ノート

四国山岳地帯土壌浸出水のハンディ液体電極プラズマ 発光分析装置を用いる分析

山本 $\mathbb{Z}^{\mathbb{R}^1}$, 黑谷 功², 山下 歩美³, 河合 潤⁴, 今井 昭二¹

1 緒 言

著者らは四国山岳地帯の河川源流に含有される無機成分 について地質との関連性を見いだしており、Caの溶存成 分比が四国を東西に走る断層中央構造線及び仏像構造線に 挟まれた地域で高くなることを報告している¹⁾²⁾.より詳細 に水質の地理的分布を理解するためには異なる地質からの 溶出成分を検討することが重要であり、また土壌からの浸 出水を試料採取現場で元素分析を行うことが望ましい.

北陸先端大高村らの研究グループにより開発された液体 電極プラズマ発光分析法^{3)~5)}は、電解質溶液を満たしたマ イクロチップに直流高電圧を印加すると水蒸気の気泡が生 じ、その気泡中に生じたプラズマにより溶液中に含まれる 元素から原子固有の発光線が放出されることを利用した新 しい分光分析手法である.狭い流路中でのマイクロプラズ マや気泡の生成は Io ら⁶⁾により観察されており,酸性溶液 中では pH がより低くなると発光線強度が増大するこ と³⁾⁷⁾,ジルコニア中の微量 Na の定量分析への試み⁸⁾等が 報告されている、本原理に基づくハンディタイプの元素分 析装置は開発者らにより 2007 年に商品化されており⁵⁾, 認 証汚染土壌中のPb⁴⁾,水中のCd⁹⁾,市販飲料中のNa,K¹⁰⁾¹¹⁾ の分析などへの利用が報告されている.本装置は単三乾電 池6本で駆動可能かつ軽量であることからオンサイト分析 への利用も期待されており、高感度化、精度向上に加え、 自動前濃縮装置を組み込んだ複合システムの開発などに関 する研究が行われている.

本ノートでは当ハンディ元素分析装置を土壌浸出水の現 場分析を行う際の予備的検討として,四国山岳地帯の土壌 を採取し,塩酸による土壌抽出水の分析に用いるための測 定条件,精度及び確度,溶出成分の地質との関係について 検討を行った結果について報告する.

2 実 験

四国山岳地帯の土壌試料として、中央構造線と仏像構造 線の中間に走る断層御荷鉾構造線南端に位置し、地質区 分¹²⁾¹³⁾の境界付近に位置する高知県大豊町梶が森周辺の山 岳地帯 8 か所 (Fig. 1),表層から 5~20 cm 程度の深さの 土壌を採取した. 土壌浸出溶液は 353 K で 12 時間乾燥させ た試料 10gに 1M HCl 25 mL を加え振盪し,室温下 1 時間 静置後,上澄みを孔径 0.22 µm のシリンジフィルターで沪 過して作成した. 試料溶液の発光スペクトル測定はハン ディ元素分析装置 MH-5000 (マイクロエミッション製)を 用い, 樹脂製発光容器 LepiCuve-02 に試料 40 μL を入れ, 印加電圧 600 V, パルス幅 3 ms オン-5 ms オフ, 10 パルス 積算の設定で行った.1試料につき10回の繰り返し測定を 行い, Na, K, Mg, Ca, Mn, Fe 及びHの発光線強度の 平均値を解析に供した. 土壌酸溶出溶液は適宜ミリQ水で 希釈し, 偏光ゼーマン原子吸光光度計 Z-5300(日立製作所 製),¹⁰³Rh 内標準で ICP-MS にサーモフィッシャーサイエ ンティフィック製マイクロミストネブライザー(0.1 mL min⁻¹), 電子冷却式チャンバー (276 K) 及び CCT を装備 した X-Series2 型 ICP-MS,及び同社製 iCAP6500DUO 型 ICP-AES によるアキシャル測光を用いた. 測定条件は炎光 分析法 (FA) 及びフレーム原子吸光法 (FAAS) については Table 1 に, ICP-MS 及び ICP-AES については Table 2 にま とめた. 分析線波長及び m/z 値は測定結果をまとめた Table 3 中に示した.

3 結果と考察

まず, 試料溶液の液体電極プラズマ発光スペクトル (LEP-AES) 測定に適した条件検討を行った. Fig. 2 に 1M HCl 及び土壌の酸溶出液の発光スペクトルに対する印可電 E依存性を示す. Banno ら⁸⁾が既に報告しているとおり, 印可電圧の上昇とともに発光強度が増加した. Fig. 2 (a) の 1M HCl 水溶液では,印可電圧 600 V までは OH の分子 発光及び H の原子発光線が観察されるのみであった.印可 電圧 700 V 以上では樹脂製容器由来と考えられる CH, C₂ の発光線が多数観察され,特に 1000 V でその傾向は顕著で

 ¹ 徳島大学大学院ソシオ・アーツ・アンド・サイエンス研究部:
 770-8502 徳島県徳島市南常三島町 1-1

² 德島大学大学院総合科学教育部地域科学専攻: 770-8502 徳島 県徳島市南常三島町 1-1

³ 徳島大学総合科学部: 770-8502 徳島県徳島市南常三島町 1-1

⁴ 京都大学大学院工学研究科材料工学専攻:606-8501 京都府京 都市左京区吉田本町

Fig. 1 Geological map of around Mt Kajigamori in the central Shikoku (a), and sampling area of the soil (b). The geological data was cited from reference¹²⁾.

Element	Na	K	Mg	Ca	Mn	Fe
Method	FA	FA	FAAS	FAAS	FAAS	FAAS
Wavelength/nm	589.0	766.5	285.5	422.7	279.5	248.3
Slit width/nm	0.4	1.3	1.3	1.3	0.4	0.2
Time constant/s	0.1	0.1	0.1	0.1	0.1	0.1
Back ground collection			Zeeman	Zeeman	Zeeman	Zeeman
Response	Emission	Emission	Absorption	Absorption	Absorption	Absorption
Signal collection	Integration	Integration	Integration	Integration	Integration	Integration
Dray time/s	5.0	5.0	5.0	5.0	5.0	5.0
Integration time/s	5.0	5.0	5.0	5.0	5.0	5.0
Burner	Standard	Standard	Standard	Standard	Standard	Standard
Flame	C ₂ H ₂ -Air					
Fuel/L mim ⁻¹	2.2	2.4	2.2	2.4	2.2	2.0
$Air/Lmin^{-1}$	15	15	15	15	15	15

Table 1 Operation conditions of Hitachi Z-5700 AAS spectrometer

FA ; Flame Analysis, FAAS ; Flame atomic absorption spectrometry

あった. 土壌酸溶出液のスペクトルには OH の分子発光及 びHの原子発光線に加えて、様々な溶出元素からの発光線 が重畳した. 以上, 1M HCI 浸出液の分析では、分析対象 元素の発光線強度を高くかつ樹脂製容器由来の発光を抑制 する条件として印可電圧 600 V が適していることが示され た. Banno らは LEP-AES 測定に際し,発光線検出強度は電 圧印可時間が800 μs まで対数関数的に増加することを報告 している⁸⁾. 今回, 10 ppm Na 含有溶液について印可時間 0.5, 1, 2, 3, 5 及び 10 ms の設定で発光スペクトルを測 定したが,発光強度に有意な印可時間依存性は観測されな

Model		X Seri	es-2			iCAP D	UO6500	
Method		ICP-	MS			ICP-	AES	
RF power/W Gas flow/L min ^{-1}		1400	W			120	0 W	
Cooling gas		13.0				12		
Plasma gas		0.80)			0.	.5	
Nebulizer gas		0.84	4			0.	.65	
1% NH ₃ -He CCT gas		6.5						
Detection		Q-M	IS			Optical of	emission	1
		CCT f	or K			·		
		<i>m/</i>	z		3.7	Wavelen	gth/nm	015 000
	Na	23	Ca	44	Na	589.592	Ca	317.933
	K Ma	39 94	Mn Ea	55 56	K Mar	700.490	Mn Ee	257.010
Signal Integration time /a	1 nori	24	ге	50	Avial	265.215	ге	230.204 Redial
Signal integration time/s	i per i	sotope			10	low wave	length	Kaulai 5
					5	high wave	length	5
Sting 2000 OH (C ₂) OH (CH) x 1/8 x 1/8 x 1/8 x 1/3 x 2	C ₂)	(a) 1000∨ 800∨ 700∨ 600∨ 500∨	-	Intensity /arb. units	2000 x 1/5 x 1/5 x 1/5 x 1/3 x 1/3 x 4 x 20	MJh M mh mh mh		(b) 1000\ 800V 700\ 600\ 500' 400'
× 5		400\	*			the for the property of the second	mmunha	~~~~
200 300 400 500 Wavelength	600 700 n/nm	800			200 300	400 500 Wavelengt	600 7 h/nm	700 800

Table 2Operation conditions of ICP-MS and ICP-AES

Fig. 2 Dependency of applied voltage on emission spectra of 1M HCl (a), and typical extracts of soil with 1M HCl. Applied voltage : 600 V.

かった. そこで以降の検討ではすべて印可電圧 600 V, パ ルス 3 ms オン-5 ms オフ, 10 パルス積算の条件で, 発光ス ペクトル測定を行った.

液体電極プラズマ発光分光法では、開発当初から発光線 強度の繰り返し測定に際した変動の大きさが問題として認 識されており、解決策として観測される発光量の総和を一 定とする試みが行われてきた⁵⁾.著者らが行ったハンディ 分析装置による 10 回の繰り返し測定でも後述のとおり、発 光強度は相対標準偏差(R.S.D.%)で数十%程度変動して おり、この強度変動が同時に観察される他の発光線の強度 変動と同期していることを確認した.測定試料は1M HCI により抽出された酸性溶液であり、すべての試料の発光ス ペクトル中にはH原子発光線が観察されている.以上よ り、分析対象元素の発光線強度の連続測定に際した強度変 動は、H原子発光線で規格化することにより低減されるこ とが予想された.本研究において分析対象とした元素中で 高感度及び低感度のものの代表としてそれぞれ Na 及び Ca、Fe の発光線について、Fig. 3 (a), (b) に 10 回の連続 測定により得られた強度の平均値及び, Hの原子発光線強度(656.3 nm)により規格化した値で作成した検量線をそれぞれ示す.各元素の発光線強度のばらつきが, Hの発光線で規格化することにより低減していることは明らかである.Na原子線の発光強度の濃度依存性について独立に5回検討したところ,感度係数の相対標準偏差は10%以下であった.以上,個々の測定では発光強度のばらつきは大きいものの10回の平均値を採用することにより簡易定量が可能であること, H原子線を内部標準として利用することにより30~50%程度のR.S.D.%を約20%まで低減可能であることが分かった.

Fig. 4 に土壌浸出水の発光スペクトル示す. Ca 及び Mg の溶出量は,地質図で御荷鉾緑色岩地帯と分類される箇所 で採取した土壌試料(Entry 1~3)からが特に多く,泥質 片岩地帯及び珪質片岩地帯で採取した他の地点では本条件 での検出下限程度(Ca: 50 ppm, Mg: 5 ppm)であった. また Fe の発光線はすべての土壌試料から, Mn は珪質片岩 地帯の一部(Entry 4, 6, 7)以外の土壌試料から検出され

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPPARS FIP-ARS FIP-ARS <t< th=""><th></th><th></th><th></th><th></th><th>Na Na</th><th>(maa)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>K (1</th><th>(mag</th><th></th><th></th><th></th><th></th></t<>					Na Na	(maa)									K (1	(mag					
I.FP.AES FA' ICPA6' ICPA6' I.FP.AES Teb.5 nm Teb	IF PALSi ICPARSi					DAT	(IIIIdd) I									4	(mdr					
580.0 mm 580.0 m 580.0 m 766.5 mm 766.5 mm 766.5 mm 766.5 mm 780.1 m 790.5 mm <	S80.0mm S80.0mm $m_{cl} = 23$		LE	P-AES			FA^{a}	ICP-	MS^{h}	ICP	-AES ^e		LEP	-AES		H	٩°	ICP-	MS^{h}	ICP-	AES ^e	
			58:	9.0 nm		580	.0 nm	m/z	= 23	589.5	$92\mathrm{nm}$		766.	5 nm		766.	5 nm	m/z	= 39	766.49	00 nm	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	8.S.D.%	H-in ¹	R.S.D.%	bare	R.S.D.%	103 Rh-in 2	R.S.D.%	bare	R.S.D.%	bare	R.S.D.%	H-in	R.S.D.%	pe	ure	¹⁰³ Rh-in	R.S.D.%	bare	R.S.D.%	
			37	4.5	19	4.9	0.2	6.1	2.8	6.0	0.2	17	33	18	18	60	9	29.0	0.9	27.2	0.3	
14 23 17 46 37 17 37 17 56 0.7 20 40 0.4 50 10.7 10 35 0.7 10 35 37 17 68 27 20 40 0.4 50 12 55 0.7 10 35 88 18 68 1.3 34 2.5 0.5 3.1 5.4 3.6 0.3 38 8 18 68 1.3 34 2.5 0.5 3.1 5.4 3.6 0.3 30 34 68 1.3 34 1.8 8.7 1.8 1.1 1.1 1.1 4 4 55.5 10 1.3 1.1 m/r 1.1 1.2 1.1 1.2 1.1 1.4 1.1 4 1.1 55.5 10 1.3 1.7 1.1 1.4 2.5 1.1 1.2 1.1	4 2.3 7 4 0 51 6.3 5.3 5.0 6.3		31	3.1	21	4.5		5.8	2.3	5.6	0.4	29	31	26	23	ъ	6	47.6	1.8	44.6	0.4	
	6 7 5 1 6 1 3 7 0 33 1 33 0 33 31 34 13 7 0 33 34 13 7 0 13 7 0 13 7 0 13 7 0 13 7 0 13 7 0 13 7 0 11 1	-	44	2.3	17	4.0		5.1	0.7	5.3	2.0	43	45	37	17	~	6	65.2	0.8	62.5	1.5	
	3 2 0 4 0 4 5 1 1 1 3 1		56	0.7	25	1.8		2.5	6.8	2.5	0.5	18	45	13	13	4	1	33.7	0.2	31.4	0.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 20 30 33 40 41		35	2.7	20	4.0	0.4	5.0	1.2	5.5	0.7	160	35	88	18	13	6^{d}	113	0.4	114	1.0	
68 0.8 17 1.4 0.4 1.8 8.7 1.7 1.1 1.1 4.4 8.6 1.8 49 1.3 34 2.5 0.5 3.1 5.4 3.6 0.8 42 49 30 34 1 I.EPAES FAAS ⁴ ICPARS ⁵ ICPARS ⁶ ICPARS ⁶ Hin R.S.D.% Hin	9 0 1		33	2.0	20	3.0	0.3	3.8	4.0	4.2	0.3	18	28	13	11	с0	5	26.4	1.5	27.0	0.2	
49 1.3 34 2.5 0.0 3.1 5.4 3.0 0.8 42 49 30 34 2.5 0.0 34 2.5 0.0 34 20 34 20 34 20 34 34 34 30 34	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	68	0.8	17	1.4	0.4	1.8	8.7	1.7	1.1	11	44	8.6	18	61 1	ۍ م	18.1	1.3	15.8	0.8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFPAE Ca (ppm) Ca (ppm) Ca (ppm) IFPAE FAAS TCPARS FAAS CCPARS 286.2 nm Model TCPARS TCPARS <th colsp<="" td=""><td></td><td>49</td><td>1.3</td><td>34</td><td>2.5</td><td>0.5</td><td>3.1</td><td>5.4</td><td>3.6</td><td>0.8</td><td>42</td><td>49</td><td>30</td><td>34</td><td>2</td><td></td><td>58.6</td><td>1.7</td><td>61.6</td><td>0.4</td></th>	<td></td> <td>49</td> <td>1.3</td> <td>34</td> <td>2.5</td> <td>0.5</td> <td>3.1</td> <td>5.4</td> <td>3.6</td> <td>0.8</td> <td>42</td> <td>49</td> <td>30</td> <td>34</td> <td>2</td> <td></td> <td>58.6</td> <td>1.7</td> <td>61.6</td> <td>0.4</td>		49	1.3	34	2.5	0.5	3.1	5.4	3.6	0.8	42	49	30	34	2		58.6	1.7	61.6	0.4
LIEPAES FAAs ¹ ICPARs ¹ ICPAEs ² LEPAEs 422,7 mm 4 285.2 mm $m/z = 24$ $m/z = 24$ $285.2 m$ $m/z = 24$ $285.2 m$ $422,7 m$ $422,7 m$ $422,7 m$ 4 8.5.0.% Hin R.5.0.% bare $R.5.0.\%$ $m/z = 24$ $285.2 m$ $422,7 m$ $423,7 m$	LEP-AES FAAS ICP-ARS' ICP-ARS' <th< td=""><td></td><td></td><td></td><td></td><td>ЗW</td><td>g (ppm)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ca (</td><td>ppm)</td><td></td><td></td><td></td><td></td></th<>					ЗW	g (ppm)									Ca (ppm)					
285.2 mm 285.2 mm $m/z = 24$ 285.2 mm $422.7 mm$ 4 RS.D.% H-in R.S.D.% bare R.S.D.% h-in H-in H-in H-in H-i	285.2 mm $m/z = 24$ $m/z = 24$ $285.2 {\rm mm}$ $m/z = 44$ $317.33 {\rm mm}$ RS.D.% in RS.D.% in $m/z = 74$ $m/z = 24$ $317.33 {\rm mm}$ $m/z = 85.D.\%$		LE	P-AES		E	AAS ^f	ICP.	-MS ^h	ICP	-AES ^e		LEP	-AES		FA	AS ^f	ICP-	MS^h	ICP-	AES ^e	
R.S.D.% H-in R.S.D.% int R.S.D.% H-in R.	R.S.D.% int R.S.D.% int <t< td=""><td></td><td>28.</td><td>5.2 nm</td><td></td><td>285</td><td>6.2 nm</td><td>z/m</td><td>= 24</td><td>285.2</td><td>13 nm</td><td></td><td>422.</td><td>$7 \mathrm{nm}$</td><td></td><td>422.</td><td>7 nm</td><td>z/m</td><td>= 44</td><td>317.95</td><td>$33 \mathrm{nm}$</td></t<>		28.	5.2 nm		285	6.2 nm	z/m	= 24	285.2	13 nm		422.	$7 \mathrm{nm}$		422.	7 nm	z/m	= 44	317.95	$33 \mathrm{nm}$	
36 281 17 224 0.4 211 0.4 206 0.7 2385 35 1069 21 2256 35 205 30 200 188 0.5 186 0.5 810 34 694 28 63 40 16 13 17 ^b 17 0.7 16.3 0.2 nd nd 6 9 28 15 30 61 0.1 50 1.2 104 nd 6 6 28 15 42 0.1 12 1.1 12.5 0.3 nd 12' 474 28 15 42 0.3 35.5 0.9 nd nd 12' 6	36 381 17 234 0.4 211 0.4 201 36 0.5 360 0.4 361 0.5 361 0.4 363 0.1 363 361 363 361 363 361	دە	R.S.D.%	H-in	R.S.D.%	bare	R.S.D.%	¹⁰³ Rh-in	R.S.D.%	bare	R.S.D.%	bare	R.S.D.%	H-in	R.S.D.%	bare	R.S.D.%	¹⁰³ Rh-in	R.S.D.%	bare	R.S.D.%	
	35 30 30 30 36 0.5 186 0.5 810 34 694 28 623 21 1078 0.4 1073 0.90 0.4 40 16 17 0.5 166 1.5 567 0.4 nd 0.4 0.57 0.3 10.1 59 0.4 10.7 0.90 0.4 29 17 0.1 59 0.5 166 1.2 0.3 0.4 125 29 0.4 0.4 125 29 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 126 0.5 0.4 0.4 0.4 0.4 125 29 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.9 0.4 0.5 0.5 0.5 0.5 0	~~	36	281	17	224	0.4	211	0.4	206	0.7	2385	35	1969	21	2256	0.4	2304	0.5	2257	0.7	
	451820360.5360.536.70.4ndndnd0.3370.4170.70.310680.3291010231210531212nd06.7"1.10.16.41.10.1281512170.51261.2ndnd0.46.1"1.16.41.21.20.3821512110.11360.45350.30.3nd0.40.48251200.51561.2ndndnd9.71.11.547.11.38251100.13550.3ndndnd1.41.41.41.50.3825710103550.3ndndnd1.21.50.310680.3825750.m3550.3ndnd248.3 m248.3 m248.3 m1.11.27248.3 m15279.5 mmm/z55237.610 m248.3 m248.3 m248.3 m1.18.5.0.%1.11.261.281.21.241.2415279.5 mm/z55237.610 m248.3 m248.3 m248.3 m1.11.291.11.291.11.24163737372751.18.5.0.%H-iR.		35	205	30	200		188	0.5	186	0.5	810	34	694	28	623	2.1	1078	0.4	1073	0.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 10 25 11 0.6 12 10.7 12 10.6 11 11 64 12.5 22 28 15 12 17 ^b 17 12 15.6 12 10 10 11 64 125 22 28 5 10 35.5 0.9 0.1 35.5 0.9 nd 11 64 12.5 22 27 20 10 10 10 10 11 14 14 0.9 279.5 10 35.5 0.9 nd 36 14 50 16 14 14 14 14 14 279.5 10 m/t 11 R.D.W bare R.S.D.% Hin R.S.D.% ICP-MS*		45	18	20	$^{36}_{10}$	0.5	36	1.5	36.7 16.2	0.4	pu		pu		9.3° 6.1°		84	1.3	90.9 171	0.4 7	
	28 15 12 17 12 15 12 17 12 15 12 11 64 125 29 27 10 61 11 64 125 29 01 57 30 61 0.1 59 0.4 59.4 0.3 nd nd 8.7 ^h 15 29 27 30.9 0.1 87 15 9 0.1 55.5 0.9 nd nd 8.7 ^h 17 14 14.4 0.3 15 41 8.50 0.9 nd nd nd 8.7 ^h 15 29 0.1 12.5 29.5 0.1 12.5 16.9 12.5 16.9 12.5 248.3 nm m/z = 56 238.204 nm 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7	. .	0f 66	103	5 F	191	0.6	196		196	10	531	94	509	19	474	1 0	1057	7.1 0.3	1068	0.8	
	82 57 30 61 0.1 59 0.4 50.3 0.3 nd nd 87 ⁵ 1.5 29 2.7 30.9 0.1 57 15 42 31 ^b 36 1.0 35.5 0.9 nd nd 87 ⁵ 1.5 29 2.7 30.9 0.1 1 AAS ISPAR 35.5 0.9 nd nd nd 1.2 ^o 41 0.3 30.5 29.5 AAS ICPAR* ICPAR* ICPAR* ICPAR* 1.6 30.5 1.6 30.5 <td></td> <td>5 78 78</td> <td>15</td> <td>12</td> <td>17^b</td> <td></td> <td>17</td> <td>1.2</td> <td>15.6</td> <td>1.2</td> <td>pu</td> <td>ſ</td> <td>pu</td> <td>2</td> <td>6.1^b</td> <td></td> <td>11</td> <td>6.4</td> <td>12.5</td> <td>2.2</td>		5 78 78	15	12	17 ^b		17	1.2	15.6	1.2	pu	ſ	pu	2	6.1 ^b		11	6.4	12.5	2.2	
	57 15 42 31 ^b 36 10 35.5 0.9 nd nd 12 ^b 41 1.4 41.4 0.3 1 FAMS FAMS ICP-MS ^b ICP-MS	~	82	57	30	61	0.1	59	0.4	59.4	0.3	pu		$\mathbf{p}\mathbf{u}$		$8.7^{\rm b}$	1.5	29	2.7	30.9	0.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn (ppm)FAASICP-MS ^h ICP-MS ^h ICP-AES ^c IEP-AESFAAS ^f ICP-MS ^h RS.D. ϕ JdbJdbJdbJdbJdbZdbJdbJdbRS.D. ϕ JdbJdbZdb <td>~ </td> <td>57</td> <td>15</td> <td>42</td> <td>31^b</td> <td></td> <td>36</td> <td>1.0</td> <td>35.5</td> <td>0.9</td> <td>pu</td> <td></td> <td>pu</td> <td></td> <td>12^b</td> <td></td> <td>41</td> <td>1.4</td> <td>44.4</td> <td>0.3</td>	~	57	15	42	31 ^b		36	1.0	35.5	0.9	pu		pu		12 ^b		41	1.4	44.4	0.3	
I.F.P.A.E. FAAS ICP-MS ^h ICP-AES ^e L.F.P.A.E. 279.5 mm 279.5 mm $m/z = 55$ 257.61 0 mm 248.3 mm 2 8.S.D.% H-in R.S.D.% bare $m/z = 55$ 257.61 0 mm 248.3 mm 2 49 496 35 262 ^e 264 0.3 262 0.5 1509 43 1164 25 37 305 344 171 0.6 172 0.6 1089 44 855 23 1294 47 167 27 341 ^e 342 0.8 349 0.4 937 40 744 19 177 47 167 27 341 ^e 342 0.8 349 0.4 937 40 744 19 177 47 167 27 643 0.6 937 40 744 19 177 46 756 28 0.5 0.5 0.6 9010	I.F.P.AES FAAS I.C.P.MS ^h I.C.P.MS ^h I.C.P.MS ^h I.C.P.MS ^h I.C.P.MS ^h I.C.P.AES ^h 279.5 mm $m/z = 55$ $m/z = 55$ 276.10 mm 248.3 mm $m/z = 56$ 38.204 mm 279.5 mm $m/z = 55$ 276.10 mm 248.3 mm $m/z = 56$ 38.204 mm R.S.D.% hin R.S.D.% bare $R.S.D.\%$ bare $R.S.D.\%$ $m/z = 50$ 38.204 mm 49 96 35 262^{\dagger} 05 922 05 1090° 911° 1320° 01° 920° 02 921° 021° 921° 021° 922° 021° 923° 021° 923° 01° 920° 021° 923° 01° 923° 021° 923° 01° 923° 011° 729° 117° 120° 121° 121° 121° 121° 1212° 1212° 1212°					Mr	(mqq) r									Fe (ppm)					
279.5 nm 279.5 nm 279.5 nm $m/z = 55$ 257.610 nm 248.3 nm 2 R.S.D.% H-in R.S.D.% bare $m/z = 55$ 257.610 nm 248.3 nm 2 R.S.D.% H-in R.S.D.% bare $R.S.D.\%$ bare $R.S.D.\%$ H-in $R.S.D.\%$ bare $R.S.D.\%$ $Part 2 Part Part = Part$	279.5 mm279.5 mm $m/z = 55$ 257.610 mm $m/z = 55$ 238.204 mm R.S.D.%H-inR.S.D.%bare $m/z = 55$ $238.20.4 \text{ mm}$ $m/z = 56$ 238.204 mm R.S.D.%H-inR.S.D.%bare m^2 R.D.%bare $R.S.D.%$ bare $R.S.D.%$ <td></td> <td>LE</td> <td>P-AES</td> <td></td> <td>F</td> <td>AAS</td> <td>ICP.</td> <td>$-MS^{h}$</td> <td>ICP</td> <td>$-AES^{e}$</td> <td></td> <td>LEP</td> <td>-AES</td> <td></td> <td>FA</td> <td>AS^{f}</td> <td>ICP-</td> <td>MS^{h}</td> <td>ICP-</td> <td>AES^e</td>		LE	P-AES		F	AAS	ICP.	$-MS^{h}$	ICP	$-AES^{e}$		LEP	-AES		FA	AS^{f}	ICP-	MS^{h}	ICP-	AES ^e	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R.S.D.%H-inR.S.D.%bare 103 Rh-inR.S.D.%bareR.S.D.%H-inR.S.D.%bareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.%BareR.S.D.		27:	9.5 nm		279).5 nm	z/m	= 55	257.(10 nm		248.	3 nm		248.	3 nm	z/m	= 56	238.2()4 nm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	د ۵	R.S.D.%	H-in	R.S.D.%		bare	¹⁰³ Rh-in	R.S.D.%	bare	R.S.D.%	bare	R.S.D.%	H-in	R.S.D.%	bare	R.S.D.%	¹⁰³ Rh-in	R.S.D.%	bare	R.S.D.%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3730534170 ⁶ 1710.61720.61089448552312960.812530.612340.64716727341 ⁶ 3420.83490.4937407441917721.117291.717460.32775624577 ⁶ 0.392.50.392.50.328833261138250.87680.17590.42775624577 ⁶ 6320.56430.6901288082012830.713270.81d7.8 ^b 260.527.31.01983521857413979 ⁶ 0.939060.839980.713270.81d17.8 ^b 2660.527.31.01983521857413979 ⁶ 0.939060.839980.713270.81d1d17338928282860.939060.839980.713270.81d1d17338928282860.939060.829660.8201071001079060.21d1d1370.3389289282860.226961.0329660.82010.821083660.82740	-	49	496	35	54	262^{f}	264	0.3	262	0.5	1509	43	1164	25	1366	1.1	1329	0.1	1306	0.1	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>.</i> ~	37	305	34	-	170 ^f	171	0.6	172	0.6	1089	44	855	23	1296	0.8	1253	0.6	1234	0.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	47	167	27	0.1	341^{f}	342	0.8	349	0.4	937	40	744	19	1772	1.1	1729	1.7	1746	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\mathbf{p}\mathbf{u}$			وم ^ه	92	0.3	92.5	0.3	288	33	261	13	825	0.8	768	0.1	759	0.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		27	756	24	т,	577"	632	0.5	643	0.6	901	28	808	20	1283	0.9	1338	0.7	1327	0.8	
nd 44° 46 0.9 48.3 0.6 344 73 389 28 980	nd 44^{b} 46 0.9 48.3 0.6 344 73 389 28 986 0.8 911 0.7 906 0.2 66 303 50 518 ^b 608 0.9 627 0.3 1271 52 1108 36 2402 ^g 0.2 2696 1.03 2740 0.3 dH inner standard method, 2; ¹⁰³ Rh inner standard. Analyzed sample solution was diluted with Milli-Q water ^a (1:5), ^b (1:10), ^c (1:25), ^d (1:50), ^e (1:100), ^f (1:200), ^g (1:400) and			pu			7.80	26	0.5	27.3	1.0	1983	52	1857	41	3979^{8}	0.9	3906	0.8	3898	0.7	
	$\frac{66 303 50 518^{b} 608 0.9 627 0.3 1271 52 1108 36 2402^{8} 0.2 2696 1.03 2740 0.3 11000 1000 $			nd			44 ^b	46	0.9	48.3	0.6	344	73	389	28	986	0.8	911	0.7	906	0.2	
66 303 50 $518^{\rm b}$ 608 0.9 627 0.3 1271 52 1108 36 240:	1 H inner standard method, 2; 103 Rh inner standard. Analyzed sample solution was diluted with Milli-Q water $^{a}(1:5)$, $^{b}(1:10)$, $^{c}(1:50)$, $^{d}(1:50)$, $^{e}(1:100)$, $^{f}(1:200)$, $^{g}(1:200)$, $^$	÷	66	303	50	к,	518 ^b	608	0.9	627	0.3	1271	52	1108	36	2402^{g}	0.2	2696	1.03	2740	0.3	

1128

BUNSEKI KAGAKU

Vol. 59 (2010)

ノート 山本, 黒谷, 山下, 河合, 今井 : 四国山岳地帯土壌浸出水のハンディ液体電極プラズマ発光分析装置を用いる分析 1129

Fig. 3 Calibration curves of Na, Ca and Fe emission lines (a), and ones normalized with a H-emission line. (b).

Fig. 4 Emission spectra of leaching solution from soils at the sampling point 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and 8 (h) with 1M HCl. Applied voltage : 600 V.

た. 御荷鉾緑色岩は Mg 及び Ca に富んだ塩基性片岩であ ることが広く知られており¹⁴⁾¹⁵⁾,本スペクトルも地質と矛 盾しない結果を示した.

Table 3 に FA, FAAS, ICP-MS 及び ICP-AES 法による分 析値とともに定量分析結果を示す. 試料溶液は Entry 1, 2, 4,5が茶色, Entry 3, 6,8がこげ茶色, Entry 7 が淡黄色 を呈していた.本 LEP-AES 法による分析では濃厚な抽出原 液をそのまま測定に供しており,土壌の 1M HCI 抽出液に は有機物の一部が溶出し¹⁶⁾,有機物及び無機塩類の組成, 濃度等が試料間で異なることが予想される.しかし FA, FAAS 及び ICP-AES 法において Na を除き分析対象元素濃度 が高く,試料溶液は高倍率希釈して測定に供されるため, 標準添加法やマトリックスマッチングは行わなかった. Table 3 中には, FA 及び FAAS 法における Na, Mg, Ca 及 び Fe 定量分析精度も相対標準偏差として示している. こ れらの測定法では時定数 1.0 s 及び発光強度及び吸光度を5 秒間積分したために R.S.D.% (n = 3) は 1.5% 以下と良好 であった. ICP-MS 及び ICP-AES 法においても, 少々の例 外を除き R.S.D.% (n = 3) は良好であった. LEP-AES で は, 試料によっては分析値が FA, FAAS, ICP-MS 及び ICP-AES 法による測定値との差が 60% を超えるものが存在す るものの, Na, K, Mg, Ca の測定値は既往の分光分析法 による測定値からおよそ $\pm 50\%$ 以内の結果が得られた. また各発光線の実強度と H 原子線を内部標準として解析 した分析値は $\pm 25\%$ 以内であり, 元素種, 試料に依存する が内部標準法では R.S.D.% がおよそ 40% 向上した.

4 結 言

以上,ポータブル液体電極プラズマ原子発光分光分析装置による四国山岳地帯の土壌塩酸抽出液の定量分析を行い、最適印可電圧 600 V の測定にて地質による溶出成分の 相違を確認した結果を報告した. 試料溶液は酸性水溶液で あり、すべての発光スペクトル中に確認される H 原子発光 線を内部標準として利用することにより各元素の定量精度 が向上した.今回行った土壌塩酸抽出液の簡易元素分析結 果は地質と矛盾しない結果を示しており、かつ既往の FA、 FAAS 及び ICP 法による定量値と比較しておよそ±50% 以 内の分析値を与えた.以上より、本 LEP-AES 法は現場での 土壌浸出水の定性のみならず簡易定量分析にも適用可能で あろう.なお、Table 3 Entry 2、6 の Ca に対する LEP-AES、 FAAS による分析では化学干渉を受けている可能性があり、 LEP-AES 法を説用的に利用するためには更なる研究が必要 である.

謝 辞

四国地質に関する情報,文献をご紹介いただいた徳島大 学大学院ソシオ・アーツ・アンド・サイエンス研究部 村 田明弘教授,西山賢一准教授,ICP-MS及びICP-AESを測 定していただいたサーモフィッシャーサイエンティフィッ ク社に感謝いたします.本研究は(独)科学技術振興機構の 先端計測・機器開発事業の補助により行われた.

文 献

- 1) 今井昭二, 中尾佑子, 黒谷 功: 第70回分析化学 討論会講演要旨集, p. 159 (2009).
- 2) 今井昭二:四万十・流域圏学会誌, 9,63 (2010).
- A. Iiduka, Y. Morita, E. Tamiya, Y. Takamura : 8th Int. Conf. Miniatur. System. Chem. Life Sciences (µTAS2004), Malmö, Sweden, 423 (2004).
- 4) 熊井みゆき,中山慶子,古庄義明,山本 保,高村 禅:分析化学 (Bunseki Kagaku), 58, 561 (2009).
- 5) 山本 保, 高村 禅: ぶんせき (Bunseki), **2009**, 32.
- K. W. Jo, M. G. Kim, S. M. Shin, J. H. Lee: *Appl. Phys. Lett.*, **92**, 011503 (2008).
- 7) H. Wu, J. Yu, J. Li, H. P. Wang, Y. B. Ying : Spectrochim. Acta B, 62, 1269 (2007).
- 8) M. Banno, E. Tamiya, Y. Takamura : Anal. Chim. Acta, 634, 153 (2009).
- 9) S. Kagaya, S. Nakada, Y. Inoue, W. Kamichatani, H. Yanai, M. Saito, T. Yamamoto, Y. Takamura, K. Tohda: *Anal. Sci.*, **26**, 515 (2010).
- 10) E. Hydayanto : Ph D thesis, Kyoto Univ., Japan (2008).
- 山本 孝, 原田博規, 河合 潤, 山本 保, 高村 禅:第70回分析化学討論会講演要旨集, p. 122 (2009).
- 12) 四国地方土木地質図編纂委員会: "四国地方土木地 質図および解説書", (1998),国土開発技術研究セン ター.
- 13)村田明広,前川寛和:自然科学研究 徳島大学総合 科学部,23,73 (2009).
- 14) 森清寿朗:地質雑, 85, 299 (1979).
- 15) M. Sakakibara, R. S. Hori, T. Murakami : J. Geolog. Soc. Jpn, 99, 831 (1993).
- 平井昭二監修: "現場で役立つ環境分析の基礎 水 と土壌の元素分析",日本分析化学会編,(2007), (オーム社).

Elemental Analysis of Leaching Solution from Soils in the Mountain District of Shikoku with a Handy-type Liquid Electrode Plasma Atomic Emission Spectrometer

Takashi YAMAMOTO¹, Isao KUROTANI², Ayumi YAMASHITA³, Jun KAWAI⁴ and Shoji IMAI¹

¹ Institute of Socio-Arts and Sciences, The University of Tokushima, 1-1, Minamijosanjima-cho, Tokushima-shi, Tokushima 770-8502

² Department of Regional Sciences, Graduate School of Integrated Arts and Sciences, The University of Tokushima, 1-1, Minamijosanjima-cho, Tokushima-shi, Tokushima 770-8502

³ Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, 1-1, Minamijosanjima-cho, Tokushima-shi, Tokushima 770-8502

⁴ Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto-shi, Kyoto 606-8501

(Received 26 July 2010, Accepted 3 September 2010)

The elemental analysis of a 1M hydrochloric acid leaching solution from soil samples in the mountain district of Shikoku was carried out by a portable liquid electrode plasma (LEP) atomic emission spectrometer. The contents of Na, K, Ca, Mg, Mn, and Fe were determined, and compared with those by flame photometry, flame atomic absorption spectrometry, ICP-MS and ICP-AES. The 600 V of the applied voltage was found to be suitable for the present sample solution at the use of a sample holder made of resin. The precision of the emission intensities for iterative measurements was improved by a normalization procedure with an emission line from the atomic hydrogen, and the relative standard deviations were ca. 20%. Results of quantitative analysis of soil-extracts by LEP atomic emission spectrometry were discussed based on geological data around the sampling area.

Keywords : liquid electrode plasma atomic emission spectrometry ; soil ; hydrochloric acid extraction ; internal standard.