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contribute to the daily oscillation
of plasma inorganic phosphate concentration
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Circulating inorganic phosphate exhibits a remarkable daily
oscillation based on food intake. In humans and rodents,
the daily oscillation in response to food intake may be
coordinated to control the intestinal absorption, renal
excretion, cellular shifts, and extracellular concentration of
inorganic phosphate. However, mechanisms regulating the
resulting oscillation are unknown. Here we investigated the
roles of the sodium phosphate cotransporter SLC34 (Npt2)
family and nicotinamide phosphoribosyltransferase
(Nampt) in the daily oscillation of plasma inorganic
phosphate levels. First, it is roughly linked to urinary
inorganic phosphate excretion. Second, expression of renal
Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit
a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and
Npt2c knockout mice revealed the importance of renal
inorganic phosphate reabsorption and cellular inorganic
phosphate shifts in the daily oscillation. Third, experiments
in which nicotinamide and a specific Nampt inhibitor
(FK866) were administered in the active and rest phases
revealed that the Nampt/NAD™* system is involved in renal
inorganic phosphate excretion. Additionally, for cellular
shifts, liver-specific Nampt deletion disturbed the daily
oscillation of plasma phosphate during the rest but not the
active phase. In systemic Nampt™’~ mice, NAD levels were
significantly reduced in the liver, kidney, and intestine, and
the daily oscillation (active and rest phases) of the plasma
phosphate concentration was attenuated. Thus, the Nampt/
NAD™ system for Npt2 regulation and cellular shifts to
tissues such as the liver play an important role in
generating daily oscillation of plasma inorganic
phosphate levels.
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with chronic kidney disease (CKD), and is an inde-
pendent risk factor for cardiovascular mortality in
hemodialysis patients."” Serum inorganic phosphate (Pi),
even within the normal range, is associated with cardiovas-
cular events, cardiovascular mortality, and all-cause mortality,
and exhibits a daily oscillation in both healthy individuals
and patients with CKD."” Observational studies assessing
the relationship between dietary intervention and serum Pi
levels are confounded by the lack of standardization
regarding the time of day that serum Pi was assessed.'’ Serum
Pi levels exhibit a well-described daily oscillation in normal
and CKD patients.'' Pi peaks between 02:00 and 04:00
(rest phase), and the lowest levels are detected between
08:00 and 10:00 (active phase).'""* Most epidemiologic
studies have demonstrated that the fasting morning serum
Pi concentration is linked to cardiovascular events and
mortality. The factors regulating this link, however, are not
known.'>'°
Plasma Pi concentrations and renal Pi excretion display
significant daily oscillations in animals'"'’ as well as
in humans.'>'>?""*’ The daily oscillation of plasma Pi levels
in nocturnal rodents (rats) is roughly inverse to that in
humans.'*'”%?* In humans and rodents, plasma Pi levels
are decreased during the active phase and increased in the
resting phase.'”'”""” On the other hand, in humans and
rodents, changes in urinary Pi excretion levels are roughly
the reverse of the changes in the plasma Pi concentra-
tions."*'”*"** Prolonged fasting abolishes the nocturnal peak
in serum Pi,”*** indicating that dietary intake contributes to
the daily changes in serum Pi. Changes in parathyroid hor-
mone (PTH), growth hormone, 1,25(0OH),D3, and fibroblast
growth factor 23 (FGF23) cannot fully explain the daily
oscillation of plasma Pi concentrations.'*'**"*’

I I yperphosphatemia is linked to vascular calcification
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Pi homeostasis is predominantly regulated by sodium-
dependent Pi transporters of the solute carrier family
SLC34, including Npt2a, Npt2b, and Npt2c. Npt2a and Npt2c
are responsible for reabsorption of approximately 70% to
80% of the Pi filtered by the kidney.””" Small intestinal Npt2b
also has an important functional role.””'*’ Serum Pi is a
function of Pi homeostasis as well as the balanced movement
of Pi between intracellular and extracellular spaces.’* Detailed
mechanisms of the cellular Pi shift are unknown, but cellular
energy metabolism (ATP and nicotinamide adenine dinucle-
otide [NAD] ") may be involved in Pi utilization.”® The role of
the SLC34 family in the daily oscillation remains unknown.

In a previous study, we investigated a partial hepatectomy-
induced hypophosphatemia model and found that the nico-
tinamide phosphoribosyltransferase (Nampt)/NAD" system
is important for systematic regulation of Npt2a, Npt2b, and
Npt2c transporters.”® Nampt acts via enzymatic activity to
synthesize nicotinamide mononucleotide and to maintain
homeostasis of NAD, which plays a dual role in energy
metabolism and biologic signaling.””*® We hypothesized that
the Nampt/NAD™ system controls the daily oscillation. Here
we investigated the roles of Npt2 and Nampt in the daily
oscillation of plasma Pi concentrations.

RESULTS

Daily oscillation of plasma Pi levels and urinary Pi excretion in
wild-type mice

First, we investigated the daily oscillation of plasma Pi and
urinary Pi excretion in wild-type (WT) mice. Plasma Pi
levels were lower at 08:00 AM (Zeitgeber time [ZT], light/
dark cycle ZTO, lights on; ZT12, lights off) and gradually
increased, peaking at around ZT10 (Figure 1a). Thereafter,
the plasma Pi concentrations gradually decreased from
ZT10 to ZT18. Renal Pi excretion values were highest from
ZT10 to ZT14 (Figure 1b). Fractional excretion of phos-
phate (FEPi, %) values was highest at ZT14 (Figure 1c). We
used brush border membrane vesicle (BBMV) total protein
as a loading control because actin appears to undergo some
time-of-day variation (data not shown). Renal and intes-
tinal BBMV (20 pg/lane) were analyzed by immunoblot-
ting. SDS-PAGE analysis revealed almost the same protein
levels in each lane. Npt2a protein levels in the BBMVs
gradually decreased from ZT2 to ZT14 and then increased
to ZT22 (Figure 1d). The pattern of Npt2c protein levels
was not as prominent as that of Npt2a. Daily oscillations of
Npt2b protein were similar to those of renal Npt2a
(Figure le).

Renal and intestinal Na/Pi transport activities in the
BBMVs were significantly reduced at ZT14 compared with
ZT2 (Figure 1f). Plasma PTH and FGF23 levels did not
change between ZT2 (rodent rest phase) and ZT14 (rodent
active phase; Figure 1g and h). These findings revealed that
renal Npt2a protein and intestinal Npt2b protein levels
exhibit daily oscillations, like plasma and urinary Pi levels,
independent of the plasma FGF23 and PTH levels.
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Effects of fasting on renal Pi excretion

Next, we investigated the effect of food deprivation on Pi
excretion and plasma Pi levels (Supplementary Figure S1).
Animals were analyzed during food deprivation and
compared with those fed ad Iibitum (Supplementary
Figure S1A). We analyzed 2 groups (feeding group and
food-deprived group) beginning at ZT14 (Supplementary
Figure SIB). In the food-deprived group, urinary Pi excre-
tion levels gradually increased. Plasma Pi levels were signifi-
cantly higher compared with the feeding group in all periods
(Supplementary Figure S1B). The Npt2a protein levels were
markedly  decreased in the food-deprived mice
(Supplementary Figure S1C). These findings suggest that the
daily oscillation of plasma Pi concentrations depends on food
intake, which is consistent with previous ﬁndings.”

Roles of Npt2 in the daily oscillations of plasma and urinary Pi
levels

To investigate whether renal Npt2 proteins are involved in the
daily oscillation of the plasma Pi concentration, we analyzed
the daily oscillations of Npt2a~'~, Npt2a '~ /Npt2c /", and
intestine-specific Npt2b deletion mice (Npt2b™1°*_yCre)
(Figure 2). Food intake behavior did not differ between
groups (Figure 2c). Npt2a~’~ mice have hypophosphatemia
and hyperphosphaturia. During the diurnal phase
(ZT2—ZT10), the increase in the plasma Pi concentration
observed in Npt2a™ " mice was not observed in Npt2a '~
mice (Figure 2a). During the active phase (ZT14—ZT22),
however, the reduced plasma Pi concentration in Npt2a*’*
mice was also observed in Npt2a~'~ mice (Figure 2a). In
contrast, during the active phase, renal Pi excretion levels
were significantly increased in Npt2a~'~ mice and Npt2a*/'*
mice (Figure 2b). Npt2a protein levels in Npt2a™* mice were
markedly decreased at ZT14 compared with ZT2 (Figure 2d).
Npt2c protein levels were highest at ZT2 and ZT14 in
Npt2a~’~ mice. Unlike Npt2a™™ mice, Npt2a~'~ mice
showed no increase in the plasma Pi concentration during the
rest phase (ZT2—ZT10), whereas the plasma Pi concentration
was reduced during the active phase.

We further investigated the role of intestinal Npt2b in
the daily oscillation of plasma Pi concentrations using
Npt2b1¥1*_yCre mice (intestine-specific Npt2b deletion
mice). Npt2b11°*.yCre mice had normal plasma Pi levels,
but decreased renal Pi excretion, as reported previously.”” Our
established Npt2b™1°*_yCre mice, however, had lower
plasma Pi levels than vCre™ (control) mice at only 8 weeks.
Increased plasma Pi concentrations were observed in intes-
tinal vCre™ mice and intestinal Npt2b®*/1°*_yCre mice dur-
ing ZT2 to ZT10 (Figure 2e). Furthermore, plasma Pi
concentrations were reduced during ZT14 to ZT22 in vCre™
mice and Npt2b"1°*.yCre mice (Figure 2e). Urinary Pi
excretion was suppressed in Npt2b™1°*.yCre mice
compared with vCre® mice (Figure 2f). The daily oscillation
pattern of plasma and urine Pi in Npt2b™1°*_yCre mice was
similar to that in intestinal Npt2b vCre™ mice.
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Figure 1| Daily oscillations in inorganic phosphate (Pi) metabolism. Wild-type (WT) mice were maintained under a light-dark regimen (12 h:12
h cycle) and fed ad libitum. Samples were collected every 4 hours from Zeitgeber time (ZT) 2 (10:00). (a) Plasma Pi. (b) Urinary Pi/urinary creatinine
(Cr). (c) Fractional excretion of phosphate (FEPi; %). (a—c) Data are presented as mean + SEM. *P < 0.05, **P < 0.01 (n = 10 each group). (d)
Immunoblotting analysis of Npt2a and Npt2c in renal brush border membrane vesicles (BBMVs) from mice. (e) Immunoblotting analysis of Npt2b in
distal intestinal BBMVs from mice. BBMVs were isolated at ZT2, 6, 10, 14, 18, and 22. White and black bars represent the light and dark phases,
respectively. Values are expressed as the mean 4 SEM (error bars). ZT: 08:00, ZT12: 20:00, n = 10 each group. (d,e) Data are presented as mean + SEM.
*P < 0.05, **P < 0.01 (n = 5 each group). (f) Renal Na/Pi transport activity in mice. Na/Pi transport activity was determined by 32p uptake in kidney
BBMVs. Data are presented as mean + SEM. **P < 0.01 (n = 5-7/group). Intestinal Na/Pi transport activity in mice. Na/Pi transport activity was
determined by **P uptake in distal intestinal BBMVs. Samples were collected from WT mice at ZT2 or ZT14. (g) Serum fibroblast growth factor 23
(FGF23). (h) Plasma parathyroid hormone (PTH). Open column shows ZT2, and closed column shows ZT14. (g,h) Data are presented as mean + SEM
(n = 8-10/group). *P < 0.05, **P < 0.01 (n = 8-10/group). To optimize viewing of this image, please see the online version of this article at www.
kidney-international.org.

Next, we analyzed Npt2a~/~/Npt2c '~ mice. The plasma  Effects of nicotinamide on the daily oscillation of urinary

Pi concentration was markedly decreased and the renal Pi  Pi levels

excretion was conversely increased (Figure 2g and h), as We then investigated the factors controlling the daily
reported previously."’ The daily oscillation of the plasma Pi ~ oscillation of the plasma Pi concentration. In the small
concentration observed in WT mice (Figure la) was not intestine and kidney, NAD levels were significantly
observed in Npt2a~’~/Npt2c '~ mice. These findings suggest ~increased at ZT14 compared with ZT2 (Figure 3a and b).
that the 2 transporters are indispensable to the daily oscilla-  NAD levels in the liver, on the other hand, were signifi-
tion of plasma Pi concentration. cantly increased at ZT2 compared with ZT14. These data
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Figure 2| Daily oscillations of plasma inorganic phosphate (Pi) and Pi excretion depended on renal expression of Npt2a and Npt2c and
intestinal expression of Npt2b. Npt2a*'*, Npt2a~'~, Npt2a—'~Npt2c '~ villin Cre transgenic mice (vCre; control), and intestine-specific Npt2b
conditional knockout mice (Npt2b™"°yCre) were maintained under a light/dark cycle (ZT0, light on; ZT12, light off) and fed ad libitum.
Samples were collected every 4 hours from ZT2 (10:00). (a) Plasma Pi. (b) Urinary Pi/urinary creatinine (Cr). (c) Ratio of food intake to body
weight in Npt2a™* and Npt2a~'~mice. (a-c) Data are presented as mean + SEM. *P < 0.05, **P < 0.01, P < 0.01 (n = 5 each group). * =
versus ZT2 in Npt2a™*; # = versus ZT2 in Npt2a—’~ mice. (d) Immunoblotting analysis of Npt2a and Npt2c proteins in renal and intestinal brush
border membrane vesicles (BBMVs) from Npt2a+/+ and Npt2a’/’ mice. BBMVs were isolated at ZT2 (open column), and ZT14 (closed column).
Data are presented as mean + SEM. **P < 0.01 (n = 10 each group). (e) Plasma Pi. (f) Urinary Pi/urinary creatinine (Cr) in vCre and Npt2b/¥/fox.
vCre mice. (e,f) Data are presented as mean + SEM. **P < 0.01, *P < 0.01 (n = 5 each group). * = versus ZT2 in vCre; # = versus ZT2 in
Npt2b11°* yCre mice. (g) Plasma Pi. (h) Urinary Pi/urinary creatinine (Cr) in Npt2a~/~/Npt2c~’~mice (n = 10). Data are presented as mean =+
SEM. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
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Figure 3| Effect of nicotinamide and high phosphate loading on the daily oscillations of plasma inorganic phosphate (Pi) and Pi
excretion. Samples were collected from wild-type (WT) mice (C57BL6 mice) at Zeitgeber time (ZT) 2 or ZT14. (a) NAD of the kidney cortex. (b)
NAD of the intestine. (c) NAD of the liver. Open column shows ZT2, and closed column shows ZT14. (a—c) Data are presented as mean + SEM.
**p < 0.01 (n = 8-10/group). (d) Experimental design. NAM (0.5g/kg body weight, i.p.), parathyroid hormone (PTH; 75 pg/kg body weight, i.v.),
or Pi (100 umol Pi oral administration) were administered to WT mice at ZTO or ZT10, and samples were collected 4 hours after injection. (e,f,h)
Urinary Pi/creatinine (Cr). (g) Relative NAD of the kidney cortex (vehicle: 100%). (e-h) Data are presented as mean + SEM. *P < 0.05, **P < 0.01
(n = 8-10/group). NAD, nicotinamide adenine dinucleotide; NAM, nicotinamide.

suggest that cellular NAD levels affect Npt2a and Npt2b
levels (Figure 3c).

We further investigated the effect of phosphaturic factors
(Pi load, PTH, and nicotinamide [NAM]) on Pi excretion
between the rest and active phases (Figure 3d). Pi load
significantly stimulated renal Pi excretion to the same extent
in the rest and active phases (Figure 3e). PTH injection
significantly increased the Pi load in the rest phase, but not

Kidney International (2018) 93, 1073-1085

the active phase (Figure 3f). Changes in the cellular NAD
concentration affect PTH responsiveness.”' Next, we analyzed
the effect of NAM on Pi excretion in the rest and active phases
(Figure 3g and h). Injection of NAM increased the cellular
NAD concentration (Figure 3g). In the active phase, NAM
injection did not affect phosphaturic activity (Figure 3h).
Npt2a protein levels were decreased in the rest phase, but not
in the active phase (data not shown). These findings indicate
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that the effect of NAM differs between the rest and
active phases.

Effect of a Nampt inhibitor on renal Pi excretion during rest
and active phases

The Nampt enzyme is a rate-limiting step of cellular NAD
synthesis and has a circadian rhythm.”””® We analyzed the
effect of a Nampt inhibitor (FK866) on C57BL6 mice (WT)
(Figure 4). We injected FK866 into WT mice at ZTO (rest
phase) and ZT16 (active phase), and measured cellular NAD
concentrations 4 hours later (Figure 4a). FK866 treatment

A
a4t > b
ZT0 ZT4 ZT12 ZT16 2ZT20 ZT24 a
— : | 2
A | A | <
FK866 sacrifice FK866  sacrifice £
Vehicle(V) 004 Vehicle(V) - plood g
[urine (4 h) I:urine (4 h)
¢ d
Q —~ 60 o ~ 160
£2 £
8840 82120
== =< g
53 22
o< 8Z 40
V_FK YT K
ZT4 ZT20
e
L 25 _8
L, o T
o a6 s
1.5 > £
© S 4 8
£ 1 £ *k =
=}
05 52
e V_FK 0V FK
ZT0-ZT4 ZT16-2T20
ZT4 2720
Vehicle FK866 Vehicle FK866
Npt2a “" [T . .
>
2
Npt2c | ¢ - oy .o - . m
Actin | G e= o = - -
Nampt | S — : ———

Actin| P ——

(nmol/g tissue)

significantly decreased renal NAD concentrations at ZT20
(active phase), but not at ZT4 (rest phase) (Figure 4b).

Intestinal NAD contents tended to decrease similarly
(Figure 4c). At ZT4, the liver NAD contents were significantly
decreased (Figure 4d). Thus, fluctuations in the NAD levels in
the intestine and kidney tended to be opposite those in the
liver.

FK866 treatment during the rest phase did not affect renal
Pi excretion or plasma Pi levels. In contrast, FK866 signifi-
cantly blocked Pi excretion at ZT16 to ZT20 (active phase)
(Figure 4e). In addition, FK866 significantly increased plasma
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Figure 4| FK866 affected inorganic phosphate (Pi) reabsorption during the active and rest phases. (a) Experimental design. Wild-type
(WT) mice (10 weeks old) were treated with FK866 (70 mg/kg body weight) by i.p. injection at Zeitgeber time (ZT) 0 or ZT16, and samples
were collected 4 hours after injection. The concentration of FK866 was selected according to a previous report.>' (b) NAD concentration in
kidney cortex. (c) NAD concentration in the distal intestine. (d,e) Urinary Pi/creatinine (Cr), plasma Pi concentration. (f) Immunoblotting of Npt2a
and Npt2c proteins in kidney brush border membrane vesicles (BBMVs) and Npt2b in intestine BBMVs from FK866-injected mice. All mem-
branes were reprobed for actin. Actin was used as an internal control. (n = 8/group.) Data are presented as mean + SEM. *P < 0.05, **P < 0.01
(n = 8/group). NAD, nicotinamide adenine dinucleotide. To optimize viewing of this image, please see the online version of this article at www.
kidney-international.org.
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Figure 5 | Effect of liver nicotinamide phosphoribosyltransferase (Nampt) on daily oscillations of plasma inorganic phosphate (Pi) and
Pi excretion. (a) Body weight of male liver-specific Nampt conditional knockout mice (Nampt™®f°*_albuminCre: flox/flox-aCre) and control mice
(Nampt™/°X flox/flox) at 11 weeks (n = 8/group). (b,c) NAD concentrations in the liver and kidney cortex were measured in flox/flox-aCre and
flox/flox mice at Zeitgeber time (ZT) 6 (n = 8/group). Samples were collected every 4 hours from ZT2 (10:00). (d) Plasma Pi. (e) Urinary Pi/
urinary creatinine (Cr). (f,g) Immunoblotting analysis of Npt2a and Npt2c in renal brush border membrane vesicles (BBMVs) and Npt2b in intestine
BBMVs from flox/flox-aCre and flox/flox mice. BBMVs were collected at ZT6. All membranes were reprobed for actin. Actin was used as an internal
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adenine dinucleotide. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.

Pi concentrations at ZT20. These observations suggest that
Nampt inhibition is involved in the daily oscillation of plasma
Pi and Pi excretion. Inhibition of the nocturnal (active phase)
increase in Nampt activity prevented the reduction of renal
Npt2a and intestinal Npt2b protein levels during the active
phase (Figure 4f). The results shown in Figures 3 and 4
suggest that renal and intestinal Pi transport is controlled
by the Nampt activity in the resting and active phases,
respectively.

Kidney International (2018) 93, 1073-1085

Daily oscillation of plasma Pi concentrations in liver-specific
Nampt-knockout mice

In a previous study, we found that Pi release from the liver
may contribute to maintaining the plasma Pi concentration.”®
Liver NAD levels exhibited a prominent daily rhythm
that depended on food intake, as reported previously.”
Next, we investigated liver-specific Nampt-deletion mice

(Nampt™1°*_aCre). Liver Nampt levels exhibit a
remarkable diurnal rhythm.”” The body weight of
1079


http://www.kidney-international.org

basic research

A Miyagawa et al.: Liver-kidney axis and plasma Pi rhythm

liver-specific ~ Nampt™/1*.aCre mice was decreased
compared with Nampt™1°* mice (Figure 5a). In liver-
specific Nampt™/1°*_3Cre mice, the liver NAD levels were
significantly decreased during the rest phase (ZT6), but renal
NAD levels were similar to those of the Nampt™1°* mice
(Figure 5b and c). Compared with Nampt™* mice, the
daily oscillation was not as prominent in the rest phase in
liver-Nampt™®/1°*_aCre mice. In the rest phase, plasma Pi
levels were higher in the liver-Nampt™1°*_aCre mice than in
the Nampt™®/1°* mice (Figure 5d). Urinary Pi excretion was
markedly increased in the liver of Nampt™/**_aCre mice at
ZT12 to ZT16, but not at ZT0 to ZT4 (Figure 5e). Animals
with deletion of Nampt in the liver exhibited no changes in
the Npt2a and Npt2c protein levels (Figure 5f) and intestinal
Npt2b levels (Figure 5g). The plasma Pi concentration was

decreased during the active phase as in the Nampt™*/1°* mice.

Daily oscillation of plasma Pi concentrations in Nampt™*/~
knockout mice

The findings of the present study suggest that liver Nampt
contributes to increased plasma Pi levels from ZT2 to ZT10
(rest phase), but not to reduced plasma Pi levels during the
active phase (ZT14-ZT20). Nampt expressed in other tissues
such as fat, muscle, and bone might be involved in the daily
oscillation of plasma Pi concentrations.

Because Nampt knockout is lethal in mice, we investigated
the daily oscillation of plasma Pi concentrations in Nampt ™/~
mice. Male and female Nampt ™'~ mice have a normal body
weight and almost normal fed and fasted glucose levels.** We
also conducted insulin tolerance tests in male mice, and
detected no difference between Nampt™~ and control mice
as reported previously'* (data not shown). Therefore, we used
male Nampt '~ mice for analysis of the daily oscillation of the
plasma Pi levels (Figure 6).

Body weight of Nampt™'~ and Nampt
differ (Figure 6a). Compared with Nampt mice, no
prominent daily oscillation was observed in Nampt*'~ mice.
At ZT4 and ZT16, Nampt protein levels in the liver, kidney,
and intestine of Nampt™'~ mice were reduced by approxi-
mately 30% to 50% compared with those in Nampt™’* mice
(Figure 6d and e). In the rest phase, plasma Pi levels were
lower in Nampt ™~ mice than in Nampt ™" mice (Figure 6b).
Urinary Pi excretion was markedly decreased in Nampt*'~
mice at ZT12 to ZT16, but not ZT0 to ZT4 (Figure 6¢). Plasma
NAD concentrations were significantly decreased in both
groups at ZT4 and ZT16 (Figure 6f). Cellular NAD concen-
trations in the liver, distal intestine, and kidney were signifi-
cantly decreased in Nampt''~ mice at ZT16, but not ZT4
(Figure 6f). Pi transport activities in the BBMVs of Nampt ™~
mice were significantly increased in Nampt ™" mice at ZT16,
but not ZT4 (Figure 7a). Npt2a and Npt2b protein levels were
also increased at ZT16 in Nampt ™'~ mice (Figure 7b and c).

+ mice did not

+i+

DISCUSSION
Daily oscillations of plasma Pi levels have been described for
decades.'''7"7?22* ‘While food intake is an important

1080

factor for controlling these oscillations,'*** the mechanisms

remain unknown. Renal excretory rhythms are driven by
circadian changes in both glomerular filtration and tubular
reabsorption/secretion in renal tubular function.”” ™’ A large
number of genes essential for water and solute homeostasis
follow a well-marked circadian expression pattern.” In
addition, Npt2a and Npt2c transcript levels in the kidney
show no circadian variations, like NHE3.***° In an animal
study, Shinoda and Seto showed that daily variations in
plasma Pi depend on food intake.'” During the active phase
(ZT12-7T24), food intake stimulates the mobilization of
extracellular Pi into the intracellular space and accelerates
renal Pi excretion.!” Thereafter, the plasma Pi concentration
gradually decreases.”” In humans and rodents, the daily
oscillation of plasma Pi depending on food intake may be
coordinated to control the plasma Pi balance; intestinal Pi
absorption, renal Pi excretion, and cellular Pi shifts (e.g.,
between bone, liver, and muscle). Serum Pi levels fall in
response to insulin administration.”” Changes in serum Pi
levels may thus be secondary to changes in insulin secretion.
Insulin, however, does not induce renal Pi excretion.”

In the diurnal phase (rodent rest phase, no access to food)
in WT mice, plasma Pi concentrations gradually increase from
ZT0 to ZT10 (Figure la). In a previous study, Bielesz et al.
reported a relationship between Pi excretion and serum Pi
levels in rats.'” Renal Pi excretion gradually increased from
the rest phase (ZT0-ZT10), and Na/Pi transport activities
significantly decreased at ZT9 to ZT10 compared with that at
ZT0 to ZT1."” The findings indicate that the diurnal increase
in renal Pi excretion in rats is not mediated by apparent
changes in the Npt2a BBM protein abundance and localiza-
tion."” In contrast, changes in the tubular Pi load and tubular
threshold for reabsorption appear sufficient to explain the
massive phosphaturia observed during the day.'” Therefore, it
is possible that the increase in plasma Pi levels during the rest
phase (from ZTO to ZT10) are due to Pi release or a reduction
of the Pi influx in the soft tissues (for example, liver). Our
findings led us to the same conclusion.

We found in a previous study that NAD metabolism in the
liver-kidney axis is an important regulator of the plasma Pi
concentration.’® Dousa and coworkers reported the mecha-
nism of Pi transport inhibition by NAD.””' They demon-
strated that NAD inhibits renal Na/Pi transport mainly in
response to metabolic stimuli.””' NAD acts indirectly by first
being converted to cyclic ADP-ribose (cADPR), a potent
stimulator of intracellular Ca*" mobilization. According to
this hypothesis, the increase in cellular NAD levels is an
important factor for renal Na/Pi transport activity and
NptZa.35

Furthermore, hepatic NAD™ levels dynamically change in
a circadian manner, and are tightly related to nutritional
states.”” In contrast, fluctuations of NAD levels in the intes-
tine and kidney tend to be opposite those in the liver. Liver
NAD levels are significantly increased during the rest phase
compared with the active phase. During the metabolically
inactive phase in rodents (diurnal phase), the consumption of

Kidney International (2018) 93, 1073-1085
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Figure 6 | Characterization of nicotinamide phosphoribosyltransferase (Nampt) gene heterozygous (Namp

t*/~) mice. (a) Body weight

of male Nampt™* and Nampt™~ mice at 10 weeks (n = 8/group). (b) Plasma inorganic phosphate (Pi). Samples were collected from Nampt ™+

and Nampt™~

Nampt*/~

mice at Zeitgeber time (ZT) 2, 6, 10, 14, 18, and 22. (c) Urinary Pi/creatinine (Cr). Samples were collected from Namp
mice at ZT4 or ZT16. (d) Immunoblotting of Nampt protein in liver, kidney, and distal intestine total lysate of Namp

o+

and

t™/* and

Nampt '~ mice at ZT4 (n = 5/group). (e) Immunoblotting of Nampt protein in liver, kidney, and distal intestine total lysate of Nampt™/* and
Nampt”’ mice at ZT16 (n = 5/group). (f) NAD concentration in the blood, liver, distal intestine (DI), and kidney cortex were measured in

Nampt™* and Nampt "/~

mice (n = 5/group). Data are presented as the mean £+ SEM. *P < 0.05; **P < 0.01. NAD, nicotinamide adenine

dinucleotide. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.

cellular NAD levels is decreased compared with that during
the active phase (nocturnal phase). Cellular NAD levels show
tissue specificity, and NAD levels are controlled by many
enzymes and metabolic factors (e.g., ATP, ADP, and Pi).sz’5 4
In the present study, liver-specific Nampt knockout mice had
markedly increased renal Pi excretion and disrupted daily

Kidney International (2018) 93, 1073-1085

oscillation of plasma Pi during the rest phase, but not during
the active phase. Npt2a and Npt2c levels in the liver-specific
Nampt knockout mice were not increased in the rest phase
compared with the control mice. Based on these data, we
suggest that the Nampt/NAD™ system in the liver is impor-
tant for generating the daily oscillation of the plasma Pi
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NAD™ activity suppresses renal and intestinal Npt2 protein levels. In addition to the liver, Nampt function in bone and muscle is expected to be
involved in the daily oscillation. To optimize viewing of this image, please see the online version of this article at www.kidney-international.org.

concentration, especially during the rest phase. We suggest
that a hepatic Nampt-dependent NAD pathway may stimulate
Pi efflux or block Pi influx.

In contrast, in the present study, we investigated the roles
of Npt2a, Npt2b, and Npt2c in the daily oscillation of plasma
Pi. Bielesz et al. evaluated only the relationship between the
plasma Pi concentration and urinary Pi excretion from ZT0
to ZT9, and did not analyze the data at ZT10 to ZT24 (active
phase).'” For the active periods, we accurately measured the
nocturnal (active phase) Pi rhythm and Pi excretion
(Figure la and b). Plasma Pi concentration significantly
decreased at ZT10 to ZT24 in the active phase. FEPi (%)
values were also highest at ZT14 to ZT16. Npt2a protein levels

1082

were lowest at ZT14 and higher during the active phase
(Figure le). Analysis of Pi metabolism in NptZaflfand
Npt2a~/"/Npt2c™’~ mice revealed that Npt2a and Npt2c
proteins were essential for the daily oscillations of plasma Pi
and Pi excretion. In this context, we suggest that the 3
transporters (intestine and kidney) are coordinated and
regulate the daily oscillation of plasma Pi levels.
Interestingly, in Nampt*'~ mice, we observed no promi-
nent daily oscillation. It is possible that the Nampt/NAD™"
system controls renal Pi excretion and cellular shift. NAD™"
metabolism and Pi influx/efflux link the energy status with
adaptive cellular responses.””” >’ Although classical experi-
ments suggest that NAD™ concentrations are held constant,

Kidney International (2018) 93, 1073-1085
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recent evidence indicates that cellular NAD™ concentrations
change under various conditions.”””” Importantly, cellular
NAD levels fluctuate in a circadian manner through activation
of the NAD™ salvage pathway (Nampt pathway).”””* Further
studies are necessary to elucidate the role of Nampt as a
regulator of Pi metabolism in muscle and bone.

How does the daily oscillation of the plasma Pi concen-
tration in such mice contribute to our understanding of the
human serum Pi rhythm? Recent human studies suggest that
the early morning nadir of serum Pi levels is due to shifts to
the intracellular compartment or by Pi buffering by bone.”* In
humans and mice, the pattern of the circadian rhythm is
different, but the cellular shift is considered to regulate serum
Pi levels."””** In hemodialysis patients, NAM effectively
reduces serum phosphorus when co-administered with
binders.”®”” If the control mechanisms for serum Pi levels in
dialysis patients during early morning fasting can be predicted
based on the present findings in mice, the release of Pi from
soft tissues (for example, liver) via Nampt/NAD may be
important for serum Pi levels in dialysis patients. The results
of this study are summarized in Figure 7d.

In conclusion, in the present study, we examined the
mechanism of the daily oscillation of plasma Pi concentra-
tions. There is a remarkable daily oscillation of plasma Pi
levels due to dietary intake that is dependent on soft-tissue
transfer and renal Pi excretion. The findings of the present
study indicate that the formation of a daily oscillation of
plasma Pi levels involves the Nampt/NAD™ system of the soft
tissues, including the liver, kidney, and intestine.

METHODS

Animal experiments

Details about the mice used in this study and the breeding methods
are described in the Supplementary Methods.

Biochemical analyses
Plasma and urinary Pi was determined using the Phospha-C test
(Wako Pure Chemical Industries Ltd., Osaka, Japan).®® Urinary
creatinine, serum-intact FGF23, and plasma intact PTH were
determined using the creatinine-Wako test (Wako), FGF-23 ELISA
kit (Kainos Laboratories Inc., Tokyo, Japan), and mouse PTH 1-84
ELISA kit (Immutopics, San Diego, CA), respectively.(’“ Metabolic
cages were used to collect urine samples and examine food intake
every 4 hours.

Renal fractional phosphate excretion was calculated using the
formula (U = urine, P = plasma):

FEPi(%) = (Pi U x creatinineP) /(creatinineU x PiP) x 100"

Preparation of BBMVs and transport assay

BBMVs were prepared from the kidney and jejunum by the Ca®"
precipitation method, and used for immunoblot analysis as
described previously.”"** Levels of leucine aminopeptidase, Na™-K*-
ATPase, and cytochrome c oxidase were measured to assess mem-
brane purity. Uptake of **P into BBMVs was measured by the rapid
filtration technique.®"

Kidney International (2018) 93, 1073-1085

Immunoblot analyses

Immunoblot analyses were performed using the following primary
antibodies: affinity-purified anti-Npt2a®® and anti-Npt2¢,** which
have been described previously. Anti-Npt2b (for mouse BBMVs;
Alpha Diagnostics, San Antonio, TX)31 and anti-Nampt (for mouse
kidney, liver, and intestine total lysate; AdipoGen, Incheon, Korea)
were analyzed using a commercial method. Mouse anti-actin
monoclonal antibody (Chemicon, Temecula, CA) was used as an
internal control. Membranes were exposed to standard X-ray films,
and the densitometric quantification was performed using NIH
Image imaging software. All experiments were repeated at least 5
times.

Total NAD (NAD* and NADH) analyses
The concentration of tissue and plasma NAD (NAD* and NADH)
was measured using the colorimetric method.”

Statistical analyses

Statistical data are indicated as the means £ SEM. Statistical analysis
was performed using an unpaired Student’s #-test or analysis of
variance followed by Dunnett’s test. Values were considered statis-
tically significant at P < 0.05.
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SUPPLEMENTARY MATERIAL

Supplementary Methods.

Figure S1. Daily oscillation of Pi metabolism in fasted mice. (A)
Experimental design. wild-type (WT; C57BL6 male) mice were main-
tained under a light/dark cycle (ZTO, light on; ZT12, light off) and
either fasted or fed ad libitum. Samples were collected every 4 hours
from ZT10 (18:00). (B) Plasma inorganic phosphate (Pi), urinary
Pi/urinary creatinine (Cr), and urinary Pi. (C) Renal brush border
membrane vesicles (BBMVs) were purified at ZT2. Immunoblotting
analysis of Npt2a and Npt2c in renal BBMVs. Each lane was loaded
with 20 g of renal BBMVs. Actin was used as an internal control. Data
are presented as mean £ SEM. *P < 0.05, **P < 0.01 versus feeding-
fasting mice (n = 5-7/group).

Supplementary material is linked to the online version of the paper at
www.kidney-international.org.
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