E. Brown Jr., J.J.Rehr: Phys. Rev. B, 56, 1809 (1997).
- 6) W.E.Jackson, F.Farges, M.Yeager, P.A.Mabrouk, S.Rossano, G.A.Waychunas, E.I.Solomon, G.E. Brown: *Geochim. Cosmochim. Acta*, **69**, 4315 (2005).
- 7) F.Farges, G.E.Brown Jr., P.-E.Petit, M.Munoz: Geochim. Cosmochim. Acta , 65, 1665 (2001).
- 8) J.C.J.Bart: Adv. Catal., 34 203 (1986).
- 9) M.L.Peterson, G.E.Brown, G.A.Parks, C.L.Stein: Geochim. Cosmochim. Acta, 61 3399 (1997).
- 10) M.F.Garcia: Catal. Rev., 44, 59 (2002).
- 11) 太田俊明 編: "X線吸収分光法 -XAFS とその応用-", (2002), (アイピーシー).
- 12) S.Bordiga, S.Coluccia, C.Lamberti, L.Marchese, A.Zecchina, F.Bosherini, F.Buffaf, F.Genoni, G.Leofanti, G.Petrini, G.Vlaic: *J. Phys. Chem.*, **98**, 4125 (1994).
- 13) T.Miyanaga, K.Sato, S. Ikeda, D.Diop: Recent Res. Dev. Phys., 3, 641 (2002).
- 14) C.Brouder: J. Phys. Condens. Matter., 2, 701 (1990).
- 15) 横山利彦: "X線吸収分光法 -XAFS とその応用-",太田俊明 編, p.7-53 (2002), (アイピー シー).
- 16) 初井宇記:総合研究大学院大学学位論文(1999).
- 17) J.Kawai: Absorption Techniques in X-ray Spectrometry, in "Encyclopedia of Analytical Chemistry", R.A. Meyers (Ed.) pp.13288-3315 (2000), (Wiley, Chichester).
- 18) R.A.Blair, W.A.Goddard: Phys. Rev. B, 22, 2767 (1980).
- 19) F.A.Cotton, C.J.Ballhausen: J. Chem. Phys., 25, 617 (1956); F.A.Cotton, H.P.Hanson: *ibid*, 25 619 (1956).
- 20) 千原秀昭, 中村亘男訳: "アトキンス物理化学(上)", 第六版 (2001), (東京化学同人).
- 21) 玉虫伶太,佐藤弦,垣花眞人訳: "シュライバー無機化学(上)"原著第二版 (1996),
 (東京化学同人).
- 22) D.C.Harris, M.D.Bertolucci: "Symmetry and Spectroscopy ", (1978), (Dover Publications, New York).
- 23) T.E.Westre, P.Kennepohl, J.G.DeWitt, B.Hednman, K.O.Hodgson, E.I.Solomon: J. Am. Chem. Soc., 119, 6297 (1997).
- A.L.Ankudinov, B.Ravel, J.J.Rehr, S.D.Conradson: *Phys. Rev. B*, 58, 7565 (1998); A.L.Ankudinov,
 C.Bouldin, J.J.Rehr, J.Sims, H.Hung: *Phys. Rev. B*, 65, 104107 (2002).
- 25) http://msmd.ims.ac.jp/jxs/jyouhou.html
- 26) P.Linqvist-Reis, I.Person, M.Sandstrom: Dalton Trans, 3868 (2006).
- 27) S.Yoshida, T.Tanaka: "X-Ray Absorption Fine Structure for Catalysts and Surfaces", Ed. Y. Iwasawa, Chapter 8.2, pp. 304-325 (1996), (World Scientific, Singapore).
- 28) K.L.Fujdala, T.D.Tilley: J. Catal., 218, 123 (2003).
- 29) T.Yamamoto, T.Tanaka, S.Takenaka, S.Yoshida, T.Onari, Y.Takahashi, T.Kosaka, S.Hasegawa, M.Kudo: J. Phys. Chem. B, 103, 2385 (1999).
- 30) T.Tanaka, H.Yamashita, R.Tsuchitani, T.Funabiki, S.Yoshida: J. Chem. Soc., Faraday Trans. 1, 84, 2987 (1988).

- 31) A.L.Roe, D.J.Schneider, R.J.Mayer, J.W.Pyrz, J.Windom, L.Que Jr.: J. Am. Chem. Soc., 106, 1676 (1984).
- 32) S.Bordiga, R.Buzzoni, F.Geobaldo, C.Lamberti, E.Giamello, A.Zecchina, G.Leofanti, G.Petrini, G.Tozzola, G.Vlaic: J. Catal., 158, 486 (1996).
- 33) M-A.Arrio, S.Rossano, C.Brouder, L.Galoisy, G.Calas: Europhys. Lett., 51, 454 (2000).
- 34) 田中庸裕:触媒, 35, 41 (1994).
- 35) F.Farges: Phys. Rev. B, 71, 155109 (2005).
- 36) J.A.Rodriguez, S.Chaturvedi, J.C.Hanson, A.Albernoz, J.L.Brito: J. Phys. Chem. B, 102, 1347 (1998).
- 37) T.Yamamoto, T.Tanaka, S.Suzuki, R.Kuma, K.Teramura, Y.Kou, T.Funabiki, S.Yoshida: *Topic*. *Catal.*, 18, 113 (2002).
- 38) F.A.Cotton, H.P.Hanson: J. Chem. Phys., 28, 83 (1958).
- 39) A.Pantelouris, H.Modrow, M.Pantelouris, J.Hormes, D.Reinen: Chem. Phys., 300, 13 (2004).
- 40) S.D.Georg, P.Brant, E.I.Solomon: J. Am. Chem. Soc., 127, 667 (2005).
- 41) 田中庸裕,吉田郷弘:"固体表面分析I",大西孝治,堀池靖浩,吉原一紘編, pp.147-195 (1995),(講談社サイエンティフィク).
- 42) H.Modrow, S.H.Bucher, J.J.Rehr, A.L.Ankudinov: Phys. Rev. B, 67, 35123 (2003).
- 43) R.V.Vedrinskii, V.L.Kraizman, A.A.Novakovich, S.M.Elyafi, S.Bocharov, T.Kirchner, G.Drager: *Phys. Stat. Solid*, **226**, 203 (2001).
- 44) M.Sano, S.Komorita, H.Yamatera: Inorg. Chem., 31, 459 (1992).
- 45) T.Yokoyama, N.Kosugi, H.Kuroda: Chem. Phys., 103, 101 (1986); 小杉信博:放射光, 2, 1 (1989).
- 46) J.E.Hahn, R.A.Scott, K.O.Hodgson, S.Doniach, S.R.Desjardins, E.I.Solomon: *Chem. Phys. Lett.*, 88, 595 (1982).
- 47) N.Kosugi, T.Yokoyama, H.Kuroda: Chem. Phys., 104, 449 (1986).
- 48) T.Hatsui, Y.Takata, N.Kosugi: J. Synchrtron Radiat., 6, 376 (1999).
- 49) T.D.Tullius, W.O.Gillum, R.M.K.Carlson, K.O.Hodgson: J. Am. Chem. Soc., 102, 5670 (1980).
- 50) L.A.Grunes: Phys. Rev. B, 27, 2111 (1983).
- 51) B.Poumellec, P.J.Durham, G.Y.Guo, F.Orsay: J. Phys. Cond. Matter., 3, 8195 (1991).
- 52) O.Sipr, A.Simunek, S.Bocharov, T.Kirchner, G.Drager: Phys. Rev. B, 60, 14115 (1999).
- 53) B.Poumellec, V.Kraizman, Y.Aifa, R.Cortes, A.Novakovich, R.Vedrinskii: *Phys. Rev. B*, 58, 6133 (1998).
- 54) L.A.Grunes: *Phys. Rev. B*, 27, 2111 (1983); B.Poumellec, F.L.Langel, J.Marucco, B.Touzelin: *Phys. Stat. Sol.*, 133, 371 (1986); B.Poumellec, J.F.Marucco, B.Touzelin: *Phys. Rev. B*, 35 2284 (1987);
 R.Brydson, H.Sauer, W.Engel, J.M.Thomas, E.Zeitler, N.Kosugi, H.Kuroda: *J. Phys.*, 1, 797 (1989);
 M.FRuizlopez, A.J.Munozpaez: *J. Phys. Cond. Mater*, 3, 8981 (1991).
- 55) Y.Joly, D.Cabaret, H.Renevier, C.R.Natoli: Phys. Rev. Lett., 82, 2398 (1999).