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     Objective. Dysregulated chemokine signaling contributes to autoimmune 

diseases by facilitating aberrant T-cell infiltration into target tissues, but the 

specific cytokines, receptors, and T-cell populations remain largely unidentified. 

Role of the potent chemokine CXCL12 and its receptor CXCR4 in T-cell 

autoimmune response was examined using alymphoplasia (aly)/aly mice, a 

Sjögren’s syndrome (SS) model.  

     Methods. T-cell phenotypes in the salivary gland of aly/aly mice were 

evaluated using immunological analysis. In vitro migration assay was used to assess 

T-cell migratory activity toward several chemokines. Gene expression of 

chemokine receptors, and transforming growth factor (TGF)β receptors was 

measured with quantitative reverse transcription-polymerase chain reaction. The 

CXCR4 antagonist AMD3100 was administered to the aly/aly mice to evaluate its 

suppressive effect on autoimmune lesions.  

     Results. Effector memory T (TEM) cells derived from aly/aly mice 

demonstrated higher in vitro migratory activity toward CXCL12 than aly/+ TEM 

cells. CXCL12 expression was specifically upregulated in the SS target cells of 

aly/aly mice. TEM cells from RelB−/− mice, but not nuclear factor (NF)-κB1−/− mice, 

also showed high migratory activity toward CXCL12, implicating a nonclassical 

NF-κB2/RelB pathway in the regulation of TEM cell migration. TEM cells from 

aly/aly mice also overexpressed TGFβ receptors I and II. The CXCR4 antagonist 

AMD3100 suppressed autoimmune lesions in aly/aly mice by reducing TEM cell 

infiltration.  
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     Conclusion. Our results suggest that the NF-κB2/RelB pathway regulates 

T-cell migration to autoimmune targets through TGFβ/TGFβR-dependent 

regulation of CXCL12−CXCR4 signaling. This suggests that these signaling 

pathways are potential therapeutic targets for treating autoimmune diseases.  
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INTRODUCTION 

       Chemokines are important activators of adhesion molecules and drivers of 

lymphocyte migration to inflammatory sites, including autoimmune lesions. Activated 

or autoreactive T cells derived from naïve T cells migrate to and attack self-tissue or 

cells in the initiation of autoimmunity (1,2). T-cell migration, differentiation, and 

effector activity are controlled by several chemokines, including CXCL9, CXCL10, 

CXCL11, and CXCL12 (2-6). However, as T cells dynamically express multiple 

chemokine receptors and chemokine binding overlaps among these receptors, the 

precise mechanisms of T-cell regulation by chemokine/receptor signaling remain 

unclear. 

         Among these chemokines, CXCL12 is a critical regulator of tissue 

homeostasis, immune surveillance, and inflammatory responses (7). CXCL12 can bind 

to two receptors on T cells, CXCR4 and CXCR7. Moreover, CXCR7 directly modulates 

CXCR4 signaling via CXCR7−CXCR4 hetrodimerization (7). When CXCL12 binds to 

CXCR4 on T cells, CXCR4 heterodimerizes with the T-cell receptor to stimulate 

multiple phospholipase C isoforms, increasing intracellular calcium concentration and 

activating the extracellular signal-regulated kinase pathway, thereby initiating the 

transcription of genes associated with specific T-cell functions (8). In cancer cells, 

expression of CXCR4 and CXCR7 is regulated by nuclear factor (NF)-κB (9), but it is 

unclear how cytokine receptor expression in peripheral T cells is controlled.  

       NF-κB plays a key role in the regulation of many inflammatory processes of 

immune cells (10). The NF-κB family consists of five subunits: NF-κB1 (p105−p50), 
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NF-κB2 (p100−p52), RelA (p65), RelB, and c-Rel. Hetero- or homo-dimers of these 

subunits can be translocated into the nucleus to bind κB sequences neighboring target 

genes (11). Two NF-κB signaling pathways exist in the immune cells, a “classical” 

pathway initiated by the NF-κB1−RelA complex, and an alternative “nonclassical” 

pathway initiated by the NF-κB2−RelB complex (11). The importance of 

NF-κB-inducing kinase (NIK) in NF-κB activation has been demonstrated in studies 

using NIK-deficient and alymphoplasia (aly)/aly mice (12-15). 

       The aly/aly mice carry a mutation in the NIK/mitogen-activated protein kinase 

kinase kinase 14 (MAP3K14) gene. NIK/MAP3K14 is key in regulating the processing 

of p100 to p52 through IKKα in hematopoietic cells (12-15). In addition, the aly/aly 

mouse exhibits autoimmune lesions in the lacrimal and salivary glands, resembling 

those observed in patients with Sjögren’s syndrome (SS) (16). We previously reported 

that the abnormal activation of naïve T cells, but not effector memory T (TEM) cells, in 

aly/aly mice contributes to the onset of autoimmunity due to impaired crosstalk between 

the NF-κB subunits (17). However, the precise role of NIK in TEM cell function still 

remains unclear. In particular, although the chemokine-dependent migration of TEM 

cells to the target organs of autoimmunity via the NF-κB2 signaling pathways, 

including NIK, is a key mechanism in the development of autoimmunity, but the precise 

contribution of NIK remains to be explored.  

      The heterogeneity of memory T cells depends on surface molecule expression 

profile, effector function, signal transduction, and location (18,19). Three distinct 

subsets of memory T cells have been identified: central memory T cells, TEM cells, and 



 6 

memory stem T cells (20). Central memory T cells express CD62L (L-selectin) and 

CCR7 (20), whereas TEM cells do not (20,21). The precise migratory function of TEM 

cells to the target organ in autoimmunity needs to be explored. 

         In the present study, we focused on the migratory response of T cells to 

chemokines in aly/aly mice and the molecular mechanism underlying the expression of 

chemokine receptors. Our results indicate a yet unreported role of NF-κB2 signaling in 

TEM cell function, to our knowledge, and in the pathogenesis of autoimmune diseases. 

     

MATERIALS AND METHODS 

       Mice. The aly/aly and aly/+ mice were obtained from CLEA Japan. NF-κB1−/− 

and RelB−/− mice were obtained from the Jackson Laboratory. The genetic background 

of their mice is C57BL/6J. The mice were housed in a pathogen-free environment 

within the animal facility in Tokushima University. Mice that were 6−16 weeks of age 

were used in the study, and all animal experiments were conducted according to the 

Fundamental Guidelines for Proper Conduct of Animal Experiment and Related 

Activities in Academic Research Institutions under the jurisdiction of the Ministry of 

Education, Culture, Sports, Science and Technology of Japan. The protocol was 

approved by the Committee on Animal Experiments of the University of Tokushima 

and Biological Safety Research Center (Permit Number: T27-7). All experiments were 

performed after administering anesthesia, and all efforts were made to minimize 

suffering. 

       Histological analysis. Salivary and lacrimal glands (SGs and LGs) were 
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harvested from the mice, were fixed in 10% phosphate-buffered formaldehyde (pH 7.2), 

and were prepared for histological examination by staining with hematoxylin and eosin 

(H&E). 

       Immunofluorescence staining and immunohistochemistry. Frozen sections of 

SG tissue were fixed with methanol/acetone (1:1), blocked using an avidin/biotin 

blocking kit (Vector Laboratories, Inc.) and 5% bovine serum albumin, and stained with 

biotinylated anti-mouse CD4 monoclonal antibody (mAb) (eBioscience, RM4.5), with 

Alexa fluoro-546 streptavidin (Invitrogen) as the second Ab. In addition, to detect 

CXCL12 expression in frozen LG tissues, anti-CXCL12 polyclonal Ab (anti-SDF1α, 

Abcam), phycoerythrin (PE)-conjugated ant-mouse EpCAM (CD326) mAb 

(eBioscience, G8.8), PE-conjugated anti-CD45.2 mAb (BioLegend, 104), and 

biotin-conjugated anti-PE mAb (eBioscience, eBioPE-DLE) as the second Ab. After 

washing three times with PBS, nuclear DNA was stained with 

4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) (Invitrogen). The sections were 

observed using a PASCAL confocal laser-scanning microscope (LSM: Carl Zeiss) at a 

magnification of 400 or 630×. LSM image browser version 3.5 (Carl Zeiss) was used 

for image acquisition. For immunohistochemical analysis, paraffin-embedded sections 

using the tissues fixed in 10% phosphate-buffered formaldehyde (pH 7.2) were stained 

with anti-CXCL12 polyclonal Ab (Abcam) using the biotin−avidin immunoperoxidase 

complex reagent (Dako) and 3,3′-diaminobenzidine (DAB) chromogen (Dako). The 

nuclei were counterstained with hematoxylin. 

       Enzyme-linked immunosorbent assay (ELISA). Serum concentration of 
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CXCL12 in B6, aly/+, and aly/aly mice was measured using mouse CXCL12/stromal 

cell-derived factor-1 (SDF-1)α Quantikine ELISA kit (R&D Systems Inc.). 

       Cell isolation. Spleen cells were suspended by homogenization and red blood 

cells were removed with 0.83% ammonium chloride. The remaining cells were washed 

twice with 2% fetal bovine serum/Dulbecco’s modified Eagle’s medium. CD44high 

CD62L− TEM and CD44lowCD62L+ naïve CD4+ T cells were isolated using a cell sorter 

(JSAN Jr Swift, Bay Bioscience) as shown in Supplementary Figure 1. The isolated 

cells were confirmed by the C-C chemokine receptor (CCR)7 expression (CCR7− for 

TEM cells, CCR7low for naïve cells) (Supplementary Figure 1). Lymphocytes 

infiltrating into the target organs were isolated by dispersing LG and SG tissues with 1 

mg/ml collagenase solution (Wako), followed by a density-gradient centrifugation using 

Histopaque-1083 (Sigma-Aldrich). 

      Flow cytometric analysis. Lymphocytes from spleen and target organs were 

stained using antibodies against PE-Cy7-conjugated anti-mouse CD4 mAb (TONBO 

Biosciences, GK1.5), FITC-conjugated anti-mouse CD8 mAb (eBioscience, 53-6.7), 

PE-Cy5.5-conjugated anti-mouse CD44 mAb (TONBO Biosciences, IM7), 

APC-Cy7-conjugated anti-mouse CD62L mAb (BioLegend, Mel-14), PE-conjugated 

anti-mouse/human CXCR7 mAb (BioLegend, 8F11-M16), biotinylated anti-mouse 

CXCR4 mAb (eBioscience, 2B11), biotinylated anti-mouse CCR7 mAb (eBioscience, 

4B12), APC-conjugated anti-mouse transforming growth factor β receptor I (TGFβRI, 

R&D systems, 141231), APC-conjugated anti-mouse TGFβRII polyclonal Ab (R&D 

systems), and APC-conjugated streptavidin (eBioscience). A FACScant flow cytometer 



 9 

(BD Biosciences) was used to identify the cell populations according to surface 

expression profile. Data were analyzed using FlowJo FACS Analysis software (Tree 

Star Inc.).  

       In vitro chemotactic migration assay. After serum starvation in RPMI 1640 

medium for 24 h, CD4+ T cells were plated (5 × 105 cells in 350 µl) in the culture plates 

insert (3.0-µm pore size, Merck Millipore). An equal volume of medium containing 

CXCL9, 10, 11, and 12 (0−750 ng/ml; R&D Systems Inc.) was added to the lower 

chamber in 350 µl of RPMI 1640 containing 0.1% BSA, and then the cells were 

cultured for 4 h at 37°C. The number of migrated cells was analyzed by flow cytometry. 

       Quantitative reverse transcription-polymerase chain reaction (qRT-PCR). 

Total RNA was extracted from lymphocytes using the RNeasy mini kit (QIAGEN) and 

subsequently reverse-transcribed into cDNA. Ct values of > 35 cycles were discarded. 

For standardization, the Ct cutoff of all analyses was set at the default setting (0.2). The 

expression of mRNAs encoding CXCR4, CXCR7, CXCL12, TGFβRI, -II, -III, β-actin, 

and glycerol-3-phosphate dehydrogenase (GAPDH) was determined using a PTC-200 

DNA Engine Cycler (Bio-Rad Laboratories) with SYBR Premix Ex Taq reagent 

(Takara Bio Inc.). The primer sequences used were as follows: CXCR4, forward, 

5`-TCAGTGGCTGACCTCCTCTT-3` and reverse, 

5`-TTTCAGCCAGCAGTTTCCTT-3` CXCR7, forward, 

5`-GGTCAGTCTCGTGCAGCATA-3` and reverse, 

5`-GTGCCGGTGAAGTAGGTGAT-3`, CXCL12: forward, 

5`-CTTCATCCCCATTCTCCTCA-3` and reverse, 
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5`-GACTCTGCTCTGGTGGAAGG-3`, TGFβ receptor I (TGFβRI): forward, 

5′-AACTGAAACACCGTGGGAAC-3′ and reverse, 

5′-TGGGAAGCTTTCAGTTGACC-3′; TGFβRII: forward, 

5′-CCCAGTCTGGAAATGAAAGC-3′ and reverse, 

5′-ACTTTTGTCGTGGGTTCTGG-3′; TGFβRIII: forward, 

5′-TCAGATTTGTGCCTGTCTCG-3′ and reverse, 

5′-CTGGGTGTTCTGCATTTGTG-3′; β-actin: forward, 

5′-GTGGGCCGCTCTAGGCACCA-3′ and reverse, 

5′-CGGTTGGCCTTAGGGTTCAGGGGGG-3′, GAPDH:         forward,  

5′-TGCACCACCAACTGCTTAC-3′                and             reverse,  

5′-GGATGCAGGGATGATGTTC-3′. To confirm the specificity of the primers, each 

PCR product was electrophoresed on an agarose gel to determine the DNA size (bp), 

and a single band for each product was detected at the expected size. Relative mRNA 

expression of each transcript was normalized against β-actin mRNA. To confirm the 

normalization by β-actin, the mRNA expression of CXCL12 was quantified using 

GAPDH as another housekeeping gene (Supplementary Figure 2B). The triplicates per 

experiment were analyzed. The qRT-PCR experiments were repeated at least three 

times.  

       Administration of AMD3100. The CXCR4 inhibitor AMD3100 

octahydrochloride (5 mg/kg; Sigma) was administered daily to female aly/aly mice from 

8 to 16 weeks of age by intraperitoneal (ip) injection. As a control, PBS was 

administered to aly/aly mice following the same regimen. 
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       Statistical analysis. Means of each group were compared using unpaired 

Student’s t-test. A probability (p) value of < 0.05 was considered statistically 

significant. 

 

RESULTS 

       TEM cells in autoimmune lesions of aly/aly mice. Inflammatory lesions in 

the SG of aly/aly mice were observed from approximately 10 weeks of age as 

previously described (16). Infiltration of mononuclear cells around dilated ducts and the 

destruction or atrophy of acinar cells was found in the SG tissues harvested from 3 

months old aly/aly mice (Figure 1A). Moreover, to evaluate the dysfunction of target 

organs, the flow volume of tear and saliva was measured. The flow in aly/aly mice was 

significantly lower than that in aly/+ mice with respect to the autoimmune lesions in 

target organs (Supplementary Figure 2A). Immunofluorescence analysis revealed that 

CD4+ T cells were the predominant infiltrating cell type (Figure 1B), and flow 

cytometric analysis of isolated SG lymphocytes confirmed that over 80% were CD4+ T 

cells (Figure 1C and D). The number of CD44highCD62L− CD4+ TEM cells was higher 

in the spleen of aly/aly mice than that in the aly/+ mice, while there was no difference 

in the total number of TEM cells (Figure 1E) and in the number and proportion of 

CD44lowCD62L+ naïve CD4+ T cells in the spleen between aly/aly and aly/+ mice 

(Figure 1E and F). By contrast, the number of both TEM and naive T cells in the SG 

increased significantly compared with that in aly/+ mice (Figure 1F). 

       Enhanced migratory response of aly/aly mouse CD4+ T cells to CXC 
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chemokines. To examine whether the facilitation of migratory activity contributes to 

TEM cell infiltration observed in aly/aly mice, the migratory response of CD4+ T cells 

isolated from aly/aly and aly/+ mouse spleen toward CXCL9, 10, 11, and 12 was 

evaluated by in vitro transwell migration assay. The migratory rates of aly/aly CD4+ 

TEM cells toward CXCL12 were significantly higher than those of aly/+ TEM cells, 

while there was no difference in the migratory response to CXCL9, 10, and 11 (Figure 

2A). Furthermore, the response increased with CXCL12 concentration (Figure 2C). In 

contrast, no migratory response toward any of these cytokines was observed with 

respect to naïve CD4+ T cells isolated form aly/aly and aly/+ mouse spleen (Figure 2B 

and D). 

       Elevated CXCL12 expression in target tissues of aly/aly mice. We measured 

serum CXCL12 concentration by ELISA to examine whether higher serum 

concentration contributes to greater TEM cell migration/infiltration in aly/aly mice, but 

found no difference in the B6, aly/+, and aly/aly mice (Figure 3A). We then examined 

whether local accumulation of CXCL12 in the spleen or target organs is responsible for 

this enhanced migratory capacity of aly/aly TEM cells by measuring CXCL12 mRNA 

expression with qRT-PCR. CXCL12 mRNA expression in SGs and LGs of aly/aly mice 

was significantly higher than in aly/+ SGs and LGs (Figure 3B and Supplementary 

Figure 2B), but it was not different in the spleen and lung (Figure 3B). These findings 

suggest that increased CXCL12 expression in the target tissues (SG and LG) contributes 

to the higher TEM cell accumulation and the consequent autoimmune response. It is 

known that increased chemokine levels are detectable in the inflamed tissues of SS 
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patients (22,23), and CXCL12 is ubiquitously expressed in many tissues and cell types 

(7). To determine the cell type producing CXCL12 in the target organs, 

immunofluorescence analysis was performed. CXCL12-expressing cells in target tissue 

of aly/aly mice at 12 weeks of age. EpCAM+ epithelial cells in LGs expressed CXCL12 

in aly/aly, but not aly/+, mice while Ly5.2+ lymphocytes infiltrated in LGs didn’t 

express CXCL12 in aly/aly mice (Figure 3C and D). The CXCL12 expression was                    

found in the epithelial cells neighboring the area of lymphocyte infiltration (Figure 3C, 

D). At 6 weeks of age, when inflammatory lesions were absent, there was no difference 

in the CXCL12 expression in the LGs of aly/aly and aly/+ mice (Supplementary Figure 

2C), suggesting that CXCL12 expression by target cells increases along with the 

migration of inflammatory cells including T cells, and that T-cell migration may further 

increase following the upregulation of CXCL12, leading to the development of severe 

autoimmune lesions. Although the precise mechanism underlying CXCL12 

upregulation in the target organs in aly/aly mice remains unclear, the production might 

be enhanced in the inflammatory lesions of target organs in aly/aly mice. 

       Elevated CXCL12 receptor expression on the TEM cells of aly/aly mice. 

While CXCR4 is the best described CXCL12 receptor, this cytokine also binds to 

CXCR7 (7,24). To examine whether the upregulation of these receptors also contributes 

to enhanced CXCL12-dependent tissue infiltration of TEM cells in aly/aly mice, 

CXCR4 and CXCR7 expression in TEM and naïve T cells isolated from the mouse 

spleen were measured by flow cytometry. Surface expression of CXCR4 on TEM cells 

belonging to the aly/aly mice was significantly higher than that on aly/+ TEM cells, 
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whereas no difference in the expression of CXCR7 was seen (Figure 4A and 

Supplementary Figure 3). By contrast, there was no difference in CXCR7 or CXCR4 

expression on naïve CD4+ T cells between aly/aly and aly/+ mice (Figure 4B). 

Furthermore, mRNA expression of CXCR4 was significantly higher in TEM cells 

isolated from the spleen of aly/aly mice compared with the aly/+ mice, while there was 

no difference in CXCR7 mRNA expression (Figure 4C). No difference in the CXCR7 

and CXCR4 expression in naïve CD4+ T cells was observed between aly/aly and aly/+ 

mice (Figure 4D). These findings suggest that the high migratory activity of TEM cells 

from aly/aly mice toward CXCL12 results from the increased expression of CXCR4. 

       To understand the role of both classical and nonclassical NF-κB pathways in 

the migratory response of TEM cells to CXCL12, the in vitro migratory assay in 

response to CXCL12 was performed using TEM and naïve CD4+ T cells isolated from 

wild-type (WT), NF-κB1 (p50)−/−, aly/aly, and RelB−/− mice. There was no difference in 

the migratory response of TEM cells in WT and NF-κB1−/− mice (Figure 4E). In 

contrast, RelB−/− mice demonstrated a significantly increased migratory response 

without CXCL12 compared with the WT mice (Figure 4E). In addition, the migratory 

response to CXCL12 in RelB−/− mice was significantly higher than that in the WT mice 

(Figure 4E). Moreover, the migratory response to CXCL12 in RelB−/− mice was 

significantly higher than that in the aly/aly mice (Figure 4E). Therefore, TEM cells in 

RelB−/− mice are generally more mobile to chemokines. In accordance with these results, 

no substantial migratory response was observed with respect to the naïve T cells in 

NF-κB1−/−, aly/aly, and RelB−/− mice (Figure 4F). This suggests that the nonclassical 
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NF-κB2/RelB pathway regulates the migratory response to CXCL12 in TEM cells. 

       Role of TGFβ1 in CXCR4 expression by TEM cells. TGFβ is considered as 

the master regulator of T-cell activity, and CXCR4 expression in human T cells is 

controlled by TGFβ1 (25,26). Therefore, we examined whether TGFβ1 signaling is 

involved in CXCR4 overexpression by aly/aly TEM cells. TGFβ1 upregulated the 

expression of CXCR4 mRNA in both aly/aly and aly/+ TEM cells, but the increase was 

greater only in aly/aly TEM cells (Figure 5A). By contrast, no enhancement of CXCR4 

mRNA expression by TGFβ1 was observed in naïve CD4+ T cells of either genotype 

(Figure 5A). Moreover, the protein levels of CXCR4 expression in TEM cells of aly/aly 

mice increased significantly because of TGFβ1, whereas an increase in CXCR4 

expression on TEM cells of aly/+ mice was not observed (Figure 5B). There was no 

change in CXCR4 expression in naïve T cells by TGFβ1 in both aly/aly and aly/+ mice 

(Figure 5B). Consistent with a critical role of CXCL12−CXCR4 signaling during 

increased aly/aly TEM cell migration, the migratory response of aly/aly TEM cells to 

CXCL12 was further upregulated by TGFβ1, compared with aly/+ TEM cells (Figure 

5C). Collectively, these results suggest that NF-κB2 negatively controls CXCR4 

expression through TGFβ signaling.  

       We also investigated whether TGFβ receptor signaling is upregulated in aly/aly 

TEM cells, thereby accounting for the enhanced sensitivity to TGFβ. Indeed, qRT-PCR 

results showed that the expression of TGFβRI and II was significantly higher in aly/aly 

TEM cells than in aly/+ TEM cells (Figure 5D). As expected, there was no difference in 

the expressions by naïve CD4+ T cells in aly/+ and aly/aly mice, again consistent with 



 16 

the lack of TGFβ effects on migration (Figure 5D). There was also no difference in 

TGFβRIII expression in aly/+ and aly/aly TEM cells (Figure 5D). Furthermore, flow 

cytometric analysis revealed that the number of TGFβRI+ TEM cells in aly/aly mice 

was significantly higher than that in aly/+ mice (Figure 5E). The proportion of 

TFGβRII+ TEM cells in aly/aly mice also increased compared with that in aly/+ mice 

(Figure 5F). These findings suggest that NF-κB2 controls the migratory function of 

TEM cells by regulating the TGFβ/TGFβR/CXCR4 signaling axis.     

       Therapeutic effect of CXCR4 inhibitor on autoimmune lesions in aly/aly 

mice. Finally, we examined whether the suppression of migration-promoting signaling 

pathways reduces the autoimmune response in aly/aly mice. Intraperitoneal injection of 

the specific CXCR4 antagonist AMD3100 from 8 to 16 weeks of age dramatically 

reduced autoimmune lesions in SG and LG of aly/aly mice and suppressed lymphocyte 

infiltration into these target organs (Figure 6A and B). Moreover, the proportion of 

TEM cells among all infiltrated lymphocytes in SG and LG was significantly reduced 

by AMD3100 compared with that in the vehicle-treated controls (Figure 6C and D). 

There were no differences in the number of CD3+ T cells, CD19+ B cells, CD4+ T cells, 

and CD8+ T cells in the spleen of mice administered with AMD3100 or vehicle 

(Supplementary Figure 4). This suggests that inhibition of CXCR4 prevents 

autoimmune lesions in aly/aly mice by suppressing CXCL12-induced TEM cell 

migration.           

 

DISCUSSION 
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       In this study, the phenotype of the CD4+ T cells infiltrating into the target 

tissues of aly/aly mice was similar to that of CD44highCD62L−CCR7− CD4+ TEM cells. 

These infiltrating cells are believed to involve autoreactive T cells. Our findings 

strongly suggest that CXCL12 is a critical factor promoting TEM cell infiltration into 

target organs. The migratory response of TEM cells, including autoreactive T cells, was 

markedly enhanced in aly/aly mice compared with aly/+ mice. Several reports have 

demonstrated that chemokines are upregulated in the target organs in patients with SS 

(22,27), and indeed, CXCL12 expression increased in the inflammatory lesions of 

aly/aly mice. Moreover, CXCR4 was also upregulated in the TEM cells of the aly/aly 

mice, thus explaining the strong recruitment of these cells into the target tissues.  

        CXCR4 is one of several chemokine receptors exploited by the human 

immunodeficiency virus (HIV) to infect CD4+ T cells in addition to a major receptor of 

CXCL12, called SDF-1 (28). CXCR4 is widely expressed at high levels in various 

immune cells such as monocytes, B cells, and naïve T cells (5,8,29,30). 

CXCR4-knockout mice are embryonically lethal owing to impaired hematopoiesis, 

organ vascularization, and neuronal migration (29,31). Recent reports have 

demonstrated that blocking the CXCL12−CXCR4 interaction can inhibit tumor growth 

by reducing tumor angiogenesis (5,24). Furthermore, inhibition of the 

CXCL12−CXCR4 pathway in the CD4+ T cells of nonobese diabetes (NOD) mice using 

the specific CXCR4 antagonist AMD3100 can protect against autoimmune diabetes 

(32). Similarly, administration of AMD3100 reduces the severity of autoimmune lesions 

in an experimental autoimmune encephalomyelitis model by reducing the number of 
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immune cells localizing to the perivascular space in response to CXCL12 (33). 

Autoimmune collagen-induced arthritis in IFN-γR-deficient DBA/1 mice was reduced 

in severity by AMD3100 treatment through the inhibition of CXCR4+ macrophage 

migration to target organ (34). Moreover, autoimmune thyroiditis in NOD.H-2h4 mice 

was also suppressed by AMD3100 administration (35). In our study, the autoimmune 

lesions in aly/aly mice were suppressed by AMD3100 administration through the 

inhibition of TEM cell migration to the target organs. Expression of CXCR4 by naïve T 

cells in humans is controlled by TGFβ signaling [26], and we found that CXCR4 

mRNA expression by TEM cells was also enhanced by TGFβ1. Furthermore, the 

enhancement was strong in the TEM cells of aly/aly mice, consistent with the enhanced 

expression of TGFβR. Collectively, these results suggest that NF-κB2 may control 

CXCR4 expression in TEM cells through TGFβ signaling. 

       NIK plays a key role in regulating the processing of p100 to p52 through IKKα 

in both hematopoietic cells and osteoclasts (10,11,36,37). NIK–/– and aly/aly mice lack 

lymph nodes, and, at least for aly/aly mice, the T cells show defective proliferation and 

IL-2 production in response to stimulation by the CD3 antibody (anti-CD3) (13). 

Furthermore, NIK may be involved in the maintenance of central tolerance in the 

thymus (14). Moreover, aly/aly mice and RelB–/– mice show signs of autoimmune 

disease (16,38). Our previous report demonstrated that NF-κB2 controls the classical 

NF-κB pathway in naïve CD4+ T cells by interacting with NF-κB1 (17). In addition, 

overactivation of naïve T cells in aly/aly mice due to impaired interaction with NF-κB2 

results in induction of the autoimmune reaction (17). In the present study, NF-κB2 
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negatively regulated TGFβ signaling in TEM cells, while TGFβ upregulated CXCR4 

expression. It is known that a molecular interaction between NF-κB2 and Smad3 

downstream of TGFβR plays an important role in the transcriptional activity of c-jun 

(39). Further analysis of the molecular mechanisms controlling CXCR4 expression 

through NF-κB2 and TGFβ signaling is necessary for understanding how T cells 

contribute to the pathogenesis of autoimmunity. 

   Therapy for SS is mainly symptomatic, such as sialagogue or moisturizing agents 

for dry mouth, and eye drops for dry eye (40). Cytokine or steroid therapy is often 

effective for some autoimmune diseases such as rheumatoid arthritis. However, a 

radical therapy for SS has not been established. In aly/aly mice, autoimmune lesions 

were promoted both by upregulation of CXCL12 in the target organs and that of 

CXCR4 expression on TEM cells. Further study is required to determine the underlying 

mechanisms for specific CXCL12 overexpression by target tissue but not nontarget 

tissue such as lung. Inhibiting TEM cell function, including that of autoreactive T cells, 

may be a promising in the treatment of autoimmune disease. AMD3100 suppresses the 

growth of several malignant tumors such as prostate cancer and acute myeloid leukemia 

by inhibiting the CXCR4−CXCL12 axis in tumor stroma. (41,42). Our study identifies 

numerous potential molecular targets for such interventions.  

       To summarize, the migratory response of TEM cells to CXCL12 was enhanced 

in aly/aly mice through increased expression of CXCR4 on TEM cells and CXCL12 in 

the target tissues. Upregulation of CXCL12 in SG and LG suggest that target organs 
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contribute to the initiation of autoimmunity. Inhibition of CXCL12−CXCR4 signaling 

in TEM cells could be a useful therapeutic strategy for treating SS. Moreover, CXCR4 

expression is regulated by NF-κB2 through TGFβ signaling, revealing additional targets 

for therapy against autoimmune diseases.  
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Figure legends 

Figure 1. Inflammatory lesions associated with infiltration of effector memory T 

(TEM) cells into the target organs of aly/aly autoimmune model mice (12 weeks). A, 

Inflammatory lesions in the salivary glands (SGs) of female aly/aly mice at 3 months of 

age. Scale bar, 50 µm. B, Accumulation of CD4+ T cells in the SGs of aly/aly mice as 

detected using immunofluorescence staining. Scale bar, 20 µm. The photos are 

representative of each group. C, CD4+ and CD8+ subsets of lymphocytes infiltrated into 

the SGs of aly/aly and aly/+ mice as detected by flow cytometry. D, Number of CD4+ 

and CD8+ T cells among the infiltrated lymphocytes in the SGs of aly/aly and aly/+ 

mice. Data are shown as average ± standard deviation (SD) of six to eight mice per 

group. *p < 0.05. E, CD44/CD62L expression in CD4+ T cells in the spleen and SGs of 

aly/aly and aly/+ mice as detected using flow cytometry. The results are representative 

of each group. F, Numbers of CD44highCD62L− TEM and CD44lowCD62L+ naïve CD4+ 

cells in the spleen and SGs of aly/aly and aly/+ mice. Data are shown as average ± SD 

of six to eight mice per group. *p < 0.05. 

 

Figure 2. Enhanced migratory rate of TEM cells toward CXCL12 isolated from aly/aly 

mice (12 weeks). A, Chemotactic activities of TEM cells in the presence of CXCL9, 10, 

11, and 12 (all 750 ng/ml) were analyzed by in vitro migration assay with transwell 

membranes (3 µm). The data are expressed as average ± SD of triplicates, and are 

representative of three independent experiments. *p < 0.05. B, Chemotactic activity of 

naïve CD4+ T cells in the presence of CXCL9, 10, 11, and 12. C, Dose-dependent 
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migratory response of CD4+ TEM cells to CXCL12 (250, 500, and 750 ng/ml) in aly/aly 

mice. Data are shown as average ± SD of triplicates and are representative of three 

independent experiments. *p < 0.05. D, Migratory response of naïve CD4+ T cells to 

CXCL12. All data presented as average ± SD of three independent experiments 

conducted in triplicate.  

 

Figure 3. CXCL12 overexpression in target tissues of aly/aly mice (16 weeks). A, 

CXCL12 concentration in sera from B6, aly/+, and aly/aly mice as determined by 

ELISA. Data are shown as average ± SD of four mice per group. B, CXCL12 mRNA 

expression levels in the spleen, SG, LG, and lung as analyzed by qRT-PCR. Data are 

shown as average ± SD of five mice per group. *p < 0.05. C, CXCL12 expression in 

LGs in aly/aly and aly/+ mice as detected by immunofluorescence analysis using 

Alexa-546-conjugated anti-EpCAM mAb and Alexa-488-conjugated anti-CXCL12 

mAb. The nuclei were stained with DAPI. The results were representative of five mice 

per group. Scale bar, 10 µm. Lymphocyte (Ly) infiltrating area was separated from 

epithelial cell (Ep) area by white dot line. D, Immunofluorescence analysis of LGs was 

performed with Alexa-546-conjugated anti-Ly5.2 mAb and Alexa-488-conjugated 

anti-CXCL12 mAb. The nuclei were stained with DAPI. The results were representative 

of five mice per group. Scale bar, 10 µm. Ly infiltrating area was separated from Ep 

area by white dot line. The results were representative of five mice per group. 

 

Figure 4. Overexpression of CXCR4 and CXCR7 in aly/aly TEM cells. A and B, Cell 
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surface expression of CXCR7 and CXCR4 in TEM cells (A) and naïve (B) CD4+ T cells 

from the spleen of aly/aly and aly/+ mice (10 weeks) was detected by flow cytometry. 

Expression relative to isotype control detected as mean fluorescence intensity (MFI) and 

presented as average ± SD of five mice per group. *p < 0.05. C and D, mRNA 

expression of CXCR7 and CXCR4 in TEM (C) and naïve (D) CD4+ T cells in the 

spleen of aly/+ and aly/aly mice as analyzed by qRT-PCR. Data are shown as average ± 

SD of seven mice per group. *p < 0.05. E and F, Migratory response to CXCL12 (750 

ng/ml) of TEM (E) and naïve (F) CD4+ T cells in the spleen of WT, NF-κB1−/−, aly/aly, 

and RelB−/− mice (10 weeks). Data are shown as average ± SD of three independent 

experiments conducted in triplicate. *p < 0.05, **p < 0.05.  

 

Figure 5. Enhanced CXCL12-induced migration of TEM cells by activation of TGFβ 

signaling. A, CD4+ TEM and naive CD4+ T cells of aly/aly and aly/+ mice (10−12 

weeks) were stimulated with TGFβ1 (0.125 ng/ml) for 24 h. CXCR4 mRNA expression 

determined by qRT-PCR. Data are shown as average ± SD of five mice per group. *p < 

0.05, **p < 0.005. B, Cell surface expression of CXCR4 in TEM and naïve CD4+ T 

cells from the spleen of aly/aly and aly/+ mice was detected by flow cytometry. 

Expression relative to isotype control detected as MFI and presented as average ± SD of 

five mice per group. *p < 0.05, **p < 0.005. C, TEM cells from aly/aly and aly/+ mice 

were stimulated with TGFβ1 (0.125 ng/ml) or sham-treated for 24 h and the migratory 

response to CXCL12 (750 ng/ml) as analyzed by in vitro migration assay. Data are 

shown as average ± SD of three independent experiments conducted in triplicate. *p < 
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0.05. D, mRNA expression of TGFβRI, II, and III in naïve and TEM cells from aly/aly 

and aly/+ mice were determined by qRT-PCR. Data are shown as average ± SD of five 

mice per group. *p < 0.05. E, TGFβRI+ TEM and naïve CD4+ T cells were analyzed by 

flow cytometry. Data are shown as average ± SD of five mice per group. **p < 0.005. F, 

TGFβRII+ TEM and naïve CD4+ T cells were analyzed by flow cytometry. Data are 

shown as average ± SD of five mice per group. *p < 0.05. 

 

Figure 6. Therapeutic effect of a CXCR4 inhibitor on autoimmune lesions in aly/aly 

mice. The CXCR4 inhibitor (AMD3100, 5 mg/kg) was intraperitoneally injected daily 

into aly/aly mice from 8 to 16 weeks of age. A and B, Paraffin-embedded sections of 

SG (A) and LG (B) from control and AMD3100-administered mice stained with H&E. 

Photos are representative of five mice for each group. Scale bar: 50 µm. C and D, 

Numbers of TEM and naïve CD4+ T cells among infiltrated lymphocytes in SG (C) and 

LG (D) of control and AMD3100-treated mice were determined by flow cytometry. 

Data are shown as average ± SD of five mice per group. *p < 0.05. 
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