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まえがき

現代制御理論に基づいて制御系設計を行うには，モデリングによって

制御対象の状態空間表現による数式モデルを得る必要がある．得られ

た数式モデルが制御対象を十分な精度で近似していれば，様々な理論

を用いて望ましい制御性能を達成することができる．しかしながら，

制御対象を正確にモデリングすることは非常に困難であり，制御対象

とその数式モデルとの間には「不確かさ」と呼ばれるギャップが存在す

る．この不確かさには，線形化誤差，低次元化誤差等によるモデル化

誤差，あるいは未知パラメータの変動が存在する．このような不確か

さを無視して制御系設計を行うと，設計者の所望の制御性能が得られ

ないばかりか，最悪の場合，システムが不安定となってしまう恐れがあ

る．このため，この不確かさを陽に考慮した上で制御系設計を行う「ロ

バスト制御」が従来から盛んに研究されてきた．しかしながら，従来

のロバスト制御の結果は固定的なゲインのみで構成されたコントロー

ラに関する結果がほとんどであり，不確かさの最悪値を想定して設計

された固定的なゲインを用いた従来のロバスト制御は，実際の不確か

さの変動幅が想定されたものより小さい場合は保守的な制御系設計と

なってしまう．これに対し，可変ゲインロバストコントローラがいくつ

か提案されている．可変ゲインロバストコントローラを用いることに

より，対象システムの利用可能な情報を用いて，コントローラのパラ

メータをオンラインで調整することができ，不確かさの影響による応

答特性の劣化を抑制しつつ，過大な制御入力を避けることのできる柔

軟な制御系設計が可能となる．

一方，近年の制御対象の特徴として，交通システムや電力システム

などのように大規模，かつ複雑化していることが挙げられる．このよ

うな対象システムは，「大規模複合システム」として考える必要がある．

大規模複合システムに対する制御方式として，システムの全情報を一

箇所に集め，単一のコントローラによって制御する「集中制御方式」が
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ある．しかしながら，大規模複合システムに対して集中制御を考えた

場合，情報量，計算量など，物理的な制約の面から適用できない場合

が多い．これに対し，対象システムをいくつかのサブシステムに分割

し，複数のコントローラを用いて各サブシステム毎に制御を行う「分

散制御方式」が有効であり，これまで盛んに研究されている．さらに，

ロバスト制御と関連して，不確かさを含む大規模複合システムに対す

る分散ロバスト制御についても従来から研究されており，多くの結果

が報告されている．しかしながら，従来の分散ロバスト制御の結果は，

集中制御におけるロバスト制御と同様に固定的なゲインのみで構成さ

れたコントローラに関するものがほとんどであり，可変ゲインロバス

トコントローラに関する結果はあまり報告されていない．固定ゲイン

ロバストコントローラを用いた分散ロバスト制御は，システムの次数

が大きくなると，コントローラを設計するための解くべき制約式であ

る線形行列不等式 (LMI：Linear Matrix Inequality) が高次元，複雑化してし

まい，その解が存在しない，すなわちコントローラが設計できない場

合もある．これに対して，可変ゲインロバストコントローラを用いた

分散ロバスト制御では，固定ゲインコントローラの場合と比べ，LMI

の低次元，簡単化が可能であるという特長があり，固定ゲインコント

ローラでは安定化できないシステムを安定化できる可能性がある．

本論文では，不確かさを含む大規模複合システムに対する分散可変

ゲインロバストコントローラの構成法を提案する．

Chapter 1 では，制御理論の発展の歴史，ロバスト制御，および分散

制御について述べるとともに，本研究の目的，新規性を述べる．また，

本論文で用いる数学的記法，および補題を示す．Chapter 2 では，不確

かさを含む大規模複合システムに対して，安定性を保証するだけでな

く，設計者の望ましい応答特性を達成する分散可変ゲインロバストコ

ントローラの構成法を提案する．ただし，制御対象となる大規模複合

システムに含まれる不確かさ，および相互干渉はマッチング条件を満

たすものとする．さらに，提案するコントローラの設計問題は，得ら

れた LMI の可解性に帰着されることを示す．最後に，提案する分散可

変ゲインロバストコントローラの有用性を検証するための数値例を紹

介する．Chapter 3 では，不確かさ，および外乱を含む大規模複合シス

テムに対して，安定性を保証するだけでなく，「L2 ゲイン性能」と呼ば

れる外乱抑圧性能を達成する分散可変ゲインロバストコントローラの



構成法を提案する。大規模複合システムに含まれる不確かさ，および

サブシステム間の相互干渉は， Chapter 2 と同様にマッチング条件もの

とし，外乱入力は二乗可積分関数と仮定する．さらに，提案するコン

トローラの設計問題は，得られた LMI の可解性に帰着されることを示

す．最後に，提案する L2 ゲイン性能を有する分散可変ゲインロバスト

コントローラの有用性を検証するための数値例を示す．Chapter 4では，

マッチング条件を満たさない不確かさを含む大規模複合システムに対

し，安定性を保証する分散可変ゲインロバストコントローラの構成法

を提案する．大規模複合システムに含まれる不確かさはマッチング条

件を満たさないものとし，さらにその不確かさをマッチング条件を満

たす部分（マッチ部）と満たさない部分（ミスマッチ部）に分割する．さ

らに，提案するコントローラの設計問題は，得られた LMIの可解性に

帰着されることを示す．最後に，提案する分散可変ゲインロバストコ

ントローラの有用性を検証するための数値例を紹介する．Chapter 5 で

は本論文で得られた成果をまとめ，今後の課題について述べる．





Abstruct

In order to design control systems via modern control theory, it is necessary to derive

a mathematical model for controlled systems based on state-space representation.

If the mathematical model describes the controlled system with sufficient accuracy,

satisfactory control performance are achievable by using various controller design

methods. However, there always exist some gaps referred to as “uncertainties” be-

tween the controlled system and the mathematical model. The uncertainties in the

controlled system may cause deterioration of control performance or unstability of

the controlled system. For this view point, many researchers have studied robust

control for uncertain dynamical systems, and a lot of results for robust control have

been developed. It is well known that controllers in most of the existing result for

robust control have fixed gains only. Moreover, these robust controllers with fixed

gains are designed by considering the worst case variations of uncertainties. Thus

these design approaches are conservative when an actual perturbation regions of

uncertainties is smaller than supposed ones. In contrast with these, several design

methods of variable gain robust controllers have been proposed. By using these vari-

able gain robust controllers, flexible controller design is possible such as avoidance

of excessive control input and deterioration of response characteristics caused by the

influence of uncertainties.

On the other hand, controlled systems become more complex because of the rapid

development of modern industry. Such complex systems should be considered as

“large-scale interconnected systems”. However, as is well known, it is difficult to

apply centralized control to such systems due to physical constraints, calculation

amounts and so on. Therefore, in decentralized control, controlled systems are di-

vided into several subsystems, and controllers are designed for each subsystems.

Furthermore, many researchers have also studied decentralized robust control for

uncertain large-scale interconnected systems. However, there are few results for de-

centralized robust controllers with variable gains. In the case of the conventional
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decentralized robust controllers with fixed gains, the size of linear matrix inequali-

ties (LMIs) which should be solved to design decentralized robust controller becomes

large. In contrast with these, LMIs for decentralized variable gain robust controllers

are more simple than ones of the conventional decentralized robust controllers with

fixed gains only, namely, there is a possibility that decentralized variable gain con-

trollers can stabilize uncertain large-scale interconnected systems which cannot be

stabilize in the case of conventional fixed gain controllers.

In this thesis, for uncertain large-scale interconnected systems, we propose design

methods of decentralized variable gain robust controllers (DVGRC).

First of all in chapter 1, we introduce the history of control theory, robust control

and decentralized control. Moreover, the purpose and the originality in this thesis

are described. Finally, notations and useful lemmas which are used in this thesis

are shown. In chapter 2, we propose an LMI-based design method of a decentral-

ized variable gain robust regulator for a class of uncertain large-scale interconnected

systems. For the uncertain large-scale interconnected system, uncertainties and in-

teractions satisfy so-called matching condition. Furthermore, a sufficient condition

for the existence of proposed decentralized variable gain robust controller is given

in terms of LMIs. Finally, we include a numerical example to show the effective-

ness of the proposed decentralized robust controller. Next, chapter 3 describes a

design method of decentralized variable gain robust controllers with guaranteed dis-

turbance attenuation performance referred to as “L2 gain performance” for a class

of uncertain large-scale interconnected systems. In chapter 3, we also assume that

uncertainties and interactions satisfy matching condition, and disturbance inputs

are square integrable functions. Additionally, we show that sufficient conditions for

the existence of the proposed decentralized variable gain robust controller with guar-

anteed L2 gain performance are given in terms of LMIs. Finally, simple illustrative

example is shown. Chapter 4 shows a decentralized variable gain robust controller

for a class of large-scale interconnected systems with mismatched uncertainties. For

the uncertain large-scale interconnected systems, uncertainties and interactions do

not satisfy matching condition, and we divide them into the matched part and the

mismatched one. A sufficient condition for the existence of the proposed decentral-

ized variable gain robust controller is reduced to LMIs. Finally, we show a numerical

example to validate the proposed design procedure. Chapter 5 describes conclusions

in this thesis and future works.
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Chapter 1

Introduction

Robust control for uncertain dynamical systems and decentralized robust control

for uncertain large-scale interconnected systems have been well studied. In this

chapter, we introduce the history of control theory. Namely, we look back the history

of development for classical and modern control, robust control and decentralized

control. Moreover, the purpose and the originality in this thesis are described.

Finally, notations and useful lemmas which are used in this thesis are shown.

1.1 Classical Control and Modern Control

As you know, control systems can be found in diverse field of industry such as electric

power systems, robotics, chemical plants, transportation systems, space systems and

so on. In order to control such systems, many researchers have well studied various

control strategies and when we design control systems, it is necessary to construct

mathematical models for the controlled systems. For mathematical models, there are

mainly two types of representation, i.e., transfer function representation (classical

control theory) [1–3] and state-space representation (modern control theory) [4–6].

Classical control theory have been developed in the 1950’s, and describe controlled

systems by using the relation between inputs and outputs (i.e. transfer function

representations and frequency responses). For the stability analysis based on classi-

cal control, Routh-Hurwitz stability criterion [7] and Nyquist criterion [8] are well

known. Bode and Nichols proposed graphical design methods, which are well-known

as “Bode diagram” [9] and “Nichols chart” [10], respectively. Moreover, some design

methods based on classical control such as PID (Proportional, Integral and Deriva-

1



1.1. CLASSICAL CONTROL AND MODERN CONTROL

tive) controllers and phase lag-lead compensators have been suggested [11]. However

in classical control theory, controlled systems are mainly linear and time-invariant,

and have single input and single output only. Furthermore, experiences and trial

and error are needed for design approaches based on classical control theory.

On the other hand, modern control theory has been presented by Kalman in the

1960’s. Modern control theory describes not only the relation between inputs and

outputs but also internal states of controlled systems by using state variables, i.e.,

controlled systems have been represented as state equation (i.e. state space rep-

resentations). Kalman has proposed optimal regulator theory [12, 13] and optimal

filtering one [14]. Namely, in modern control theory, controller design problems are

reduced to optimization problems based on the concept of state variables. As men-

tioned above, classical control is a design theory of frequency domain and controlled

systems are mainly linear and time-invariant, and have single input and single out-

put only. In contrast, modern control is a design theory of time domain, and it

is applicable to systems which are difficult to deal with by classical control (e.g.

multi-input and multi-out systems and nonlinear systems), and thus there are a lot

of results based on the state space representation for stability analysis and controller

design problems [15–17]. The characteristics of classical control and modern control

are summarized in Table 1.1.

Table 1.1: Characteristics of classical control and modern control

Classical control Modern control

Design space Frequency region Time domain

System representation Transfer function State equation

Design approach Graphical methods Matrix computation

In modern control theory, pole assignment [18, 19] and optimal control theory

[20–22] are representative controller design methods. Pole assignment is that if

controlled systems are linear and controllable, state feedback control laws can place

the closed-loop poles for controlled systems at arbitrary locations in the complex

plane. Moreover, optimal control is the problem of finding a control law which

minimizes a certain cost function. Especially, for linear systems, linear quadratic

optimal control is a controller design problem that minimizes a given quadratic cost

function which includes state and control variables, and the control law derived by

2



CHAPTER 1. INTRODUCTION

solving the optimization problem is referred to as linear-quadratic regulator (LQ

regulator) [23]. It is well known that LQ regulator has a robustness and a low

sensitivity for parameter variations of controlled systems. Furthermore, its state

feedback control law can be designed easily by using the solution of an algebraic

Riccati equation and stability for the closed-loop system is guaranteed [24].

1.2 Robust Control

When we design control systems, it is necessary to establish mathematical models for

controlled systems. If the mathematical model describes the controlled system with

sufficient accuracy, satisfactory control performance are achievable by using various

controller design methods. However, there inevitably exist some gaps between the

controlled systems and its mathematical model, and the gaps are referred to as

“uncertainties”. Uncertainties are caused by linearization for nonlinear systems,

modelling error (e.g. model order reduction), variations of system parameters and so

on. The uncertainties in the mathematical model may cause deterioration of control

performance or unstability of control systems. Therefore, many researchers have

well focused robust control problems for dynamical systems with uncertainties, and

a large number of existing results for robust stability analysis and robust stabilization

have already been obtained [25–27]. As an example of applications for robust control,

let us consider the control for a space rocket such as Figure 1.1 [28].

Figure 1.1: Space rocket [28]

3



1.2. ROBUST CONTROL

Figure 1.2: Overview of robust controller design

Although nominal parameters of the space rocket can be obtained by various tests,

its true parameters are uncertain/unknown due to the effect of flight enviroment and

so on. Therefore, designers should consider gaps (uncertainties) between nominal

values and true ones. In particular, since launch and flight of the rocket are one-shot,

robust control is very effective for such case.

In general, the mathematical model derived by modelling is unique. But, in robust

control theory, the mathematical model for the controlled system is considered as

a model set consisting of a nominal model and uncertainties, and controllers are

designed such that robust stability and desired performance for all systems belonging

to a model set are achieved. Namely, the controller design problem in robust control

is defined as follows.

The controller design problem in robust control� �
Design a controller which stabilizes all systems belonging to a model set which

includes a nominal model and variations of uncertainties.� �
This means that robust controller design is worst-case one. Figure 1.2 shows the
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CHAPTER 1. INTRODUCTION

process of controller design. In the 1980’s, main problems of robust controller de-

sign was to ensure the robust stability of uncertain systems. From the 1990’s, lots

of controller design methods which achieve not only robust stability but also de-

sired performance for uncertain systems have been established [29,30]. One can see

that quadratic stabilization based on Lyapunov stability criterion and H∞ control

are typical robust controller (e.g. [31–35]). Furthermore some researchers investi-

gated quadratic stabilizing control with achievable performance level in reference

to such as a quadratic cost function [36, 37], robust H2 control [38, 39] and robust

H∞-type disturbance attenuation [40, 41]. In addition, the results for robust sta-

bility analysis and robust controller design problems using parameter dependent

Lyapunov functions (PDLFs) or piecewise Lyapunov functions (PLFs) have been

presented [42–44]. Moreover, Chesi has proposed the design method of robust con-

trollers based on homogeneous polynominal Lyapunov functions (HPLFs) for linear

systems with polytopic time-varying uncertainty [45]. Additionally, for uncertain

linear systems with exogenous disturbances, a linear state feedback controller which

achieves not only robust stability but also minimization of the bound of invariant

ellipsoidal set for the output has also been suggested [46]. However, most of robust

controllers consist of fixed gain parameters which are designed by considering the

worst case variations for uncertainties/unknown parameters. In contrast with such

conventional robust control with fixed gains, several design methods of some robust

controllers with variable gains have also been proposed (e.g. [47,48]). In the work of

Maki and Hagino [47], by introducing time-varying adjustable parameters, adapta-

tion mechanisms for improving transient behavior have been suggested. Moreover,

for linear systems with matched uncertainties, Oya and Hagino [48] have introduced

an adaptive compensation input which is determined so as to reduce the effect of

uncertainties. In addition, a design method of robust controllers with variable gains

based on LQ optimal control for a class of uncertain linear systems has also been

shown [49]. These robust controllers have both fixed controller parameters and vari-

able ones tuned by updating laws, and resultant control systems are more flexible

and adaptive comparing with the conventional robust controllers with fixed gains

only. Note that in this thesis, these robust controllers with time-varying adjustable

parameters are referred to as “variable gain robust controller”.
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1.3 Decentralized Control

In recent years, owing to the rapid development of industry, controlled systems have

become highly complex and large in dimension, and such dynamical systems are re-

ferred to as “large-scale interconnected systems” or “large-scale complex systems”.

Although large-scale and complex systems can be seen in diverse fields such as traf-

fic systems, economic systems, electrical systems and so on, it is difficult to apply

centralized control strategies for such large-scale interconnected systems because of

calculation amounts, physical communication constraints and so on. Therefore, de-

centralized control problems for large-scale interconnected systems have been well

studied [50–54]. In the decentralized control strategy, large-scale interconnected sys-

tems are divided into several subsystems and controlled each one by more than one

controller or decision maker involving decentralized computation. Figure 1.3 shows

the overview of decentralized control. In Figure 1.3, the number of subsystems and

controllers is 3, and dij denotes interactions from i-th subsystem to j-th subsys-

tem. The major problem of large-scale interconnected systems is how to deal with

Figure 1.3: Overview of decentralized control
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Figure 1.4: Traffic system [55]

the interactions among subsystems. Namely, each subsystem is controlled by the

corresponding controller. For typical applications of decentralized control, a decen-

tralized traffic signal control system based on decentralized intelligence (Figure 1.4)

has been developed [55]. Furthermore, we find that smart grid (Figure 1.5), which

control electric power supply and demand using networked decentralized small-scale

power sources, receives much attention in recent years [56].

During the last three decades, various types of decentralized control problems

have been studied, and a large number of results in decentralized control systems

can be seen in the work of Šiljak [52]. Furthermore, a framework for the design of

decentralized robust model reference adaptive control for interconnected time-delay

systems has been considered in [57] and decentralized fault tolerant control problem

has also been solved [58]. Lee et al. [59,60] have studied synchronization problems for

complex dynamical network with randomly switching topology [59,60]. Additionally,

stability analysis and decentralized controller design problems for fuzzy large-scale

systems have been shown [61, 62]

For decentralized robust control for uncertain large-scale interconnected systems,

many researchers have also considered various problems (e.g [63–67]). In the work

of Mao and Lin [63], the aggregative derivation are tracked by using a model follow-

ing technique with online improvement for large-scale interconnected systems with

unmodelled interaction, and a sufficient condition for which the overall system when

7
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Figure 1.5: Smart grid [56]

controlled by the completely decentralized control is asymptotically stable has been

presented. Chen et al. [64, 65] have considered a design problem of a decentralized

controller for a class of interconnected nonlinear dynamical systems with uncertain

parameters and input disturbances. Additionally, decentralized robust controllers

which guarantee robust stability with prescribed degree of exponential convergence

have been presented. For a class of uncertain interconnected systems with state

and input delays, Zhang et al. [67] have proposed a design method of decentralized

output feedback controllers based on Riccati equation. Furthermore, decentralized

guaranteed cost controllers for uncertain large-scale interconnected systems have

also been suggested [68–70]. In addition, the robust decentralized control problem

for discrete-time singular large-scale systems with interval uncertainties has been in-

vestigated [71]. However, there are few results for decentralized variable gain robust

controllers for large-scale interconnected systems. In the case of decentralized ro-

bust controllers with fixed gains, the size of linear matrix inequalities (LMIs) which

should be solved to design decentralized robust controller becomes large. But, the

size of derived LMIs for decentralized variable gain robust controllers are smaller

comparing with the conventional decentralized robust controllers with fixed gains

only, namely, there is a possibility that decentralized variable gain robust controller

can stabilize uncertain large-scale interconnected systems which cannot be stabilized

by the conventional decentralized robust controllers.

8
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1.4 Purpose and Points of Originality

In this thesis, for uncertain large-scale interconnected systems, we propose LMI-

based design methods for decentralized variable gain robust controllers. Further-

more, simple illustrative examples are included to show the effectiveness of the

proposed decentralized variable gain robust control strategies.

First of all in chapter 2, an LMI-based design method of a decentralized variable

gain robust regulator for a class of uncertain large-scale interconnected systems is

proposed. Uncertainties and interactions which are included in the large-scale in-

terconnected system satisfy so-called matching condition [31, 72]. Furthermore, a

sufficient condition for the existence of proposed decentralized variable gain robust

controller is given in terms of LMIs. The proposed decentralized variable gain robust

controller achieves not only robust stability but also satisfactory transient behavior.

Note that LMIs in the case of conventional decentralized fixed gain robust controllers

may not feasible for large-scale interconnected systems with matched uncertainties.

On the other hand, the proposed LMI condition is always feasible, namely, design-

ers can derive the decentralized variable gain robust controller provided that some

assumptions are satisfied.

Next, based on the result of chapter 2, we present a design method of decentral-

ized variable gain robust controllers with guaranteed disturbance attenuation per-

formance referred to as “L2 gain performance” for a class of uncertain large-scale

interconnected systems in chapter 3. The proposed decentralized robust controller

achieves not only internal stability but also L2 gain performance. The decentral-

ized variable gain robust controller design method derived in chapter 3 is a natural

extension of the result of chapter 2.

In chapter 4, we show a decentralized variable gain robust controller for a class of

large-scale interconnected systems with mismatched uncertainties. For the uncer-

tain large-scale interconnected systems, uncertainties and interactions do not satisfy

matching condition. There is a possibility that the proposed decentralized variable

gain robust controller can stabilize the large-scale interconnected systems with mis-

matched uncertainties, in the case that the conventional decentralized fixed gain ro-

bust controller cannot be designed. The effect of matched parts of uncertainties can

be suppressed by the variable gain parameter in the proposed controller, and the size

of LMIs which should be solved to design proposed variable gain robust controller is

smaller than one for the conventional fixed gain robust controllers. Therefore, the

9
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proposed design method can be applied more larger class of uncertain large-scale

interconnected systems, and the proposed decentralized robust control scheme is

very useful.

Finally, in chapter 5, we summarize the result and the usefulness of the proposed

decentralized variable gain robust control strategies in this thesis. Moreover, we

describe future works to be carried out.

1.5 Notations and Lemmas

In this section, we show notations and useful and well-known lemmas (see [73–75]

for details) which are used in this thesis.

For a matrix A, the transpose of matrix A and the inverse of one are denoted

by AT and A−1, respectively. In addition, He{A} and In mean A + AT and n-

dimensional identity matrix, respectively, and a block diagonal matrix composed

of matrices Ai for i = 1, · · · ,M is represented as diag (A1, · · · ,AM). For real

symmetric matrices A and B, A > B (resp. A ≥ B) means that A − B is positive

(resp. nonnegative) definite matrix. For a vector α ∈ R
n, ||α|| denotes standard

Euclidian norm, and for a matrix A, ||A|| represents its induced norm. The symbols

“�” and “
�
=” mean symmetric blocks in matrix inequalities and equality by definition,

respectively.

Lemma 1.1 For arbitrary vectors λ and ξ and the matrices G and H which have

appropriate dimensions, the following inequality holds;

He

{
λTGΔ(t)Hξ} ≤ 2

∥∥∥GTλ
∥∥∥∥∥∥Hξ∥∥∥ ,

where Δ(t) with appropriate dimension is a time-varying unknown matrix satisfying

‖Δ(t)‖ ≤ 1.0.

Proof : By using Schwarz’s inequality [74] and the relation ‖Δ(t)‖ ≤ 1.0, one can

see that the relation

He{λTGΔ(t)Hξ} = 2λTGΔ(t)Hξ

≤ 2‖GTλ‖‖Δ(t)‖‖Hξ‖

≤ 2‖GTλ‖‖Hξ‖
can easily be obtained.

10
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Lemma 1.2 (Schur complement) For a given constant real symmetric matrix Θ,

the following items are equivalent.

i). Θ =

(
Θ11 Θ12

ΘT
12 Θ22

)
> 0;

ii). Θ11 > 0 and Θ22 −ΘT
12Θ

−1
11 Θ12 > 0;

iii). Θ22 > 0 and Θ11 −Θ12Θ
−1
22 Θ

T
12 > 0:

Proof : See Boyd et al. [73] for details.
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Chapter 2

Decentralized Variable Gain

Robust Controller for Large-Scale

Interconnected Systems with

Matched Uncertainties

In this chapter, for a class of large-scale interconnected systems with uncertainties

which satisfy matching condition, a decentralized variable gain robust controller

which achieves not only robust stability but also satisfactory transient behavior is

proposed [76]. We show that the proposed variable gain robust controller design

strategy is based on LMIs.

2.1 Problem Formulation

Let us consider the uncertain large-scale interconnected system composed of N
subsystems represented by

d

dt
xi(t) = Aii(t)xi(t) +

N∑
j=1
j �=i

Aij(t)xj(t) +Biui(t), (2.1)

where xi(t) ∈ R
ni and ui(t) ∈ R

mi (i = 1, · · · ,N ) are the vectors of the state and the

control input for the i-th subsystem, respectively and x(t) =
(
xT

1 (t), · · · , xT
N (t)

)T
is

13
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the state of the overall system. The matrices Aii(t) and Aij(t) are given by

Aii(t) = Aii +BiΔii(t)Eii,

Aij(t) = BiDij +BiΔij(t)Eij.
(2.2)

In (2.2), matrices Aij(t) ∈ R
ni×nj are coefficients for interactions among subsystems,

and the matrices Aii ∈ R
ni×ni, Aij ∈ R

ni×nj and Bi ∈ R
ni×mi mean the nominal

system matrix and the nominal input one. In addition, the matrices Dij, Eii and Eij

with appropriate dimensions denote the structure of interactions or uncertainties.

Moreover, matrices Δii(t) ∈ R
mi×pi and Δij(t) ∈ R

mi×qij represent unknown param-

eters satisfying the relations ‖Δii(t)‖ ≤ 1.0 and ‖Δij(t)‖ ≤ 1.0, respectively. One

can see from (2.2) that the uncertainties and the interaction terms satisfy so-called

matching condition [31, 72].

Now, we introduce the following nominal subsystem which is obtained by ignoring

uncertainties and interactions in (2.1);

d

dt
xi(t) = Aiixi(t) +Biui(t). (2.3)

In (2.3), xi(t) ∈ R
ni denote ui(t) ∈ R

mi are the vectors of the state and the control

input for the i-th nominal subsystem, respectively.

Firstly, the standard linear quadratic control problem is adopted for the i-th nom-

inal subsystem of (2.3) in order to generate the desired trajectory in time response

for the uncertain i-th subsystem of (2.1). Note that we can also adopt some other

design methods for deriving the desirable response (e.g. pole assignment). It is well

known that the optimal control input for the i-th nominal subsystem of (2.3) can

be obtained as

ui(t) = Kixi(t),

Ki
�
=−R−1

i BT
i Xi.

(2.4)

In (2.4), Xi ∈ R
ni×ni is a symmetric positive define matrix which satisfies the alge-

braic Riccati equation

He

{
AT

iiXi

}−XiBiR−1
i BT

i Xi + Qi = 0, (2.5)

where Qi ∈ R
ni×ni and Ri ∈ R

mi×mi are the weighting matrices, and these ma-

trices are positive definite matrices. Note that Qi ∈ R
ni×ni and Ri ∈ R

mi×mi are

determined in advance so that the desirable transient behavior is achieved.

14
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WITH MATCHED UNCERTAINTIES

Let us introduce error vectors ei(t)
�
= xi(t)−xi(t). Besides, for the i-th subsystem

of (2.1), using the feedback gain matrix Ki ∈ R
mi×ni of (2.4), we define the following

control input [48];

ui(t)
�
=Kixi(t) + vi(t), (2.6)

where vi(t) ∈ R
mi is the compensation input defined as

vi(t)
�
=Fiei(t) + Li(xi, ei, t)ei(t), (2.7)

where, Fi ∈ R
mi×ni and Li(xi, ei, t) ∈ R

mi×ni denote the fixed compensation gain

matrix and the variable one, respectively. From (2.1), (2.3), (2.6) and (2.7), the

following uncertain error subsystem is derived;

d

dt
ei(t) = (AKi

+BiFi) ei(t) +BiΔi(t)Eiixi(t) +Bi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)xj(t)

+BiLi(xi, ei, t)ei(t). (2.8)

In (2.8), AKi
∈ R

ni×ni is the stable matrix described as AKi
= Aii +BiKi.

From the above discussion, our design objective in this chapter is to determine the

decentralized variable gain controller of (2.6) such that the resultant overall system

achieves not only robust stability but also satisfactory transient behavior.

2.2 Decentralized Variable Gain Robust Regula-

tor

A sufficient condition for the existence of the proposed decentralized control system

is shown as the following theorem [76];

Theorem 2.1 Let us consider the uncertain error subsystem of (2.8) and the control

input of (2.6).

By using symmetric positive definite matrices Yi ∈ R
ni×ni and Si ∈ R

ni×ni, ma-

trices Wi ∈ R
mi×ni and positive constants εi which satisfy the LMIs(

He {AKiYi +BiWi} Λi (Yi)

� −Γi (εi)

)
< 0, (2.9)
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(
He {SiAKi

} Ψi

� −Γi (εi)

)
< 0, (2.10)

the fixed gain matrix Fi ∈ R
mi×ni and the variable one Li(xi, ei, t) ∈ R

mi×ni are

determined as Fi = WiY−1
i and

Li(xi, ei, t)
�
=

⎧⎨
⎩ −ζi(ei, xi, t) + ηi(ei, t)

‖BT
i Piei(t)‖2

BT
i Pi (BT

i Piei(t) �= 0),

Li(xi, ei, tε) (BT
i Piei(t) = 0).

(2.11)

In (2.9) – (2.11), matrices Λi (Yi), Ψi and Γi (εi), and positive scalar functions

ζi(ei, xi, t) and ηi(ei, t) are given by

Λi (Yi)
�
=
(YiDT

1i YiET
1i · · · YiDT

i−1i YiET
i−1i YiDT

i+1i YiET
i+1i · · ·

· · · YiDT
N i YiET

N i

)
, (2.12)

Ψi
�
=
(DT

1i ET
1i · · · DT

i−1 i ET
i−1 i DT

i+1 i ET
i+1 i · · · DT

N i ET
N i

)
, (2.13)

Γi (εi)
�
= diag

(
ε1Im1 , ε1Iq1i

, · · · , εi−1Imi−1
, εi−1Iqi−1i

, εi+1Imi+1
, εiIqi+1i

, · · · ,

· · · , εN ImN , εN IqN i
) , (2.14)

ζi(ei, xi, t)
�
=
∥∥BT

i Piei(t)
∥∥ ‖Eiixi(t)‖ , (2.15)

ηi(ei, xi, t)
�
=2εi(N − 1)‖BT

i Piei(t)‖2. (2.16)

Moreover, tε in (2.11) is given by tε = limε>0,ε→0(t− ε) [47].

Then robust stability of the overall error system composed of the N error subsys-

tems of (2.8) is guaranteed.

Proof : In order to prove Theorem 2.1, the following quadratic function is

defined;

V(e, x, t)
�
=

N∑
i=1

Vei
(ei, t) +

N∑
i=1

Vxi
(xi, t), (2.17)

where Vei
(ei, t) and Vxi

(xi, t) are given by

Vei
(ei, t)

�
= eT

i (t)Piei(t), (2.18)

Vxi
(xi, t)

�
=xT

i (t)Sixi(t). (2.19)
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WITH MATCHED UNCERTAINTIES

For the quadratic functions Vei
(ei, t) of (2.18), we have

d

dt
Vei

(ei, t) ≤ eT
i (t)

[
He

{
(AKi +BiFi)

T Pi

}]
ei(t) + 2‖BT

i Piei(t)‖‖Eiixi(t)‖

+ 4εi(N − 1)eT
i (t)PiBiB

TPiei(t) +
1

εi

N∑
j=1
j �=i

eT
j (t)

(DT
ijDij + ET

ijEij

)
ej(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t). (2.20)

For derivation of (2.20), we have used Lemma 1.1 and the well-known inequality

2αTβ ≤ δαTα +
1

δ
βTβ (2.21)

for any vectors with appropriate dimensions and a positive scalar δ. Moreover, the

following relation for the quadratic functions Vxi
(xi, t) of (2.19) holds;

d

dt
Vxi

(xi, t) = xT
i (t)

[
He

{
AT

Ki
Si

}]
xi(t). (2.22)

Firstly, the case of BT
i Piei(t) �= 0 is considered. In this case, substituting the

variable gain matrix of (2.11) into (2.20) and some algebraic manipulations give

d

dt
Vei

(ei, t) ≤ eT
i (t)

[
He

{
(AKi +BiFi)

T Pi

}]
ei(t)

+
1

εi

N∑
j=1
j �=i

eT
j (t)

(DT
ijDij + ET

ijEij

)
ej(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t). (2.23)
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Thus, we can easily see that the following relation can be obtained;

d

dt
V(e, x, t) ≤

N∑
i=1

eT
i (t)

[
He

{
(AKi +BiFi)

T Pi

}]
ei(t)

+
N∑

i=1

xT
i (t)

[
He

{
AT

Ki
Si

}]
xi(t)

+
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩

1

εi

N∑
j=1
j �=i

eT
j (t)

(DT
ijDij + ET

ijEij

)
ej(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

⎫⎪⎪⎬
⎪⎪⎭ . (2.24)

Since the inequality of (2.24) can be rewritten as

d

dt
V(e, x, t) ≤

N∑
i=1

eT
i (t)

⎡
⎢⎢⎣He

{
(AKi +BiFi)

T Pi

}
+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
⎤
⎥⎥⎦ ei(t)

+
N∑

i=1

xT
i (t)

⎡
⎢⎢⎣He

{
AT

Ki
Si

}
+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
⎤
⎥⎥⎦xi(t), (2.25)

if the matrix inequality conditions

He

{
(AKi +BiFi)

T Pi

}
+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
< 0, (2.26)

He

{
AT

Ki
Si

}
+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
< 0 (2.27)

holds, then the following inequality for the quadratic function V(e, x, t) is satisfied;

d

dt
V(e, x, t) < 0 for ∀ξ(t) �= 0, (2.28)

where ξ(t)
�
=
(
eT
1 (t), · · · , eT

N (t), xT
1 (t), · · · , xT

N (t)
)T

.

18



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS

WITH MATCHED UNCERTAINTIES

Next we consider the case of BT
i Piei(t) = 0. In this case, from (2.20) and (2.22)

the time derivative of the quadratic function V(e, x, t) of (2.17) can be written as

d

dt
V(e, x, t) =

N∑
i=1

eT
i (t)

[
He

{
(AKi +BiFi)

T Pi

}]
ei(t)

+
N∑

i=1

xT
i (t)

[
He

{
AT

Ki
Si

}]
xi(t). (2.29)

Namely in the case of BT
i Piei(t) = 0, the relation of (2.28) also holds.

From the above, the overall error system is clearly robust stable, because the

nominal subsystem is asymptotically stable.

Finally, the matrix inequalities of (2.26) and (2.27) are considered. By introducing

the matrices Yi
�
=P−1

i and Wi
�
=FiPi and pre- and post-multiplying both sides of the

matrix inequality of (2.26) by Yi, the following matrix inequality can be obtained;

He {AKiYi +BiWi} +
N∑

j=1
j �=i

1

εj
Yi

(DT
jiDji + ET

jiEji

)Yi < 0. (2.30)

Thus by applying Lemma 1.2 (Schur complement) to (2.27) and (2.30), we find that

the inequalities of (2.27) and (2.30) are equivalent to the LMIs of (2.10) and (2.9),

respectively. Thus by solving the LMIs of (2.9) and (2.10), the fixed compensation

gain matrix is determined as Fi = WiY−1
i and the variable one is given by (2.11).

Hence the proof of Theorem 2.1 is completed.

Remark 2.1 The decentralized variable gain robust controller design method in this

chapter can be applied to the uncertain large-scale interconnected systems with time

delays (see [77]). Furthermore, although the uncertainties in the large-scale inter-

connected systems of (2.1) are described as structured uncertainties, in [78], the

parameter structured uncertainties are considered. The proposed design method in

this chapter can easily be extended to such control systems.

Remark 2.2 In order to derive the proposed decentralized variable gain robust con-

troller, solutions of the LMIs of (2.9) and (2.10) are needed. In the LMIs of (2.9)

and (2.10), LMI variables εi ∈ R
1 can arbitrarily be selected subject to εi > 0. There-

fore we find that there always exists the solutions of the LMIs of (2.9) and (2.10),

i.e., the proposed decentralized robust controller can always be designed. Therefore,

the proposed design method is very useful.
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2.3. NUMERICAL EXAMPLES

2.3 Numerical Examples

In this example, the uncertain large-scale interconnected system consisting of three

two-dimensional subsystems is considered, namely, N = 3. The system parameters

are given as

A11 =

(
−1.0 0.0

1.0 1.0

)
, A22 =

(
0.5 −1.0

1.0 −1.0

)
, A33 =

(
−1.0 1.5

0.0 1.0

)
,

B1 =

(
1.0

0.0

)
, B2 =

(
1.0

1.0

)
, B3 =

(
0.0

1.0

)
, ET

11 =

(
1.0

0.0

)
,

ET
22 =

(
1.0

2.0

)
, ET

33 =

(
1.0

1.0

)
, DT

12 =

(
1.0

2.0

)
, DT

13 =

(
2.0

2.0

)
,

DT
21 =

(
1.0

0.0

)
, DT

23 =

(
1.0

1.0

)
, DT

31 =

(
1.0

1.0

)
, DT

32 =

(
0.0

2.0

)
,

ET
12 =

(
2.0

1.0

)
, ET

13 =

(
2.0

2.0

)
, ET

21 =

(
1.0

0.0

)
, ET

23 =

(
0.0

2.0

)
,

ET
31 =

(
2.0

0.0

)
, ET

32 =

(
2.0

1.0

)
. (2.31)

Furthermore, we select the following initial values of the uncertain large-scale system

of (2.31) and the nominal system;

x(0) =
(

2.0 −1.0 −0.5 1.5 1.0 −2.0
)T

,

x(0) =
(

1.0 −1.5 −1.0 1.0 1.5 −1.5
)T

.
(2.32)

Additionally, unknown parameters are selected as Δii(t) = cos (5πt) and Δij(t) =

− sin (2πt), respectively.

In this example, for the weighting matrices Qi ∈ R
2×2 and Ri ∈ R

1×1 (i = 1, 2, 3)

for the nominal subsystems, we consider the following two cases:

• Type 1 : Q1 = diag(1.0, 2.0), Q2 = diag(1.0, 1.0 × 101), Q3 = I2,

R1 = 1.0, R2 = 1.0 × 101, R3 = 1.0 × 101

• Type 2 : Q1 = 1.0 × 101I2, Q2 = 1.0 × 101I2, Q3 = diag(5.0, 1.0 × 101),

R1 = 1.0 × 10−1, R2 = 1.0, R3 = 1.0
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Firstly, Type 1 is considered. By solving the algebraic Riccati equation of (2.5),

the symmetric positive definite matrices Xi ∈ R
2×2 and the optimal gain matrices

Ki ∈ R
1×2 of (2.33) for the i-th nominal subsystem are derived as

X1 =

(
2.6458 5.6458

� 1.4937 × 101

)
, X2 =

(
7.5663 −3.4261

� 7.5682

)
,

X3 =

(
4.9377 3.5301

� 2.0981

)
× 10−1,

K1 =
(

−2.6458 −5.6458
)
, K2 =

(
−4.1402 −4.1421

)
× 10−1,

K3 =
(

−3.5301 × 10−2 −2.0981
)
.

(2.33)

Besides, by using Theorem2.1, we design the proposed decentralized variable gain

robust controller. By solving LMIs of (2.9) and (2.10), we have

Y1 =

(
2.0399 × 101 −3.6077

� 1.7958

)
, WT

1 =

(
−2.2706 × 101

−7.1943

)
,

Y2 =

(
8.0537 4.8515 × 10−1

� 9.8791

)
, WT

2 =

(
−3.1187

−1.5631

)
× 101,

Y3 =

(
6.1443 −3.1541

−3.1541 1.1110 × 101

)
, WT

3 =

(
−8.7819

−5.1838 × 101

)
,

S1 =

(
1.9194 3.5411

� 1.6921

)
× 101, S2 =

(
8.7701 −5.1918

� 8.5940

)
× 101,

S3 =

(
4.7618 2.3655

� 7.4323

)
× 101,

ε1 = 1.7410 × 101, ε2 = 1.2826 × 101, ε3 = 4.2199 × 101.

(2.34)

Thus the symmetric positive definite matrices Pi ∈ R
2×2 and the fixed gain matrices

Fi ∈ R
1×2 can be computed as

P1 =

(
7.6040 × 10−2 1.5276 × 10−1

� 8.6376 × 10−1

)
,

P2 =

(
1.2453 × 10−1 −6.1157 × 10−3

� 1.0152 × 10−1

)
,

P3 =

(
1.9052 × 10−1 5.4085 × 10−2

� 1.0536 × 10−1

)
,

F1 =
(

−5.7563 −1.9542 × 101
)
, F2 =

(
−2.5281 2.0481 × 10−1

)
,

F3 =
(

−2.8277 −3.4977
)
.

(2.35)
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Next, Type 2 is considered. As with Type 1, the symmetric positive definite

matrices Xi ∈ R
2×2 and the optimal gain matrices Ki ∈ R

1×2 of (2.36) for the i-th

nominal subsystem are derived as

X1 =

(
1.1417 2.6595

� 3.0364 × 101

)
, X2 =

(
1.0128 × 101 −8.1942

� 1.0511 × 101

)
,

X3 =

(
2.2373 7.2487 × 10−1

� 4.6297

)
× 10−1,

K1 =
(

−1.1417 −2.6595
)
× 101, K2 =

(
−1.9338 −2.3166

)
,

K3 =
(

−7.24871 × 10−1 −4.6297
)
.

(2.36)

By solving LMIs of (2.9) and (2.10), matrices Yi ∈ R
2×2, Wi ∈ R

1×2 and Si ∈ R
2×2,

and positive scalars εi can be obtained as

Y1 =

(
9.3921 −2.5581

� 1.0929

)
, WT

1 =

(
2.5430 × 101

−5.5057

)
,

Y2 =

(
6.1941 −1.5624

� 7.6210

)
, WT

2 =

(
−9.0216

1.2692

)
× 101,

Y3 =

(
5.3346 −2.0748

� 6.1365

)
, WT

3 =

(
−9.3795

−1.8179

)
,

S1 =

(
1.0483 2.1948

� 4.5887 × 101

)
, S2 =

(
2.2637 −1.8223

� 2.4260

)
× 101,

S3 =

(
1.7343 × 101 3.9504

� 7.8018

)
,

ε1 = 1.7141 × 101, ε2 = 1.2878 × 101, ε3 = 3.2954 × 101.

(2.37)

Consequently, we can derive

P1 =

(
2.9374 × 10−1 6.8755 × 10−1

� 2.5243

)
,

P2 =

(
1.7025 × 10−1 3.4904 × 10−2

� 1.3837 × 10−1

)
,

P3 =

(
2.1584 × 10−1 7.2975 × 10−2

� 1.8763 × 10−1

)
,

F1 =
(

3.6844 3.5863
)
, F2 =

(
−1.0929 1.4414

)
,

F3 =
(

−2.1571 −1.0256
)
.

(2.38)

22



CHAPTER 2. DVGRC FOR LARGE-SCALE INTERCONNECTED SYSTEMS

WITH MATCHED UNCERTAINTIES

Figures 2.1 – 2.8 show the simulation results of this numerical example. In these

figures, x
(l)
i (t) and x

(l)
i (t) (l = 1, 2) are the l-th element of xi(t) for i-th subsystem

and one of the state xi(t) for i-th nominal subsystem, respectively. From these

figures, one can find that the proposed decentralized variable gain robust controller

stabilizes the uncertain large-scale systems with system parameters of (2.31) in spite

of uncertainties and interactions. Moreover, the proposed decentralized variable

gain robust controller achieves good transient response close to the desired transient

behavior generated by the nominal subsystem. Additionally, in the result of Type2,

one can see that the state variables of each subsystem converge faster than the

result of Type 1. Namely, it can be confirmed that the transient behavior for each

subsystem can be changed by adjusting the weighting matrices. Thus, we have

shown the effectiveness of the proposed decentralized robust control system.
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Figure 2.1: Time histories of x1(t) and x1(t): Type 1
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Figure 2.2: Time histories of x2(t) and x2(t): Type 1
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Figure 2.3: Time histories of x3(t) and x3(t): Type 1
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Figure 2.5: Time histories of x1(t) and x1(t): Type 2
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Figure 2.6: Time histories of x2(t) and x2(t): Type 2
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Figure 2.7: Time histories of x3(t) and x3(t): Type 2
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2.4. SUMMARY

2.4 Summary

In this chapter, a decentralized variable gain robust controller for a class of large-

scale interconnected systems with uncertainties and interactions which satisfy match-

ing condition has been proposed. Furthermore, a numerical example have been il-

lustrated to show the effectiveness of the proposed control strategies. The proposed

decentralized variable gain robust controller achieves not only robust stability but

also satisfactory transient behavior generated by the nominal subsystem. Moreover,

the transient behavior for each subsystem can be adjusted by selecting the weighting

matrices. The proposed LMI condition is always feasible, i.e., designers can derive

the decentralized variable gain robust controller provided that some assumptions

are satisfied. On the other hand, in the case of the conventional decentralized fixed

gain robust controllers, derived LMIs may not feasible for large-scale interconnected

systems with matched uncertainties. Thus, the proposed method in this chapter is

very useful.
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Chapter 3

Decentralized Variable Gain

Robust Controllers with

Guaranteed L2 Gain Performance

for Uncertain Large-Scale

Interconnected Systems

For a class of uncertain large-scale interconnected systems, an LMI-based design

method of decentralized variable gain robust controller with guaranteed L2 gain

performance is shown in this chapter [79]. Moreover, the effectiveness of the pro-

posed controller is presented through simple numerical examples.

3.1 Problem Formulation

Consider the uncertain large-scale interconnected system composed of the following

N subsystems;

d

dt
xi(t) = Aii(t)xi(t) +

N∑
j=1
j �=i

Aij(t)xj(t) +Biui(t) + Γxi
ωi(t),

zi(t) = Ciixi(t) + Γzi
ωi(t),

(3.1)

where xi(t) ∈ R
ni , ui(t) ∈ R

mi , zi(t) ∈ R
pi and ωi(t) ∈ R

qi (i = 1, · · · ,N ) are the

vectors of the state, the control input, the controlled output and the disturbance
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input for the i-th subsystem, respectively. The disturbance input ωi(t) ∈ R
qi is

assumed to be square integrable, that is, ωi(t) ∈ L2[0,∞). The matrices Aii(t) and

Aij(t) in (3.1) are given by

Aii(t) = Aii +BiΔii(t)Eii,

Aij(t) = BiDij +BiΔij(t)Eij.
(3.2)

In (3.1) and (3.2), the matrices Aii ∈ R
ni×ni, Aij ∈ R

ni×nj , Bi ∈ R
ni×mi, Cii ∈

R
pi×ni, Γxi

∈ R
ni×qi, and Γzi

∈ R
pi×qi are known system parameters, and the matri-

ces Dij, Eii and Eij with appropriate dimensions represent the structure of interac-

tions or uncertainties. Moreover, the matrices Δii(t) ∈ R
mi×ri and Δij(t) ∈ R

mi×sij

are unknown time-varying parameters satisfying the relations ‖Δii(t)‖ ≤ 1.0 and

‖Δij(t)‖ ≤ 1.0, respectively, i.e., the uncertainties and the interaction terms satisfy

the matching condition.

Now, we define the following control input for the i-th subsystem of (3.1);

ui(t)
�
=Fixi(t) + ψi(xi, t),

ψi(xi, t)
�
=Li(xi, t)xi(t),

(3.3)

where, Fi ∈ R
mi×ni and ψi(xi, t) ∈ R

mi denote the fixed gain matrix and the com-

pensation input for the i-th subsystem of (3.1). From (3.1), (3.2), and (3.3), we can

derive the following closed-loop subsystem;

d

dt
xi(t) = (Aii +BiFi)xi(t) +BiΔiiEiixi(t) +Bi

N∑
j=1
j �=i

(Dij + ΔijEij) xj(t)

+BiLi(xi, t)xi(t) + Γxi
ωi(t). (3.4)

Now a definition of the decentralized variable gain robust control with guaranteed

L2 gain performance is given as follows;

Definition 3.1 The control input of (3.3) for the uncertain large-scale intercon-

nected system of (3.1) is said to be a decentralized variable gain robust control

with guaranteed L2 gain performance γ∗ > 0 if the internal stability of the resul-

tant closed-loop system of (3.4) is ensured, and H∞-norm of the transfer function

from the disturbance input ω(t)
�
=(ωT

1 (t), ωT
2 (t), · · · , ωT

N (t))T to the controlled output

z(t)
�
=(zT

1 (t), zT
2 (t), · · · , zT

N (t))T is less than or equal to a positive constant γ∗.
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By using symmetric positive definite matrices Pi ∈ R
ni×ni, we consider the fol-

lowing quadratic function;

V(x, t)
�
=

N∑
i=1

Vi(xi, t), (3.5)

where Vi(xi, t) is

Vi(xi, t)
�
= xT

i (t)Pixi(t). (3.6)

Moreover, we introduce the following Hamiltonian;

H(x, t)
�
=
d

dt
V(x, t) +

N∑
i=1

{
zT

i (t)zi(t) − (γ∗i )
2 ωT

i (t)ωi(t)
}
. (3.7)

Then, for the uncertain large-scale interconnected system of (3.1) and the control

input of (3.3), we have the following lemma for the decentralized variable gain robust

control with guaranteed L2 gain performance γ∗ > 0;

Lemma 3.1 Let us consider the uncertain large-scale interconnected system of (3.1)

and the control input of (3.3).

If there exist symmetric positive definite matrices Pi (i = 1, · · · ,N ) and positive

scalars γ∗i which satisfy the inequality

H(x, t) < 0, (3.8)

for the quadratic function V(x, t) and the signals z(t) and ω(t), then the control

input of (3.3) is a decentralized variable gain robust control with guaranteed L2 gain

performance γ∗, where γ∗ is given by

γ∗ = max
i
γ∗i (i = 1, · · · ,N ) . (3.9)

Proof : The following inequality can be obtained by integrating both sides of the

inequality of (3.8) from 0 to ∞ with xi(0) = 0;

V(x,∞) +

N∑
i=1

{∫ ∞

0

zT
i (t)zi(t)dt− (γ∗i )

2

∫ ∞

0

ωT
i (t)ωi(t)dt

}
< 0. (3.10)

One can see that the overall uncertain closed-loop system of (3.4) is robustly stable

(internally stable) from the inequality of (3.7) and (3.8), i.e., robust stability of the

overall uncertain closed-loop system with ω(t) = 0 is guaranteed. Moreover, the
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H∞-norm of the transfer function from the disturbance input ω(t) to the controlled

output z(t) is less than a positive constant γ∗, because the inequality of (3.10) means

the following relation; ∥∥∥z(t)∥∥∥
L2

< γ∗
∥∥∥ω(t)

∥∥∥
L2

. (3.11)

Thus the proof of Lemma 3.1 is accomplished.

From the above discussion, in this chapter, the design objective is to design the

decentralized variable gain robust controller of (3.3) such that the overall system

achieves not only internal stability but also guaranteed L2 gain performance γ� > 0.

That is to derive the symmetric positive definite matrices Pi ∈ R
ni×ni, positive

constants γ∗, the fixed gain matrices Fi ∈ R
mi×ni and the compensation input

ψi(xi, t) ∈ R
mi which satisfy the inequality of (3.8) for uncertainties Δii(t) ∈ R

mi×ri

and Δij(t) ∈ R
mi×sij , and the disturbance input ωi(t) ∈ L2[0,∞).

3.2 Decentralize Variable Gain Controller with

guaranteed L2 Gain Performance

The following theorem shows sufficient conditions for the existence of the proposed

decentralized robust control system [79];

Theorem 3.1 Let us consider the large-scale interconnected system of (3.1) and the

control input of (3.3).

By using symmetric positive definite matrices Yi ∈ R
ni×ni, the matrices Wi ∈

R
mi×ni and positive scalars εi and γi which satisfy the LMIs⎛

⎜⎜⎝
He {AiiYi +BiWi} Γxi

+ YiC
T
iiΓzi

Λi (Yi)

� Γ T
zi
Γzi

− γiIqi
0

� � −Ωi (εi)

⎞
⎟⎟⎠ < 0, (3.12)

the fixed gain matrix Fi ∈ R
mi×ni and the compensation input ψi(xi, t) ∈ R

mi are

determined as Fi
�
=WiY−1

i and

ψi(xi, t)
�
=

⎧⎪⎪⎨
⎪⎪⎩

−ζi(xi, t) + ηi(xi, t)∥∥∥BT
i Pixi(t)

∥∥∥2 BT
i Pixi(t) (BT

i Pixi(t) �= 0),

ψi(xi, tε) (BT
i Pixi(t) = 0).

(3.13)
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In (3.12) and (3.13), matrices Λi (Yi) and Ωi (εi), and scalar functions ζi(xi, t) and

ηi(xi, t) are given by

Λ (Yi)
�
=

(YiC
T
ii YiDT

1i YiET
1i YiDT

2i YiET
2i · · ·

· · · YiDT
i−1 i YiET

i−1 i YiDT
i+1 i YiET

i+1 i · · ·

· · · YiDT
N i YiET

N i

)
, (3.14)

Ω (εi)
�
= diag (Ipi

, ε1Im1 , ε1Is1i, ε2Im2 , ε2Is2i, · · ·

· · · , εi−1Imi−1
, εi−1Isi−1i, εi+1Imi+1

, εi+1Isi+1i, · · ·

· · · , εN ImN , εN IsN i) , (3.15)

ζi(xi, t) =
∥∥∥BT

i Pixi(t)
∥∥∥∥∥∥Eiixi(t)

∥∥∥ , (3.16)

ηi(xi, t) = εi (N − 1)
∥∥∥BT

i Pixi(t)
∥∥∥2

. (3.17)

Note that tε in (3.13) is given by tε = limε>0,ε→0(t− ε) [47].

Then the control input of (3.3) is the decentralized variable gain robust control

with guaranteed L2 gain performance γ∗ = max
i

√
γi.

Proof : In order to prove Theorem 3.1, we consider the quadratic function

V(x, t) of (3.5), the Hamiltonian H(x, t) of (3.7) and the inequality of (3.8).

For the quadratic function Vi(xi, t) of (3.6), its time derivative along the trajectory

of the resultant closed-loop subsystem of (3.4) can be compute as

d

dt
Vi(xi, t) = xT

i (t)
[
He

{
(Aii +BiFi)

T Pi

}]
xi +He

{
xT

i (t)PiBiΔii(t)Eiixi(t)
}

+He

⎧⎪⎪⎨
⎪⎪⎩x

T
i (t)PiBi

N∑
j=1
j �=i

(Dij + ΔijEij) xj(t)

⎫⎪⎪⎬
⎪⎪⎭

+He

{
xT

i (t)PiBiLi(xi, t)xi(t)
}

+He

{
xT

i (t)PiΓxi
ωi(t)

}
. (3.18)

Moreover, by using Lemma 1 and the well-known inequality

2αTβ ≤ δαTα +
1

δ
βTβ, (3.19)
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for any vectors α and β with appropriate dimensions and a positive scalar δ, we

have the following relation for the function Vi(xi, t);

d

dt
Vi(xi, t) ≤ xT

i (t)
[
He

{
(Aii + BiFi)

T Pi

}]
xi(t) + 2

∥∥∥BT
i Pixi(t)

∥∥∥∥∥∥Eiixi(t)
∥∥∥

+ 2εi (N − 1)xT
i (t)PiBiB

T
i Pixi(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

+He

{
xT

i (t)PiBiLi(xi, t)xi(t)
}

+He

{
xT

i (t)PiΓxi
ωi(t)

}
. (3.20)

Firstly, the case of BT
i Pixi(t) �= 0 is considered. In this case, substituting the

compensation input of (3.13) into (3.20) and some algebraic manipulations derive

the following inequality;

d

dt
Vi(xi, t) ≤ xT

i (t)
[
He

{
(Aii +BiFi)

T Pi

}]
xi(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

+He

{
xT

i (t)PiΓxi
ωi(t)

}
. (3.21)

Additionally, one can see from (3.1) that the relation

zT
i (t)zi(t) − (γ∗i )

2 ωT
i (t)ωi(t) = xT

i (t)CT
iiCiixi(t) +He

{
xT

i (t)CiiΓzi
ωi(t)

}
+ ωT

i (t)
(
Γ T

zi
Γzi

− γiIqi

)
ωi(t), (3.22)

holds, where (γ∗i )
2 �
= γi. Therefore from (3.5), (3.7), (3.21) and (3.22), we can obtain

the following relation for the Hamiltonian H(x, t);

H(x, t) ≤
N∑

i=1

xT
i (t)

[
He

{
(Aii +BiFi)

T Pi

}]
xi(t)

+
N∑

i=1

1

εi

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

⎫⎪⎪⎬
⎪⎪⎭
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+
N∑

i=1

He

{
xT

i (t)
(PiΓxi

+ CT
iiΓzi

)
ωi(t)

}
+

N∑
i=1

xT
i (t)CT

iiCiixi(t)

+
N∑

i=1

ωT
i (t)

(
Γ T

zi
Γzi

− γiIqi

)
ωi(t). (3.23)

The inequality of (3.23) can also be rewritten as

H(x, t) ≤
N∑

i=1

xT
i (t)

[
He

{
(Aii +BiFi)

T Pi

}]
xi(t)

+
N∑

i=1

xT
i (t)

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
⎫⎪⎪⎬
⎪⎪⎭xi(t)

+

N∑
i=1

He

{
xT

i (t)PiΓxi
ωi(t)

}
+

N∑
i=1

xT
i (t)CT

iiCiixi(t)

+

N∑
i=1

He

{
xT

i (t)CT
iiΓzi

ωi(t)
}

+

N∑
i=1

ωT
i (t)

(
Γ T

zi
Γzi

− γiIqi

)
ωi(t)

=

N∑
i=1

xT
i (t)

[
He

{
(Aii +BiFi)

T Pi

}
+ CT

iiCii

+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
⎤
⎥⎥⎦xi(t)

+

N∑
i=1

He

{
xT

i (t)
(PiΓxi

+ CT
iiΓzi

)
ωi(t)

}

+
N∑

i=1

ωT
i (t)

(
Γ T

zi
Γzi

− γiIqi

)
ωi(t). (3.24)

Furthermore, some algebraic manipulations for (3.24) give the following inequality;

H(x, t) ≤
N∑

i=1

(
xi(t)

ωi(t)

)T

Ψi(Pi, εi, γi)

(
xi(t)

ωi(t)

)
, (3.25)
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where Ψi(Pi, εi, γi) ∈ R
(ni+qi)×(ni+qi) is given by

Ψi(Pi, εi, γi)
�
=

(
Υi(Pi, εi) PiΓxi

+ CT
iiΓzi

� Γ T
zi
Γzi

− γiIqi

)
, (3.26)

Υi(Pi, εi)
�
=He

{
(Aii +BiFi)

T Pi

}
+ CT

iiCii

+

N∑
i=1

1

εi

(DT
jiDji + ET

jiEji

)
. (3.27)

Hence if the matrix inequality

Ψi(Pi, εi, γi) < 0 (3.28)

holds, then the inequality of (3.8) for the Hamiltonian is satisfied.

Next in the case of BT
i Pixi(t) = 0, one can see from (3.18) and (3.22) and the

definition of the control input of (3.3) and the compensation input of (3.13) that if

the matrix inequality of (3.28) holds, then the inequality of (3.8) is also satisfied.

Finally, we consider the matrix inequality of (3.28). By introducing the matrices

Yi
�
=P−1

i and Wi
�
=FiYi and pre- and post-multiplying both sides of the matrix

inequality of (3.28) by diag (Yi, Iqi
), we have the following inequality

Φi(Yi,Wi, εi, γi) =

(
Ξi(Yi,Wi, εi) Γxi

+ YiC
T
iiΓzi

� Γ T
zi
Γzi

− γiIqi

)

< 0, (3.29)

where Ξi(Yi,Wi, εi) ∈ R
ni×ni is matrix described as

Ξi(Yi,Wi, εi)
�
= He {AiiYi +BiWi} + YiC

T
iiCiiYi

+

N∑
i=1

1

εi
Yi

(DT
jiDji + ET

jiEji

)Yi. (3.30)

Thus by applying Lemma 2 (Schur complement) to (3.29) we find that the matrix

inequalities of (3.29) are equivalent to the LMIs of (3.12). In the LMIs of (3.12),

scalar variables εi > 0 and γi > 0 can arbitrarily be selected. Therefore we find that

the LMIs of (3.12) are always feasible, i.e. there always exists the solution of the

LMIs of (3.12). Therefore, by solving the LMIs of (3.12), the fixed gain matrix is

determined as Fi = WiY−1
i and the compensation input is given by (3.13), and the
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proposed control input of (3.3) becomes a decentralized variable gain robust control

with guaranteed L2 gain performance γ∗ of (3.9). Therefore the proof of Theorem

3.1 is accomplished.

Next, the conventional fixed gain decentralized robust controller for uncertain

large-scale interconnected systems of (3.1) is provided. The next corollary gives

an LMI-based design method of the conventional fixed gain decentralized robust

controller with guaranteed L2 gain performance.

Collorary 3.1 Consider the following control input instead of (3.3):

ui(t)
�
=Kixi(t), (3.31)

where Ki ∈ R
mi×ni is the fixed gain matrix for the i-th subsystem of (3.1). In this

case, the LMIs of (3.12) in Theorem 3.1 is transformed into following LMIs;⎛
⎜⎜⎜⎜⎝

Θi(Si,Wi, εi, εij) Πi Γxi
Λi(Si)

� −IPN
i ni

0 0

� � Γ T
zi
Γzi

− γiIqi
0

� � � Ωi(εi, εij)

⎞
⎟⎟⎟⎟⎠ < 0, (3.32)

Θi(Si,Wi, εi, εij)
�
=He {AiiSi +BiWi} + εiBiB

T
i +

N∑
j=1
j �=i

εijBiB
T
i , (3.33)

Πi
�
=(BiDi1 BiDi2 · · · BiDiN ) , (3.34)

Λi(Si)
�
=
(SiC

T
ii Si SiET

ii ET
i1 ET

i2 · · · ET
iN
)
, (3.35)

Ωi(εi, εij)
�
=−diag

(
Ipi
,

1

N − 1
Ini
, εiIri

, εi1Isi1
, · · · , εiN IiN

)
. (3.36)

Namely, by solving the LMIs of (3.32), the fixed gain matrix is determined as Ki =

WiS−1
i .

Proof : By using the similar way to the proof of Theorem 3.1, Corollary 3.2

can easily be proved.

Remark 3.1 In chapter 2, the nominal system is introduced so as to generate the

desired trajectory of the state and the control input. Moreover, the proposed con-

troller design method can be applied to the uncertain large-scale interconnected sys-

tems with state delays (see [82] for details). The proposed design method in this

chapter can be easily extended to such control problem.
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Remark 3.2 The decentralized robust controller synthesis proposed in this chapter

is adaptable when some assumptions are satisfied. Namely, if the matching condition

for uncertainties and interactions is satisfied, then the proposed decentralized variable

gain robust controller is applicable, i.e. the LMIs of (3.12) are always feasible (see

[77]). Additionally, the size of LMIs in the proposed design equals to ni + 2qi +
N∑

j=1,j �=i

(nj + sij). On the other hand, for decentralized robust controllers with fixed

gain matrices, the size of LMIs of (3.32) to be solved is 2ni+

N∑
j=1,j �=i

nj +2pi+qi+ri+

N∑
j=1,j �=i

sij. Furthermore, the number of variables for LMIs of (3.12) is less than that

of the decentralized robust controllers with fixed gain matrices. Therefore, one can

see that the proposed decentralized robust controller design method in this chapter is

very useful.

Remark 3.3 The proposed decentralized variable gain robust controller can be ob-

tained by solving LMIs of (3.12). Since LMIs of (3.12) define convex solution sets

of (Yi,Wi, εi, γi), and thus various efficient convex optimization algorithms can be

applied to test whether these LMIs are solvable and to generate particular solu-

tions [80,81]. In addition, these solutions parametrize the set of decentralized vari-

able gain robust controllers with the L2 gain performance. Namely, one can see that

the result in Theorem 3.1 can easily be extended to the decentralized variable gain

robust controller with suboptimal L2 gain performance (see Corollary3.2).

Collorary 3.2 Since the LMIs of (3.12) define a convex solution set, we consider

minimizing the parameter γi, because our interest is in establishing L2 gain perfor-

mance. Furthermore in the LMIs of (3.12), γi has no correlation with γj (j �= i).

Thus our design problem can be reduced to the following constrained convex opti-

mization problem (see [80,81]);

Minimize
Yi>0, Wi, εi>0, γi>0

[γi] subject to (3.12). (3.37)

If the optimal solution Yi > 0, Wi, εi > 0 and γi > 0 of the constrained optimization

problem of (3.37) is obtained, then the control input of (3.3) with the fixed gain

matrix Fi = WiY−1 and the compensation input ψi(xi, t) of (3.13) is the decentralized

variable gain robust control with suboptimal L2 gain performance γ∗ of (3.9).

38



CHAPTER 3. DVGRC WITH GUARANTEED L2 GAIN PERFORMANCE

FOR UNCERTAIN LARGE-SCALE INTERCONNECTED SYSTEMS

3.3 Numerical Examples

In this example, the uncertain large-scale interconnected systems consisting of three

two-dimensional subsystems is considered, i.e. N = 3. The system parameters are

given as

A11 =

(
−1.5 1.0

1.0 0.5

)
, A22 =

(
1.0 −1.0

1.0 −1.5

)
, A33 =

(
0.5 1.0

1.5 −1.0

)
,

B1 =

(
1.0

0.0

)
, B2 =

(
1.0

0.0

)
, B3 =

(
0.0

1.0

)
, ET

11 =

(
1.0

0.0

)
,

ET
22 =

(
2.0

1.0

)
, ET

33 =

(
1.0

0.0

)
,DT

12 =

(
1.0

1.0

)
, DT

13 =

(
2.0

1.0

)
,

DT
21 =

(
1.0

0.0

)
, DT

23 =

(
0.0

1.0

)
, DT

31 =

(
2.0

1.0

)
, DT

32 =

(
0.0

1.0

)
,

ET
12 =

(
2.0

1.0

)
, ET

13 =

(
1.0

0.0

)
, ET

21 =

(
1.0

0.0

)
, ET

23 =

(
0.0

1.0

)
,

ET
31 =

(
0.0

1.0

)
, ET

32 =

(
2.0

1.0

)
. Γx1 =

(
1.0

1.0

)
, Γx2 =

(
1.0

0.0

)
,

Γx3 =

(
1.0

1.0

)
, CT

11 =

(
1.0

0.0

)
, CT

22 =

(
1.0

1.0

)
, CT

33 =

(
1.0

1.0

)
,

Γz1 = 1.0, Γz2 = 1.0, Γz3 = 1.0.

(3.38)

Firstly, we design the proposed decentralized variable gain robust controller on

the basis of Theorem 3.1. By solving LMIs of (3.12), we have positive definite

matrices Yi ∈ R
2×2, matrices Wi ∈ R

1×2, and positive scalars εi and γi given by

Y1 =

(
1.0187 −4.3846 × 10−1

� 3.9896 × 10−1

)
, WT

1 =

(
−2.4004

−1.8211

)
,

Y2 =

(
1.4782 −1.0391

� 1.8897

)
, WT

2 =

(
−5.7365

−3.4728 × 10−1

)
,

Y3 =

(
8.7797 × 10−1 −9.7835 × 10−1

� 1.7125

)
, WT

3 =

(
−2.9187

−2.3220 × 10−1

)
,

ε1 = 6.1366, ε2 = 6.9400, ε3 = 6.1119,

γ1 = 3.0826, γ2 = 3.0208, γ3 = 3.0840.

(3.39)
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Thus the symmetric positive definite matrices Pi ∈ R
2×2 and the the fixed gain

matrices Fi ∈ R
1×2 can be computed as

P1 =

(
1.8628 2.0472

� 4.7564

)
, P2 =

(
1.1027 6.0629 × 10−1

� 8.6254 × 10−1

)
,

P3 =

(
3.1346 1.7908

� 1.6071

)
,

F1 =
(

−8.1997 −1.3576 × 101
)
, F2 =

(
−6.5360 −3.7775

)
,

F3 =
(

−1.0786 × 101 −7.2254
)
.

(3.40)

Additionally, the positive scalars γ∗i =
√
γi can be obtained as

γ∗1 = 1.7557, γ∗2 = 1.7380, γ∗3 = 1.7561. (3.41)

Therefore, the guaranteed L2 gain performance γ∗ of (3.9) for the proposed controller

is given by

γ∗ = 1.7561. (3.42)

In this example, the initial value of the uncertain large-scale system with system

parameters of (3.38) is selected as follow;

x(0) =
(

1.0 −1.0 −0.5 1.0 1.0 −2.0
)T

. (3.43)

Furthermore, unknown parameters and disturbance inputs are given as

Δii(t) = cos(5πt),

Δij(t) = − sin(2πt),

ωi(t) = 2.0 exp(−t) cos(5πt).

(3.44)

Note that disturbance inputs ωi ∈ R
1 (i = 1, 2, 3) tend to 0 as t tends to infinity.

The simulation result of this numerical example is shown in Figures 3.1 – 3.4. In

these figures, x
(l)
i (t) denotes the l-th element of the state xi(t) for the i-th subsystem,

respectively. From these figures, one can see that the proposed decentralized variable

gain controller achieves internal stability for the uncertain large-scale systems with

system parameters of (3.38) in spite of uncertainties and interactions. Therefore, the

effectiveness of the proposed decentralized robust control system has been shown.
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Figure 3.2: Time histories of x2(t)
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42



CHAPTER 3. DVGRC WITH GUARANTEED L2 GAIN PERFORMANCE

FOR UNCERTAIN LARGE-SCALE INTERCONNECTED SYSTEMS

3.4 Summary

In this chapter, based on the result of chapter 2, we have presented an LMI-based

design method of a decentralized variable gain robust controller with L2 gain perfor-

mance for a class of uncertain large-scale interconnected systems. As with chapter 2,

uncertainties and interactions which are included in the large-scale interconnected

system satisfy matching condition. The proposed decentralized robust controller

achieves not only internal stability but also L2 gain performance. Furthermore, the

derived LMIs are always feasible, and the size and the number of variables of resul-

tant LMIs are smaller than that of the conventional decentralized fixed gain robust

controller. In addition, the proposed decentralized variable gain robust controller

can easily be extended to one with suboptimal L2 gain performance by applying a

convex constraint optimization problem. One can easily see that the result in this

chapter is an extension of the result of chapter 2. Thus, the effectiveness of the

proposed decentralized variable gain robust controller is presented.
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Chapter 4

Decentralized Variable Gain

Robust Controller for Large-Scale

Interconnected Systems with

Mismatched Uncertainties

In this chapter, a decentralized variable gain robust controller for a class of large-

scale interconnected systems with mismatched uncertainties is shown [83]. The

decentralized variable gain robust controller is natural extension of the result derived

in chapter 2, and thus the controller design problem is reduced to the solvability of

LMIs.

4.1 Problem Formulation

We consider the uncertain large-scale interconnected system composed of N subsys-

tems as

d

dt
xi(t) = Aii(t)xi(t) +

N∑
j=1
j �=i

Aij(t)xj(t) +Biui(t), (4.1)

where xi(t) ∈ R
ni and ui(t) ∈ R

mi (i = 1, · · · ,N ) are the vectors of the state

and the control input for the i-th subsystem, respectively. In (4.1), the matrices
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Aii(t) ∈ R
ni×ni and Aij(t) ∈ R

ni×nj are given by

Aii(t) = Aii +BiΔii(t)Eii +B⊥
i Δ⊥

ii (t)E⊥
ii ,

Aij(t) = Aij +BiDij +BiΔij(t)Eij +B⊥
ijΔ

⊥
ij(t)E⊥

ij .
(4.2)

In (4.1) and (4.2), the matrices Aii ∈ R
ni×ni and Bi ∈ R

ni×mi are known system

parameters and the matrices Δii(t) ∈ R
mi×ri, Δij(t) ∈ R

mi×sij , Δ⊥
ii (t) ∈ R

pii×qii and

Δ⊥
ij(t) ∈ R

pij×qij are unknown time-varying parameters which satisfy ‖Δii(t)‖ ≤ 1.0,

‖Δij(t)‖ ≤ 1.0, ‖Δ⊥
ii(t)‖ ≤ 1.0 and ‖Δ⊥

ij(t)‖ ≤ 1.0, respectively. Moreover, the

matrices Dij , Eii and Eij with appropriate dimensions represent the structure of

matched interactions or uncertainties and the matrices Aij , B
⊥
i , B⊥

ij , E⊥
ii and E⊥

ij

denote the structure of mismatched ones. Namely, the uncertainties and interactions

in the large-scale interconnected system under consideration are treated separately

divided into the matched part and the mismatched one.

Now, the control input is defined as

ui(t)
�
=Fixi(t) + ψi(xi, t),

ψi(xi, t)
�
=Li(xi, t)xi(t).

(4.3)

In (4.3), Fi ∈ R
mi×ni and ψi(xi, t) ∈ R

mi are a fixed gain matrix and a compensation

input for the i-th subsystem of (4.1). Note that Li(xi, t) ∈ R
mi×ni is a variable

gain matrix for the i-th subsystem. From (4.1) – (4.3), the following closed-loop

subsystem can be obtained;

d

dt
xi(t) = (Aii +BiFi) xi(t) +

(
BiΔii(t)Eii +B⊥

i Δ⊥
ii (t)E⊥

ii

)
xi(t)

+Bi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)xj(t) +

N∑
j=1
j �=i

(
Aij +B⊥

ijΔ
⊥
ij(t)E⊥

ij

)
xj(t)

+BiLi(xi, t)xi(t). (4.4)

From the above discussion, the design problem in this chapter is to derive the

decentralized variable gain robust control input of (4.3) such that the overall closed-

loop system with mismatched uncertainties achieves robust stability. More specifi-

cally, the fixed gain matrices Fi ∈ R
mi×ni and the compensation input ψi(xi, t) ∈ R

mi

are designed such that asymptotical stability of the overall closed-loop system com-

posed of N subsystems of (4.4) is guaranteed.
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4.2 Decentralize Variable Gain Robust Controller

In this section, we show an LMI-based design strategy for the decentralized variable

gain robust controller for the overall closed-loop system with mismatched uncer-

tainties composed of N subsystems represented by (4.4). A sufficient condition for

the existence of the proposed decentralized variable gain robust control system is

summarized as follows;

Theorem 4.1 Consider the large-scale interconnected system of (4.1) and the con-

trol input of (4.3).

If there exists the solution of LMIs

(
Θi(Yi,Wi, σi, δij) Λi(Yi)

� −Ωi(σi, εi, δji)

)
< 0, (4.5)

then by using symmetric positive definite matrices Yi ∈ R
ni×ni, matrices Wi ∈

R
mi×ni and positive scalars σi, εi and δij which satisfy the LMIs of (4.5), the fixed

gain matrix Fi ∈ R
mi×ni and the compensation input ψi(xi, t) ∈ R

mi are determined

as Fi = WiY−1
i and

ψi(xi, t)
�
=

⎧⎪⎨
⎪⎩

−ζi(xi, t) + ηi(xi, t)

‖BT
i Pixi(t)‖2 BT

i Pixi(t)
(
BT

i Pixi(t) �= 0
)
,

ψi(xi, tε)
(
BT

i Pixi(t) = 0
)
,

(4.6)

where tε in (4.6) is given by tε = limε>0,ε→0(t− ε) [47]. In (4.5) and (4.6), matrices

Θi(Yi,Wi, σi, δij), Λi(Yi) and Ωi(σi, εi, δji), and scalar functions ζi(xi, t) and ηi(xi, t)
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are given by

Θi(Yi,Wi, σi, δij)
�
=He{AiiYi +BiWi} + σiB

⊥
i

(
B⊥

i

)T
+

N∑
j=1
j �=i

δijAijA
T
ij

+
N∑

j=1
j �=i

δijB
⊥
ij

(
B⊥

ij

)T
, (4.7)

Λi (Yi)
�
=
(
Yi

(E⊥
ii

)T YiDT
1i YiET

1i YiDT
2i YiET

2i · · ·

· · · YiDT
i−1 i YiET

i−1 i YiDT
i+1 i YiET

i+1 i · · ·

· · · YiDT
N i YiET

N i Yi · · · Yi Yi

(E⊥
1i

)T · · ·

· · · Yi

(E⊥
i−1 i

)T Yi

(E⊥
i+1 i

)T · · · Yi

(E⊥
N i

)T
)
, (4.8)

Ωi(σi, εi, δij)
�
= diag (σiIqii

, ε1Im1 , ε1Is1i, ε2Im2 , ε2Is2i, · · ·

· · · , εi−1Imi−1
, εi−1Isi−1i, εi+1Imi+1

, εi+1Isi+1i, · · ·

· · · , εN ImN , εN IsN i, δ1iIni
, · · · , δi−1iIni

, δi+1iIni
, · · ·

· · · , δN iIni
, δ1iIq1i

, · · · , δi−1iIqi−1i
, δi+1iIqi+1i

, · · · , δN iIqN i

)
,

(4.9)

ζi(xi, t)
�
= ‖BT

i Pixi(t)‖‖Eiixi(t)‖, (4.10)

ηi(xi, t)
�
= εi(N − 1)‖BT

i Pixi(t)‖2. (4.11)

Then the control law described by (4.3) is the decentralized variable gain robust

controller which stabilizes the overall system.

Proof : Using symmetric positive definite matrices Pi ∈ R
ni×ni, we define the

Lyapunov function candidate as

V(x, t)
�
=

N∑
i=1

Vi(xi, t), (4.12)

where Vi(xi, t) is the following quadratic function;

Vi(xi, t)
�
= xT

i (t)Pixi(t). (4.13)
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The time derivative of Vi(xi, t) along the trajectory of the closed-loop subsystem

of (4.4) is given by

d

dt
Vi(xi, t) = xT

i (t)
[
He

{
(Aii +BiFi)

T Pi

}]
xi(t) + 2xT

i (t)PiBiΔii(t)Eiixi(t)

+ 2xT
i (t)PiB

⊥
i Δ⊥

ii(t)E⊥
ii xi(t) + 2xT

i (t)PiBi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)xj(t)

+ 2xT
i (t)Pi

N∑
j=1
j �=i

(
Aij + B⊥

ijΔ
⊥
ij(t)E⊥

ij

)
xj(t) + 2xT

i (t)PiBiLi(xi, t)xi(t).

(4.14)

Additionally, by applying Lemma 1 and the well-known inequality

2αTβ ≤ δαTα +
1

δ
βTβ. (4.15)

for any vectors α and β with appropriate dimensions and a positive scalar δ, the

following relation for the quadratic function Vi(xi, t) can be obtained;

d

dt
Vi(xi, t) ≤ xT

i (t)
[
He

{
(Aii +BiFi)

T Pi

}]
xi(t) + 2

∥∥∥BT
i Pixi(t)

∥∥∥∥∥∥Eiixi(t)
∥∥∥

+ σix
T
i (t)PiB

⊥
i

(
B⊥

i

)T Pixi(t) +
1

σi
xT

i (t)
(E⊥

ii

)T E⊥
ii xi(t)

+ 2εi (N − 1)xT
i (t)PiBiB

T
i Pixi(t)

+
1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

+

N∑
j=1
j �=i

δijx
T
i (t)PiAijA

T
ijPixi(t) +

N∑
j=1
j �=i

1

δij
xT

j (t)xj(t)

+
N∑

j=1
j �=i

δijx
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Pixi(t) +
N∑

j=1
j �=i

1

δij
xT

j (t)
(E⊥

ij

)T E⊥
ijxj(t)

+ 2xT
i (t)PiBiLi(xi, t)xi(t). (4.16)

Firstly, the case of BT
i Pixi(t) �= 0 is taken into account. In this case, by substitut-

ing the variable gain matrix of (4.6) into (4.16) and some algebraic manipulations,
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we can derive the following inequality;

d

dt
Vi(xi, t) ≤ xT

i (t)
[
He

{
(Aii +BiFi)

T Pi

}]
xi(t) + σix

T
i (t)PiB

⊥
i

(
B⊥

i

)T Pixi(t)

+
1

σi
xT

i (t)
(E⊥

ii

)T E⊥
ii xi(t) +

1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

+

N∑
j=1
j �=i

δijx
T
i (t)PiAijA

T
ijPixi(t) +

N∑
j=1
j �=i

1

δij
xT

j (t)xj(t)

+

N∑
j=1
j �=i

δijx
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Pixi(t) +

N∑
j=1
j �=i

1

δij
xT

j (t)
(E⊥

ij

)T E⊥
ijxj(t).

(4.17)

Therefore from (4.12) and (4.17), we obtain the following inequality for the

quadratic function V(x, t);

d

dt
V(x, t) ≤

N∑
i=1

xT
i (t)

[
He

{
(Aii +BiFi)

T Pi

}]
xi(t)

+
N∑

i=1

σix
T
i (t)PiB

⊥
i

(
B⊥

i

)T Pixi(t) +
N∑

i=1

1

σi
xT

i (t)
(E⊥

ii

)T E⊥
ii xi(t)

+

N∑
i=1

1

εi

N∑
j=1
j �=i

xT
j (t)

(DT
ijDij + ET

ijEij

)
xj(t)

+

N∑
i=1

N∑
j=1
j �=i

δijx
T
i (t)PiAijA

T
ijPixi(t) +

N∑
i=1

N∑
j=1
j �=i

1

δij
xT

j (t)xj(t)

+

N∑
i=1

N∑
j=1
j �=i

δijx
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Pixi(t)

+
N∑

i=1

N∑
j=1
j �=i

1

δij
xT

j (t)
(E⊥

ij

)T E⊥
ijxj(t). (4.18)
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The inequality of (4.18) can be rewritten as

d

dt
V(x, t) ≤

N∑
i=1

xT
i (t)

[
He

{
(Aii +BiFi)

T Pi

}]
xi(t)

+
N∑

i=1

σix
T
i (t)PiB

⊥
i

(
B⊥

i

)T Pixi(t) +
N∑

i=1

1

σi

xT
i (t)

(E⊥
ii

)T E⊥
ii xi(t)

+
N∑

i=1

N∑
j=1
j �=i

1

εj
xT

i (t)
(DT

jiDji + ET
jiEji

)
xi(t)

+

N∑
i=1

N∑
j=1
j �=i

δijx
T
i (t)PiAijA

T
ijPixi(t) +

N∑
i=1

N∑
j=1
j �=i

1

δji
xT

i (t)xi(t)

+

N∑
i=1

N∑
j=1
j �=i

δijx
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Pixi(t)

+
N∑

i=1

N∑
j=1
j �=i

1

δji
xT

i (t)
(E⊥

ji

)T E⊥
jixi(t)

=
N∑

i=1

xT
i (t)Φi(Pi, σi, εi, δij)xi(t), (4.19)

where Φi(Pi, σi, εi, δij) ∈ R
ni×ni is given by

Φi(Pi, σi, εi, δij)
�
= He

{
(Aii +BiFi)

T Pi

}
+ σiPiB

⊥
i

(
B⊥

i

)T Pi +
1

σi

(E⊥
ii

)T E⊥
ii

+

N∑
j=1
j �=i

1

εj

(DT
jiDji + ET

jiEji

)
+

N∑
j=1
j �=i

δijPiAijA
T
ijPi

+
N∑

j=1
j �=i

1

δji
Ini

+
N∑

j=1
j �=i

δijPiB
⊥
ij

(
B⊥

ij

)T Pi +
N∑

j=1
j �=i

1

δji

(E⊥
ji

)T E⊥
ji . (4.20)

Therefore, if the matrix inequality

Φi(Pi, σi, εi, δij) < 0 (4.21)
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holds, then the following inequality for the time derivative of V(x, t) of (4.12) is

satisfied;

d

dt
V(x, t) < 0, ∀x(t) �= 0. (4.22)

Secondly, for the case of BT
i Pixi(t) = 0, one can see from (4.14) and the definition

of the fixed gain and variable one of (4.6) that if the matrix inequality of (4.21) holds,

then the inequality of (4.22) is also satisfied.

Finally, the matrix inequality of (4.21) is analyzed. By introducing the comple-

mentary matrices Yi
�
=P−1

i and Wi
�
=FiYi, and pre- and post-multiplying both sides

of the matrix inequality of (4.21) by Yi ∈ R
ni×ni, it can be obtained that

He{AiiYi +BiWi} + σiB
⊥
i

(
B⊥

i

)T
+

1

σi
Yi

(E⊥
ii

)T E⊥
ii Yi

+

N∑
j=1
j �=i

1

εj
Yi

(DT
jiDji + ET

jiEji

)Yi +

N∑
j=1
j �=i

δijAijA
T
ij +

N∑
j=1
j �=i

1

δji
YiYi

+
N∑

j=1
j �=i

δijB
⊥
ij

(
B⊥

ij

)T
+

N∑
j=1
j �=i

1

δji
Yi

(E⊥
ji

)T E⊥
jiYi < 0. (i = 1, · · · ,N ) (4.23)

Thus, from the inequality of (4.23) and Lemma 1.2 (Schur complement), one can

find that the matrix inequalities of (4.23) are equivalent to the LMIs of (4.5). There-

fore, by solving the LMIs of (4.5), the fixed gain matrix and variable one are given

by Fi = WiY−1
i and (4.6), respectively, and the proposed control input of (4.3)

becomes a decentralized variable gain robust stabilizing control. Thus the proof of

Theorem 4.1 is completed.

Theorem 4.1 represents the proposed decentralized variable gain robust control

strategy. Next we show the conventional fixed gain decentralized robust controller

for large-scale interconnected systems with mismatched uncertainties of (4.1). The

next corollary gives an LMI-based design method of the conventional fixed gain

decentralized robust controller.

Collorary 4.1 Consider the control input

ui(t)
�
=Kixi(t), (4.24)

instead of (4.3), where Ki ∈ R
mi×ni is the fixed gain matrix for the i-th subsystem of

(4.1). In this case, the LMIs of (4.5) in Theorem 4.1 is transformed into following
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LMIs; (
Υi(Yi,Wi, μi, σi, εi, δij) Πi(Yi)

� −Qi(μi, σi, εi, δij)

)
< 0, (4.25)

Υi(Yi,Wi, μi, σi, εi, δij)
�
=He {AiiYi +BiWi} + μiBiB

T
i + σiB

⊥
i

(
B⊥

i

)T

+ 2εi (N − 1)BiB
T
i +

N∑
j=1
j �=i

δijAijA
T
ij +

N∑
j=1
j �=i

δijB
⊥
ij

(
B⊥

ij

)T
,

(4.26)

Πi(Yi)
�
=
(
YiET

ii Yi

(E⊥
ii

)T YiDT
1i YiET

1i · · ·

· · · YiDT
i−1 i YiET

i−1 i YiDT
i+1 i YiET

i+1 i · · ·

· · · YiDT
N i YiET

N i Yi · · · Yi Yi

(E⊥
1i

)T · · ·

· · · Yi

(E⊥
i−1 i

)T Yi

(E⊥
i+1 i

)T · · · Yi

(E⊥
N i

)T
)
, (4.27)

Qi(μi, σi, εi, δij)
�
= diag (μiIri

, σiIqii
, ε1Im1 , ε1Is1i, · · ·

· · · , εi−1Imi−1
, εi−1Isi−1i, εi+1Imi+1

, εi+1Isi+1i, · · ·

· · · , εN ImN , εN IsN i, δ1iIni
, · · · , δi−1iIni

, δi+1iIni
, · · ·

· · · , δN iIni
, δ1iIq1i

, · · · , δi−1iIqi−1i
, δi+1iIqi+1i

, · · ·

· · · , δN iIqN i
) . (4.28)

By solving the LMIs of (4.25), the fixed gain matrix is determined as Ki = WiY−1
i .

Proof : By adopting the similar way to the proof of Theorem 4.1, Corollary

4.1 can easily be proved.

Remark 4.1 In this chapter, the uncertain large-scale interconnected system com-

posed of N subsystems of (4.1) is considered. Moreover, the uncertainties and the

interactions included in the controlled system are represented as (4.2), i.e., these

terms consist of the matched part and the mismatched one. Note that this assump-

tion holds without loss of generality, because it is well-known that the general struc-

tured uncertain terms can be dealt with the matched part and the mismatched one

(e.g. Remark 5 in [84]). By adopting such a dividing way, we can derive less con-
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servative LMI conditions for the proposed decentralized controller comparing with

the existing result (e.g. [68])

Remark 4.2 In this paper, the stabilization problem of the large-scale intercon-

nected system with mismatched uncertainties is mainly concerned. On the other

hand in chapter 2, the nominal subsystem is introduced to generate the desired tra-

jectory of the state and the control input. Furthermore, although the uncertainty

included in the controlled system of (4.1) is described as structured uncertainties, in

the work of [78], the parameter structured uncertainties are considered. Note that

the proposed design strategy can easily be extended to such control problems.

Remark 4.3 In the design method of the conventional fixed gain controller in Corol-

lary 4.1, the size of LMIs to be solved equals to

Zc = Nni + ri + qii +
N∑

j=1,j �=i

(mji + sji + qji). (4.29)

However, the size of LMIs in the proposed design method is

Zp = Nni + qii +

N∑
j=1,j �=i

(mji + sji + qji) , (4.30)

i.e. Zc−Zp = ri. Moreover, the number of variables in the LMIs of (4.5) is less than

that of the conventional decentralized fixed gain robust controller. In consequence,

the feasible region of the LMIs of (4.5) is large comparing with (4.25). Therefore,

we find that the proposed decentralized robust controller design method is very useful

and less conservative comparing with the conventional decentralized robust control.

Remark 4.4 In chapter 2, mismatched uncertainties have not been considered.

Note that by eliminating some parameters corresponding to mismatched term in

(4.5), the LMIs of (4.5) derived in this chapter can be reduced to the LMIs of

(2.9). Therefore, one can see that the proposed design method for in this chap-

ter is the natural extension of the result in chapter 2. Moreover, one can easily

see from (4.6) and (4.17) that the effects of matched uncertainties and interac-

tions can be reduced by the proposed variable gain controller. Therefore the size of

LMIs becomes small compared with the case that uncertainties dealt with the mis-

matched part only as uncertainties, i.e., the proposed LMI condition is less conser-

vative than the case that uncertainties are not divided into matched and mismatched
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parts. Furthermore, the compensation input ψi(xi, t) is bounded because the rela-

tion ‖ψi(xi, t)‖ =
∥∥∥Eiixi(t)

∥∥∥ + εi (N − 1)
∥∥∥BT

i Pixi(t)
∥∥∥ is satisfied. Additionally, in

the case that there exist the mismatched uncertainties only, the compensation input

ψi(xi, t) defined as (4.6) becomes ψi(xi, t) = εi(N − 1)BT
i Pixi(t) because of Eii = 0.

4.3 Numerical Examples

In this section, two numerical examples are run in order to demonstrate the efficiency

of proposed decentralized variable gain robust controller.

4.3.1 Example 1

In the simulation study, the uncertain large-scale interconnected systems consisting

of three two-dimensional subsystems is involved, i.e., N = 3. The system parameters

are supposed to

A11 =

(
−1.0 1.5

1.0 1.0

)
, A22 =

(
1.5 −1.0

0.0 −2.0

)
, A33 =

(
−2.0 2.0

1.5 0.5

)
,

B1 =

(
0.0

1.0

)
, B2 =

(
1.0

0.0

)
, B3 =

(
0.0

1.0

)
, E11 =

(
1.0 0.0

1.0 0.0

)
,

E22 =

(
0.0 2.0

2.0 0.0

)
, E33 =

(
3.0 0.0

1.0 0.0

)
, B⊥

1 =

(
5.0 × 10−1 0.0

0.0 0.0

)
,

B⊥
2 =

(
0.0 0.0

3.0 × 10−1 0.0

)
, B⊥

3 =

(
0.0 5.0 × 10−1

0.0 0.0

)
,

E⊥
11 =

(
4.0 × 10−1 0.0

0.0 0.0

)
, E⊥

22 =

(
1.0 0.0

0.0 0.0

)
, E⊥

33 =

(
0.0 0.0

5.0 × 10−1 0.0

)
,

A12 =

(
3.0 × 10−1 0.0

0.0 0.0

)
, A13 =

(
0.0 3.0 × 10−1

0.0 0.0

)
,

A21 =

(
0.0 0.0

5.0 × 10−1 0.0

)
, A23 =

(
0.0 0.0

5.0 × 10−1 0.0

)
,

A31 =

(
0.0 4.0 × 10−1

0.0 0.0

)
, A32 =

(
5.0 × 10−1 0.0

0.0 0.0

)
,
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DT
12 =

(
2.0

1.0

)
, DT

13 =

(
2.0

0.0

)
, DT

21 =

(
1.0

3.0

)
, DT

23 =

(
1.0

2.0

)
,

DT
31 =

(
1.0

0.0

)
, DT

32 =

(
0.0

3.0

)
, E12 =

(
1.0 1.0

0.0 3.0

)
, E13 =

(
1.0 0.0

2.0 0.0

)
,

E21 =

(
2.0 0.0

0.0 2.0

)
, E23 =

(
0.0 2.0

1.0 0.0

)
, E31 =

(
1.0 0.0

3.0 1.0

)
,

E32 =

(
2.0 0.0

3.0 0.0

)
, B⊥

12 =

(
5.0 × 10−1 0.0

0.0 0.0

)
, B⊥

13 =

(
3.0 × 10−1 0.0

0.0 0.0

)
,

B⊥
21 =

(
0.0 0.0

5.0 × 10−1 0.0

)
, B⊥

23 =

(
0.0 0.0

4.0 × 10−1 0.0

)
,

B⊥
31 =

(
4.0 × 10−1 0.0

0.0 0.0

)
, B⊥

32 =

(
5.0 × 10−1 0.0

0.0 0.0

)
,

E⊥
12 =

(
0.0 0.0

5.0 × 10−1 0.0

)
, E⊥

13 =

(
0.0 5.0 × 10−1

0.0 0.0

)
,

E⊥
21 =

(
3.0 × 10−1 0.0

0.0 0.0

)
, E⊥

23 =

(
0.0 0.0

0.0 5.0 × 10−1

)
,

E⊥
31 =

(
5.0 × 10−1 0.0

0.0 0.0

)
, E⊥

32 =

(
0.0 0.0

0.0 4.0 × 10−1

)
.

(4.31)

Firstly by solving LMIs of (4.5), we can obtain

Y1 =

(
8.9953 −1.0453 × 101

� 2.3056 × 101

)
, Y2 =

(
1.3156 × 101 −9.9780 × 10−1

� 1.2110 × 101

)
,

Y3 =

(
1.7559 × 101 −1.2504 × 101

� 2.1249 × 101

)
,

W1 =
(

−1.4434 −9.4126 × 101
)
, W2 =

(
−7.7177 1.3525

)
× 101,

W3 =
(

−2.8256 −6.9872
)
× 101,

σ1 = 1.9919 × 101, σ2 = 3.0988 × 101, σ3 = 4.4852 × 101,

ε1 = 1.8034 × 102, ε2 = 1.4918 × 102, ε3 = 1.6632 × 102,

δ12 = 3.2237 × 101, δ13 = 4.2751 × 101, δ21 = 2.1469 × 101,

δ23 = 2.2465 × 101, δ31 = 6.2652 × 101, δ32 = 5.3206 × 101.

(4.32)

Therefore, symmetric positive definite matrices Pi ∈ R
1×2 and fixed gain matrices
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Fi ∈ R
1×2 can be computed as

P1 =

(
2.3494 × 10−1 1.0651 × 10−1

� 9.1662 × 10−2

)
,

P2 =

(
7.6490 × 10−2 6.3025 × 10−3

� 8.3097 × 10−2

)
,

P3 =

(
9.8037 5.7692

� 8.1012

)
× 10−2,

F1 =
(

−1.0365 × 101 −8.7815
)
,

F2 =
(

−5.8180 6.3744 × 10−1
)
,

F3 =
(

−6.8012 −7.2907
)
.

(4.33)

Now the conventional design method for the decentralized robust control with

fixed gains in the work of [68] is applied to the uncertain large-scale system of

(4.31). In the case of the conventional decentralized fixed gain robust controller,

the LMIs of (4.25) cannot be solved, namely, the conventional fixed gain robust

controller of (4.24) cannot be designed.

In this example, initial value of large-scale interconnected system of (4.31) is

selected as x(0) =
(

−1.5 1.0 1.0 −2.0 1.5 −1.0
)T

. Furthermore, unknown

parameters are given as

Δii(t) =
(

cos(2.0πt) 0
)
,

Δij(t) =
(

0 cos(−πt)
)
,

Δ⊥
ii(t) = diag

(
sin(−6.0πt), cos(−6.0πt)

)
,

Δ⊥
ij(t) = diag

(
− cos(πt), sin(πt)

)
.

(4.34)

Figures 4.1 – 4.4 show the simulation result of this example. In these figures,

x
(l)
i (t) denotes the l-th element of the state xi(t) for the i-th subsystem. From

these figures, the proposed decentralized variable gain robust controller stabilizes

the uncertain large-scale interconnected systems with system parameters of (4.31).

Therefore, the effectiveness of the proposed design method of decentralized variable

gain robust controller is shown.
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-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3

S
ta

te

Time

x
(1)
2 (t)

x
(2)
2 (t)

Figure 4.2: Time histories of x2(t) (Example 1)
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Figure 4.3: Time histories of x3(t) (Example 1)
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4.3.2 Example 2

In this example, we consider three-machine infinite bus system model as shown in

Figure 4.5 [85].

Figure 4.5: Three-machine infinite bus system model [85]

This three-machine infinite bus system model system can be represented as the

large-scale interconnected system composed of three four-dementional subsystems

with the following system parameters [86];

A11 =

⎛
⎜⎜⎜⎜⎝

−9.2200 × 10−1 1.000 −2.6600 × 10−1 −9.0000 × 10−3

−2.7500 −2.7800 −1.3600 −3.7000 × 10−1

0.0 0.0 0.0 1.0000

−4.9500 0.0 −5.5500 × 101 −3.0000 × 10−1

⎞
⎟⎟⎟⎟⎠ ,

A22 =

⎛
⎜⎜⎜⎜⎝

−2.1000 × 10−1 1.0000 −1.6000 −5.0000 × 10−3

−1.9000 −1.8000 9.3000 −1.2000 × 10−1

0.0 0.0 0.0 1.000

−3.1000 0.0 −5.6000 3.2000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,
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A33 =

⎛
⎜⎜⎜⎜⎝

−1.9700 × 10−1 1.0000 −1.2000 −3.0000 × 10−3

−5.4400 × 101 2.0000 × 101 7.0100 × 101 −2.3700

0.0 0.0 0.0 1.0000

−3.4000 0.0 −2.1000 × 101 −1.7000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎜⎜⎝

0.0

3.6100

0.0

0.0

⎞
⎟⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎜⎝

0.0

7.8900

0.0

0.0

⎞
⎟⎟⎟⎟⎠ , B3 =

⎛
⎜⎜⎜⎜⎝

0.0

5.6300

0.0

0.0

⎞
⎟⎟⎟⎟⎠ ,

ET
11 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

2.7700

5.5400

⎞
⎟⎟⎟⎟⎠× 10−5, ET

22 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.2700 × 10−5

1.2700 × 10−6

⎞
⎟⎟⎟⎟⎠ ,

ET
33 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.8000

1.2700

⎞
⎟⎟⎟⎟⎠× 10−6,

(E⊥
11

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.0000

2.0000

⎞
⎟⎟⎟⎟⎠× 10−2,

(E⊥
22

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.0000 × 10−2

1.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
33

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.0000 × 10−3

2.0000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

A12 =

⎛
⎜⎜⎜⎜⎝

2.4000 × 10−2 0.0 −8.7000 × 10−2 −2.0000 × 10−3

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

2.2200 × 10−1 0.0 8.1700 × 10−1 4.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

A13 =

⎛
⎜⎜⎜⎜⎝

7.2000 × 10−1 0.0 −2.5000 × 10−2 −3.0000 × 10−3

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

9.2400 × 10−2 0.0 1.7500 × 10−1 2.0000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

A21 =

⎛
⎜⎜⎜⎜⎝

2.1000 × 10−2 0.0 1.2100 × 10−2 3.0000 × 10−3

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

−2.4300 × 10−2 0.0 1.3700 × 10−2 −3.4000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,
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A23 =

⎛
⎜⎜⎜⎜⎝

6.0000 × 10−2 0.0 4.6000 × 10−2 2.0000 × 10−3

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

1.2000 × 10−2 0.0 2.9800 × 10−2 −2.8000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

A31 =

⎛
⎜⎜⎜⎜⎝

−2.0000 × 10−3 0.0 8.3000 × 10−2 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

−1.2400 × 10−1 0.0 4.9800 × 10−2 −1.7000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

A32 =

⎛
⎜⎜⎜⎜⎝

1.1000 × 10−2 0.0 2.2000 × 10−2 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

−7.0000 × 10−3 0.0 6.3700 × 10−2 −1.1000 × 10−1

⎞
⎟⎟⎟⎟⎠ ,

DT
12 =

⎛
⎜⎜⎜⎜⎝

−4.3767 × 10−3

0.0

3.0471 × 10−2

−3.0471 × 10−3

⎞
⎟⎟⎟⎟⎠ , DT

13 =

⎛
⎜⎜⎜⎜⎝

−1.2742 × 10−2

0.0

7.7562 × 10−3

−5.5402 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

DT
21 =

⎛
⎜⎜⎜⎜⎝

−1.3942 × 10−3

0.0

−2.0532 × 10−2

−1.9011 × 10−3

⎞
⎟⎟⎟⎟⎠ , DT

23 =

⎛
⎜⎜⎜⎜⎝

−1.2674 × 10−1

0.0

1.8889 × 10−4

−3.0697 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

DT
31 =

⎛
⎜⎜⎜⎜⎝

−1.2043 × 10−2

0.0

−1.7940 × 10−2

−1.5986 × 10−2

⎞
⎟⎟⎟⎟⎠ , DT

32 =

⎛
⎜⎜⎜⎜⎝

−3.7300

0.0

3.0195

−2.1847

⎞
⎟⎟⎟⎟⎠× 10−3,

ET
12 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

4.1600

1.3900

⎞
⎟⎟⎟⎟⎠× 10−5, ET

13 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

8.3100 × 10−5

2.7700 × 10−7

⎞
⎟⎟⎟⎟⎠ ,

ET
21 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.2700 × 10−5

6.3400 × 10−8

⎞
⎟⎟⎟⎟⎠ , ET

23 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

2.5300 × 10−5

1.2700 × 10−6

⎞
⎟⎟⎟⎟⎠ ,
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ET
31 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

8.8800 × 10−6

1.7800 × 10−5

⎞
⎟⎟⎟⎟⎠ , ET

32 =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

8.8800 × 10−5

1.7800 × 10−6

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
12

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.5000 × 10−2

5.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
13

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

3.0000 × 10−2

1.0000 × 10−4

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
21

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

1.0000 × 10−2

5.0000 × 10−4

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
23

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

2.0000 × 10−2

1.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
31

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

5.0000 × 10−3

1.0000 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

(E⊥
32

)T
=

⎛
⎜⎜⎜⎜⎝

0.0

0.0

5.0000 × 10−2

1.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ ,

B⊥
i = B⊥

ij =

⎛
⎜⎜⎜⎜⎝

0.0

0.0

0.0

1.0000 × 10−3

⎞
⎟⎟⎟⎟⎠ {i, j = 1, 2, 3} (i �= j).

(4.35)

In order to obtain the proposed decentralized variable gain robust controller, we

consider Theorem 4.1. By solving LMIs of (4.5), the following solutions can be

obtained;

Y1 =

⎛
⎜⎜⎜⎜⎝

3.7878 × 101 −7.4806 −3.2862 5.0962

� 5.9707 × 101 −3.5341 3.2705

� � 7.7496 × 10−1 −3.3345 × 10−1

� � � 2.7495 × 101

⎞
⎟⎟⎟⎟⎠ ,

Y2 =

⎛
⎜⎜⎜⎜⎝

7.4248 −8.2387 −1.5062 8.0610

� 3.2510 × 101 −3.5360 × 10−1 −5.3083 × 10−1

� � 3.8621 −1.5011

� � � 1.9168 × 101

⎞
⎟⎟⎟⎟⎠ ,
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Y3 =

⎛
⎜⎜⎜⎜⎝

1.4578 × 101 −1.0812 × 101 −2.1242 4.4548

� 3.9548 × 101 −1.4665 −1.7421 × 10−1

� � 1.0947 −3.5470 × 10−1

� � � 1.6254 × 101

⎞
⎟⎟⎟⎟⎠ ,

W1 =
(

7.0764 2.2199 × 101 −5.0421 −5.6077 × 101
)
,

W2 =
(

−5.0647 × 10−1 −1.9396 −4.9560 9.7925 × 10−1
)
,

W3 =
(

2.0315 × 102 −2.3730 × 102 −2.8862 × 101 4.3241 × 101
)
,

σ1 = 6.5797 × 101, σ2 = 6.5790 × 101, σ3 = 6.5781 × 101,

ε1 = 6.5822 × 101, ε2 = 6.5893 × 101, ε3 = 6.5829 × 101,

δ12 = 2.5875 × 101, δ13 = 5.0776 × 101, δ21 = 1.2289 × 102,

δ23 = 8.4152 × 101, δ31 = 1.1860 × 102, δ32 = 7.7637 × 101.

(4.36)

Therefore, symmetric positive definite matrices Pi ∈ R
4×4 and fixed gain matrices

Fi ∈ R
1×4 can be computed as

P1 =

⎛
⎜⎜⎜⎜⎝

8.6264 × 10−2 4.5044 × 10−2 5.6498 × 10−1 −1.4495 × 10−2

� 4.6520 × 10−2 3.9927 × 10−1 −9.0400 × 10−3

� � 5.4701 −8.5871 × 10−2

� � � 3.9090 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

P2 =

⎛
⎜⎜⎜⎜⎝

5.5408 × 10−1 1.3843 × 10−1 1.4407 × 10−1 −2.1791 × 10−1

� 6.5396 × 10−2 3.9244 × 10−2 −5.3331 × 10−2

� � 3.0486 × 10−1 −3.5627 × 10−2

� � � 1.3955 × 10−1

⎞
⎟⎟⎟⎟⎠ ,

P3 =

⎛
⎜⎜⎜⎜⎝

2.1184 × 10−1 7.6182 × 10−2 4.9811 × 10−1 −4.6374 × 10−2

� 5.4023 × 10−2 2.1515 × 10−1 −1.5606 × 10−2

� � 2.1400 −8.7514 × 10−2

� � � 7.2156 × 10−2

⎞
⎟⎟⎟⎟⎠ ,

F1 =
(

−4.2552 × 10−1 −1.5477 × 10−1 −9.9039 −2.0623
)
,

F2 =
(

−1.4765 −4.4367 × 10−1 −1.6948 5.2702 × 10−1
)
,

F3 =
(

8.5758 −4.2275 −1.5412 × 101 −7.1738 × 10−2
)
.

(4.37)

In this example, we choose the initial value of large-scale interconnected system
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of (4.35) as follows;

x(0) =
(

1.0 −1.0 0.0 0.5 1.2 −3.0 0.0 −0.5 1.0 −1.3 0.0 0.5
)T

.

(4.38)

Furthermore, unknown parameters are given as

Δ11(t) = Δ1j(t) = Δ⊥
11(t) = Δ⊥

1j(t) = sin(60πt) {j = 2, 3},
Δ22(t) = Δ2j(t) = Δ⊥

22(t) = Δ⊥
2j(t) = 1 − exp(−0.01t) {j = 1, 3},

Δ33(t) = Δ3j(t) = Δ⊥
33(t) = Δ⊥

3j(t) =
1

2
sin(120πt) {j = 1, 2}.

(4.39)

The simulation result of this example is shown in Figures 4.6 – 4.9. In these

figures, x
(l)
i (t) are the l-th element of the state xi(t) for the i-th subsystem. From

these figures, the uncertain power system with system parameters of (4.35) is robust

stable by the proposed decentralized variable gain robust controller. Therefore, the

effectiveness of the proposed design method of decentralized variable gain robust

controller is shown.

65



4.3. NUMERICAL EXAMPLES

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

S
ta

te

Time

x
(1)
1 (t)

x
(2)
1 (t)

x
(3)
1 (t)

x
(4)
1 (t)

Figure 4.6: Time histories of x1(t) (Example 2)
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Figure 4.7: Time histories of x2(t) (Example 2)
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Figure 4.8: Time histories of x3(t) (Example 2)
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Figure 4.9: Time histories of u(t) (Example 2)
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4.4 Summary

This chapter has shown the decentralized variable gain robust controller for a class of

large-scale interconnected systems with mismatched uncertainties. The uncertain-

ties and interactions which are included in the large-scale interconnected system are

divided into the matched part and the mismatched one, and the effect of matched

parts can be reduced by the variable gain parameters in the proposed controller.

Moreover, the size of the proposed LMIs is smaller than both the case that uncer-

tainties and interactions are not divided into matched and mismatched part, and the

conventional decentralized fixed gain robust controller. Namely, the feasible region

of the LMIs derived in this chapter is large comparing with ones for the conventional

decentralized fixed gain robust controller. In other words, the proposed decentral-

ized variable gain robust controller can be applied to more larger class of uncertain

large-scale interconnected systems comparing with the conventional decentralized

fixed gain robust controller. Therefore, the result in this chapter is very useful.

68



Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we have proposed new decentralized variable gain robust controllers

for uncertain large-scale interconnected systems. Additionally, the effectiveness of

decentralized variable gain robust control strategies proposed in this thesis have

been shown through simple numerical examples.

In chapter 2, for a class of large-scale interconnected systems with uncertainties

and interactions which satisfy matching condition, a decentralized variable gain ro-

bust controller which achieves not only robust stability but also satisfactory transient

behavior generated by the nominal subsystem has been proposed. The proposed LMI

condition is always feasible, namely, designers can derive the decentralized variable

gain robust controller provided that some assumptions are satisfied. In the case of

the conventional decentralized fixed gain controllers, derived LMIs may not feasi-

ble for large-scale interconnected systems with matched uncertainties. Thus, the

proposed decentralized robust control strategy is useful.

Chapter 3 is an extension of the result of chapter 2 and the design method of

the decentralized variable gain robust controller with guaranteed L2 gain perfor-

mance for a class of uncertain large-scale interconnected systems with disturbance

inputs has been suggested. As with the result of chapter 2, if the matching con-

dition for uncertainties and interactions is satisfied, then the resultant LMIs are

always feasible, i.e., the proposed decentralized variable gain robust controller can

be designed. The size and number of variables of resultant LMIs are smaller than

that of the conventional decentralized fixed gain robust controller. In addition, the
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proposed decentralized variable gain robust controller can easily be extended to one

with suboptimal L2 gain performance by applying a convex constraint optimization

problem.

In chapter 4, the decentralized variable gain robust controller for a class of large-

scale interconnected systems with mismatched uncertainties. The uncertainties in

the large-scale interconnected system are divided into the matched part and the

mismatched one, and the effect of matched parts can be reduced by the variable

gain parameters in the proposed controller. Moreover, the size of LMIs which should

be solved is smaller than the case that deals with the mismatched part only as

uncertainties, i.e., the proposed LMI condition is less conservative than the case

that uncertainties are not divided into the matched and the mismatched parts.

By the way, in the work of Hopp and Schmitendorf [87], the design methods of

linear controllers which achieve practical tracking for linear systems with matched

uncertainty and ε-tracking for linear systems with mismatched uncertainty have

been suggested. The proposed decentralized variable gain robust control strategy

can be extended to such control problems (see Appendix).

The design problems of decentralized variable gain robust controllers for uncer-

tain large-scale interconnected systems considered in this thesis are reduced to the

solvability of LMIs, and the size of LMIs are smaller than the case of the conven-

tional fixed gain robust control. Therefore the proposed controller design methods

of decentralized variable gain robust control systems are less conservative, and the

proposed decentralized variable gain robust controller can easily be derived. Note

that it is well known that LMI-conditions can easily be derived using various calcu-

lation tools (e.g. MATLAB Robust Control Toolbox and Scilab LMITOOL). Thus,

we find that the proposed controller design methods are very useful.

5.2 Future Works

In the future research, we will extend the proposed variable gain robust controllers

to such a broad class of systems as uncertain large-scale interconnected systems with

time delays, discrete-time systems and so on. Furthermore, in this thesis, we have

assumed that all state variables of uncertain large-scale interconnected systems are

measurable directly. However, there are only a few case of such systems in general,

and estimation of internal variables by using measurable input and output variables
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is needed. For such cases, observer-based controller and output feedback control are

useful. Thus, we will apply the proposed controller design methods to such problems

by using observer [88] or output feedback control [89].

On the other hand, in recent years, formation control for multi-agent systems

(MASs) has attracted the attention of many researchers (e.g. [90–92]). A multi-

agent system consists of several agents (e.g. vehicles and mobile robots) which

interact with one-another by network. In control strategies for multi-agent systems,

consensus problem [93–95] and coverage problem [96–98] are mainly considered.

Since formation control problems for multi-agent systems are considered as one

of decentralized control problems, we will also apply the proposed decentralized

variable gain robust control strategies in this thesis to formation control problems

for multi-agent systems with uncertainties.
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[52] D. D. Šijjak, “Decentralized Control of Complex Systems,” Academic Press,

New York (1991)

[53] M. Jamshidi, “Large-Scale Systems: Modeling, Control and Fuzzy Logic,” Pren-

tice Hall (1997)

[54] G. O. Mutambara, “Decentralized Estimation and Control for Multisensor Sys-

tems,” CRC Press (1998)

[55] H. Takeuchi, T. Satake, M. Ide and S. Hosaka, “Distributed Traffic Signal

Control System,” Mitsubishi Heavy Industries Ltd. Technical Review, Vol.40,

No.3, pp.174–177 (2003) [in Japanese]

[56] T. Namerikawa, “Decentralized Predictive Control for Smart Grid,” J. Society

of Instrument and Contr. Engineers, Vol.51, No.1, pp.1–7 (2012) [in Japanese]

[57] C. Hua, X. Guan and P. Shi, “Decentralized Robust Model Reference Adap-

tive Control for Interconnected Time-Delay Systems,” J. Computational and

Applied Mathematics, Vol.193, pp.383–396 (2006)

77



BIBLIOGRAPHY

[58] D. Xu, B. Jiang, H. Liu and P. Shi, “Decentralized Asymptotic Fault Tolerant

Control of Near Space Vehicle with High Order Actuator Dynamics,” J. of

Franklin Institute, Vol.350, pp.2519–2534 (2013)

[59] T. H. Lee, D. H. Ji, J. H. Park and H. Y. Jung, “Decentralized Guaranteed

Cost Dynamic Control for Synchronization of a Complex Dynamical Network

with Randomly Switching Topology,” Applied Mathematics and Computation,

Vol.219, No.3, pp.996–1010 (2012)

[60] T. H. Lee, J. H. Park, Z. G Wu, S. C. Lee and D. H. Lee, “Robust H∞ Decen-

tralized Dynamic Control for Synchronization of a Complex Dynamical Network

with Randomly Occurring Uncertainties,” Nonlinear Dynamics, Vol.70, No.1,

pp.559–570 (2012)

[61] H. Zhang and G. Feng, “Stability Analysis and H∞ Controller Design of

Discrete-Time Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Func-

tions,” IEEE Trans. Syst. Man, and Cybernetics-Part B: Cybernetics, Vol.38,

No.5, pp.1390–1401 (2008)

[62] H. Wang and G. H. Yang, “Decentralized State Feedback Control of Uncer-

tain Affine Fuzzy Large-Scale Systems with Unknown Interconnections,” IEEE

Trans. Fuzzy Syst., Vol.24, No.5, pp.1134–1146 (2016)

[63] C. J. Mao. and W. S. Lin, “Decentralized Control of Interconnected Systems

with Unmodelled Nonlinearity and Interaction,” Automatica, Vol.26, No.2,

pp.263–268 (1990)

[64] Y. H. Chen, G. Leitmann and X. Z. Kai “Robust Control Design for Intercon-

nected Systems with Time-Varying Uncertainties,” Int. J. Contr., Vol.54, No.5,

pp.1119–1142 (1991)

[65] Y. H. Chen, “Decentralized robust control for large-scale systems: a design

based on the bound of uncertainty,” J. Dyn. Syst., Measurement, Contr.,

Vol.114, No.1, pp.1–9 (1992)

[66] Z. Gong, “Decentralized Robust Control of Uncertain Interconnected Systems

with Prescribed Degree of Exponential Convergence,” IEEE Trans. Automat.

Contr., Vol.40, No.4, pp.704-707 (1995)

78



BIBLIOGRAPHY

[67] Y. Zhang, Y. Jing and S. Zhang, “Robust Decentralized Reliable Control for

Uncertain Interconnected Delayed Systems,” The Preprints of the 15th IFAC

World Congress, Barcelona, SPAIN (2002)

[68] H. Mukaidani, Y. Takato, Y. Tanaka and K. Mizukami, “The Guaranteed Cost

Control for Uncertain Large-Scale Interconnected Systems,” The Preprints of

the 15th IFAC World Congress, Barcelona, SPAIN (2002)

[69] H. Mukaidani, M. Kimoto and T. Yamamoto, “Decentralized Guaranteed Cost

Control for Discrete-Time Uncertain Large-Scale Systems Using Fuzzy Con-

trol,” Proc. of 2006 IEEE World Congress on Computational Intelligence,

pp.3099-3105, Vancouver, CANADA (2006)

[70] H. Mukaidani, “The Guaranteed Cost Control for Uncertain Nonlinear Large-

scale Stochastic Systems via State and Output Feedback,” J. Mathematical

Analysis and Applications, Vol.359, No.2, pp.527–535 (2009)

[71] W. J. Mao and J. Chu, “Robust Decentralized Stabilization of Interval Discrete-

Time Singular Large-Scale Systems,” IET Contr. Theory and Applications,

Vol.4, No.2, pp.244–252 (2010)

[72] S. Gutman, ”Uncertain Dynamical Systems - A Lyapunov min-max approach,”

IEEE Trans. Automat. Contr., Vol.24, No.3, pp.437-443 (1979)

[73] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequal-

ities in System and Control Theory,” SIAM Studies in Applied Mathematics

(1994)

[74] F. R. Gantmacher, “The Theory of Matrices,” Vol.1, Chelsea Publishing Com-

pany,” New York (1960)

[75] P. Lancaster, “Theory of Matrices,” Academic Press, New York (1969)

[76] S. Nagai and H. Oya, “Decentralized Variable Gain Robust Controllers for

a Class of Uncertain Large-Scale Interconnected Systems,” Proc. of the 33rd

IASTED Int. Conf. on Modelling, Identification and Contr., pp.199-204, Inns-

bruck, AUSTRIA (2014)

[77] S. Nagai and H. Oya, “Decentralized Variable Gain Robust Controllers for

a Class of Uncertain Large-Scale Interconnected Systems with State Delays,”

79



BIBLIOGRAPHY

Proc. of the 5th Int. Symposium on Advanced Contr. of Industrial Processes

(ADCONIP2014), No.1B1-3, pp.68-72, Hiroshima, Japan (2014)

[78] S. Nagai and H. Oya, “Synthesis of Decentralized Variable Gain Robust Con-

trollers for Large-Scale Interconnected Systems with Structured Uncertain-

ties,”J. Contr. Science and Engineering, Vol.2014, Article ID 848465, 10 pages

(2014)

[79] S. Nagai and H. Oya, “Synthesis of Decentralized Variable Gain Robust Con-

trollers with L2 Gain Performance for a Class of Uncertain Large-Scale Inter-

connected Systems,”J. Contr. Science and Engineering, Vol.2015, Article ID

342867, 11 pages (2015)

[80] H. Oya and K. Hagino, “Observer-Based Guaranteed Cost Control Scheme for

Polytopic Uncertain Systems with State Delays,” Proc. of the 28th Annual

Conf. of the IEEE Industrial Electronics Society (IECON2004), p.TA6-5, Bu-

san, Korea (2004)

[81] H. Oya, K. Hagino and M. Matsuoka, “Observer-Based Robust Preview Track-

ing Control Scheme for Uncertain Discrete-Time Systems,” Preprints of the

16th IFAC World Congress (IFAC2005), Mo-Ao2-TP07, Prague, CZECH REP.

(2005)

[82] S. Nagai, H. Oya and T. Kubo, “Decentralized Variable Gain Robust Con-

trollers with Guaranteed L2 Gain Performance for a Class of Uncertain Large-

Scale Interconnected Systems with State Delays,” Proc. of the 3rd Int. Conf.

Contr., Mechatronics and Automation (ICCMA2015), No.BC007, 9 pages,

Barcelona, Spain (2015)

[83] S. Nagai, H. Oya, T. Kubo and T. Matsuki, “Decentralized Variable Gain Ro-

bust Controller Design for a Class of Large-Scale Interconnected Systems with

Mismatched Uncertainties,” Int. J. Systems Science, Vol.48, No.8, pp.1616–1623

(2017)

[84] H. Oya and K. Hagino, “Robust Stabilization for a Class of Uncertain Switched

Linear Systems via Variable Gain Controllers,” Electronics and Communica-

tions in Japan, Vol.92, No.6, pp.12–20 (2009)

80



BIBLIOGRAPHY

[85] S. Niioka, R. Yokoyama, G. Fujita and G. Shirai “Decentralized Exciter Stabi-

lizing Control for Multi-Machine Power Systems,” Trans IEE Japan, Vol.120-B,

pp.808–814 (2000) [in Japanese]

[86] H. Mukaidani, Y. Tanaka and K. Mizukami, “Guaranteed Cost Control for

Large-Scale Systems under Control Gain Perturbations,” Electrical Engineering

in Japan, Vol.146, No.4, pp.43–56 (2004)

[87] T. H. Hopp and W. E. Schmitendorf, “Design of a Linear Controller for Robust

Tracking and Model Following,” Trans. ASME, J. Dynamic Syst., Measurement

and Contr., Vol.112, No.5, pp.552–558 (1990)

[88] D. G. Luenberger, “Observing the State of a Linear System,” IEEE Trans.

Military Electronics, Vol.8, No.2, pp.74–80 (1964)

[89] J. Hammer, “Linear Dynamic Output Feedback: Invariants and Stability,”

IEEE Trans. Automat. Contr., Vol.28, No.4, pp.489–496 (1983)

[90] P. J. Antsaklis and J. Baillieul, “Special Issue on the Technology of Networked

Control Systems,” Proc. of the IEEE Special Issue on Networked Control Sys-

tems Technology, Vol.95, No.1, pp.5–8 (2007)

[91] F. Bullo, J. Cortes and S. Martinez, “Distributed Control of Robotic Networks,”

Applied Mathematics Series, Princeton Univ. Press (2009)

[92] Z. Lin, L. Wang, Z. Han and M. Fu, “Distributed Formation Control of Multi-

Agent Systems Using Complex Laplacian,” IEEE Trans. Automat. Contr.,

Vol.59, No.7, pp.1765–1777 (2014)

[93] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and Cooperation in

Networked Multi-Agent Systems,” Proc. of the IEEE, Vol.95, No.1, pp.215–233

(2007)

[94] W. Ren and R. Beard, “Distributed Consensus in Multi-Vehicle Cooperative

Control,” Theory and Applications, Springer (2008)

[95] L. Schenato and F. Fiorentin, “A Consensus-Based Protocol for Clock Synchro-

nization in Wireless Sensor Networks,” Automatica, Vol.47, No.9, pp.1878–1886

(2011)

81



BIBLIOGRAPHY

[96] J. Cortes, S. Martinez and F. Bullo, “Spatially-Distributed Coverage Optimiza-

tion and Control with Limited-Range Interactions,” ESAIM: Contr., Optimiza-

tion and Calculus of Variations, Vol.11, No.4, pp.691–719 (2005)

[97] S. Martinez, J. Cortes and F. Bullo, “Motion Coordination with Distributed

Information,” IEEE Contr. Syst. Magazine, Vol.27, No.4, pp.75–88 (2007)

[98] K. Sakurama, S. Azuma and T. Sugie, “Distributed Controllers for Multi-Agent

Coordination via Gradient-Flow Approach,” IEEE Trans. Automat. Contr.,

Vol.60, No.6, pp.1471–1485 (2015)

[99] S. Nagai, H. Oya, T. Kubo and T. Matsuki, “Decentralized Variable Gain Ro-

bust Practical Tracking for a Class of Uncertain Large-Scale Interconnected

Systems,” Proc. of the 43rd Annual Conference of the IEEE Industrial Elec-

tronics Society (IECON2017), pp.3015–3020, Beijing, China (2017)

82



List of Publications Related to

this Thesis

[1] S. Nagai and H. Oya, “Decentralized Variable Gain Robust Controllers for a

Class of Uncertain Large-Scale Interconnected Systems,” Proc. of the 33rd

IASTED Int. Conf. on Modelling, Identification and Contr., pp.199-204,

Innsbruck, AUSTRIA (2014) (Related to Chapter 2)

[2] S. Nagai and H. Oya, “Synthesis of Decentralized Variable Gain Robust Con-

trollers for Large-Scale Interconnected Systems with Structured Uncertain-

ties,”J. Contr. Science and Engineering, vol.2014, Article ID 848465, 10 pages

(2014) (Related to Chapter 2)

[3] S. Nagai and H. Oya, “Synthesis of Decentralized Variable Gain Robust Con-

trollers with L2 Gain Performance for a Class of Uncertain Large-Scale Inter-

connected Systems,”J. Contr. Science and Engineering, Vol.2015, Article ID

342867, 11 pages (2015) (Related to Chapter 3)

[4] S. Nagai, H. Oya, T. Kubo and T. Matsuki, “Decentralized Variable Gain Ro-

bust Controller Design for a Class of Large-Scale Interconnected Systems with

Mismatched Uncertainties,” Int. J. Systems Science, Vol.48, No.8, pp.1616–

1623 (2017) (Related to Chapter 4)

[5] S. Nagai, H. Oya, T. Kubo and T. Matsuki, “Decentralized Variable Gain Ro-

bust Practical Tracking for a Class of Uncertain Large-Scale Interconnected

Systems,” Proc. of the 43rd Annual Conference of the IEEE Industrial Elec-

tronics Society (IECON2017), pp.3015–3020, Beijing, China (2017) (Related

to Chapter 4 and Appendix)

83





List of Other Publications

[1] S. Nagai and H. Oya, “Decentralized Variable Gain Robust Controllers for a

Class of Uncertain Large-Scale Interconnected Systems with State Delays,”

Proc. of the 5th Int. Symposium on Advanced Contr. of Industrial Processes

(ADCONIP2014), No.1B1-3, pp.68-72, Hiroshima, Japan (2014)

[2] H. Oya, D. Yamasaki, S. Nagai and K. Hagino, “Synthesis of Adaptive Gain

Robust Controllers for Polytopic Uncertain Systems,”Mathematical Problems

in Engineering, Vol.2015, Article ID 854306, 8 pages (2015)

[3] S. Nagai, H. Oya and T. Kubo, “Synthesis of Variable Gain Robust Controllers

giving Consideration to Nominal L2 Performance for a Class of Uncertain

Linear Systems,” Shikoku Branch of the Society of Instrument and Control

Engineers (SICE) Conf., No.1-29, 4 pages, Kouchi, Japan (2015) [in Japanese]

[4] S. Nagai, H. Oya and T. Kubo, “Decentralized Variable Gain Robust Con-

trollers with Guaranteed L2 Gain Performance for a Class of Uncertain Large-

Scale Interconnected Systems with State Delays,” Proc. of the 3rd Int. Conf.

Contr., Mechatronics and Automat. (ICCMA2015), No.BC007, 9 pages,

Barcelona, Spain (2015)

[5] S. Nagai, H. Oya, T. Kubo, and T. Matsuki, “LMI-Based Design of Variable

Gain Robust Controllers with Nominal L2 Gain Performance for Linear Sys-

tems with Uncertain Nonlinear Perturbations,” Proc. of the 59th Japan Joint

Automatic Contr. Conf., No.TrC5-2, pp.468–469, Fukuoka, Japan (2016) [in

Japanese]

[6] S. Nagai, H. Oya, T. Kubo, and T. Matsuki, “A New Variable Gain Robust

Controller Giving Consideration to Nominal L2 Gain Performance for Lin-

ear Systems with Structured Uncertainties,” Proc. of the IEEE Int. Conf.

85



BIBLIOGRAPHY

Inventive Syst. and Contr. (ICISC2017), pp.91–96, Coimbatore, India (2017)

[7] H. Oya and S. Nagai, “A New Model Following and Practical Tracking via

Variable Gain Robust Controllers for a Class of Uncertain Linear Systems,”

Proc. of the 21st Int. Conf. Syst. Theory, Contr. and Computing (IC-

STCC2017), pp.23–28, Sinaia, Romania (2017)

86



Author’s Biography

Shunya Nagai was born in Tokyo, Japan in October 21st, 1990. He received his

Bachelor’s degree in engineering in 2013 and Master’s degree in engineering in 2015

at Tokushima University. He will also receive his Ph.D degree in March, 2018 at

Tokushima University. His main research interest is the control theory and control

engineering, particularly robust control for dynamical systems with uncertainties,

decentralized control for large-scale interconnected systems and formation control

for multi-agent systems. He is IEEE student member and the Society of Instrument

and Control Engineers (SICE) student member.

87





Appendix

Decentralized Variable Gain

Robust ε-Tracking for a Class of

Uncertain Large-Scale

Interconnected Systems

In this appendix, a decentralized variable gain robust controller which achieves ε-

tracking for a class of large-scale interconnected systems with mismatched uncer-

tainties is introduced [99]. Furthermore, we show that sufficient conditions for the

existence of the proposed decentralized variable gain robust controller are reduced

to the feasibility of linear matrix inequalities (LMIs). Finally, a simple numerical

example is presented to demonstrate the effectiveness of the proposed decentralized

robust control system.

A.1 Problem Formulation

Let us consider the uncertain large-scale interconnected system composed of N
subsystems described as

d

dt
xi(t) = Aii(t)xi(t) +

N∑
j=1
j �=i

Aij(t)xj(t) +Biui(t),

yi(t) = Cixi(t),

(A.1)
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A.1. PROBLEM FORMULATION

where xi(t) ∈ R
ni , ui(t) ∈ R

mi and yi(t) ∈ R
li (i = 1, · · · ,N ) are the vectors of

the state, the control input and the output for the i-th subsystem, respectively and

x(t) =
(
xT

1 (t), · · · , xT
N (t)

)T
is the state of the overall system. The matrices Aii(t)

and Aij(t) are given by

Aii(t) = Aii +BiΔii(t)Eii +B⊥
i Δ⊥

ii (t)E⊥
ii ,

Aij(t) = Aij +BiDij +BiΔij(t)Eij +B⊥
ijΔ

⊥
ij(t)E⊥

ij .
(A.2)

In (A.2), the matrices Aii ∈ R
ni×ni , Aij ∈ R

ni×nj , Bi ∈ R
ni×mi and Ci ∈ R

li×ni de-

note the nominal system matrices. Additionally, the matrices Dij, Eii and Eij with

appropriate dimensions represent the structure of matched interactions or uncertain-

ties and the matrices Aij , B
⊥
i , B⊥

ij , E⊥
ii and E⊥

ij show the structure of mismatched

ones [83]. Namely, the uncertainties and interactions are divided into the matched

part and mismatched one. Besides, matrices Δii(t) ∈ R
mi×ri, Δij(t) ∈ R

mi×sij ,

Δ⊥
ii(t) ∈ R

pii×qii and Δ⊥
ij(t) ∈ R

pij×qij denote unknown parameters satisfying the

relations ‖Δii(t)‖ ≤ 1.0, ‖Δij(t)‖ ≤ 1.0, ‖Δ⊥
ii(t)‖ ≤ 1.0 and ‖Δ⊥

ij(t)‖ ≤ 1.0.

Now, the reference model which should be tracked by the subsystems of (A.1) is

given by

d

dt
xri

(t) = Ari
xri

(t),

yri
(t) = Cri

xri
(t),

(A.3)

where xri
(t) ∈ R

nri and yri
(t) ∈ R

li are the state and the output of the reference

model, and we assume that there exist a finite positive scalar Mi such that

‖xri
(t)‖ ≤Mi, ∀t ≥ 0. (A.4)

Furthermore for the reference model of (A.3), there exist matrices Gi ∈ R
ni×nri and

Hi ∈ R
mi×nri which satisfy [87](

Aii Bi

Ci Oli×mi

)(
Gi

Hi

)
=

(
GiAri

Cri

)
. (A.5)

The nominal subsystem, which is obtained by ignoring uncertainties and interac-

tions in (A.1), is shown as

d

dt
xi(t) = Aiixi(t) +Biui(t),

yi(t) = Cixi(t).
(A.6)
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In (A.6), xi(t) ∈ R
ni, ui(t) ∈ R

mi and yi(t) ∈ R
li are the vectors of the state, the

control input and the output for the i-th nominal subsystem. Next by introducing

an error vector between the nominal system and the reference model ei(t)
�
= xi(t) −

Gixri
(t), the nominal error subsystem

d

dt
ei(t) = Aiixi(t) +Biui(t) −GiAri

xri
(t)

= Aiixi(t) +Biui(t) − (AiiGi + BiHi)xri
(t)

= Aiiei(t) +Biωi(t), (A.7)

is derived. In (A.7), ωi(t)
�
=ui(t) − Hixri

(t). If the vector ωi(t) can be written as

ωi(t) = −Kiei(t), then the error subsystem of (A.7) can be rewritten as

d

dt
ei(t) = (Aii − BiKi)ei(t)

= AKi
ei(t), (A.8)

where AKi

�
=Aii − BiKi. Furthermore, the tracking error eyi

(t)
�
= yi(t) − yri

(t) can

be represented as

eyi
(t) = Ciei(t). (A.9)

Therefore, if the matrix AKi
is stable, then eyi

(t) tends to 0 as t goes to infinity, i.e.,

the output of (A.6) tracks one of the reference model of (A.3). Then the nominal

control input ui(t) for the nominal subsystem is

ui(t) = −Kiei(t) +Hixri
(t)

= −Kixi(t) + (KiGi +Hi)xri
(t). (A.10)

Now, by using the nominal control input ui(t) of (A.10), we define the following

control input for the large-scale interconnected system of (A.1):

ui(t)
�
= −Kixi(t) + (KiGi +Hi)xri

(t) + vi(t). (A.11)

In (A.11), vi(t) ∈ R
mi is the compensation input defined as [83]

vi(t)
�
=−Fiei(t) − ϕi(ei, xri

, t). (A.12)
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where, ei(t)
�
=xi(t)−Gixri

(t) is the error vector between the controlled system and

the reference model, and Fi ∈ R
mi×ni and ϕi(ei, xri

, t) ∈ R
mi are a fixed compensa-

tion gain matrix and a nonlinear modification term. From (A.1), (A.2), (A.11) and

(A.12), we have the uncertain closed-loop subsystem of (A.13)

d

dt
xi(t) = AKi

xi(t) +Bi(KiGi +Hi)xri
(t) +BiΔii(t)Eiixi(t) +B⊥

i Δ⊥
ii(t)E⊥

ii xi(t)

+Bi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)xj(t) +

N∑
j=1
j �=i

(Aij +B⊥
ijΔ

⊥
ij(t)E⊥

ij )xj(t) −BiFiei(t)

− Biϕi(ei, xri
, t). (A.13)

Hence from (A.13) and the definition of ei(t), the following error subsystem can be

obtained:

d

dt
ei(t) = (AKi

− BiFi)ei(t) +BiΔii(t)Eiixi(t) +B⊥
i Δ⊥

ii(t)E⊥
ii xi(t)

+Bi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)xj(t) +
N∑

j=1
j �=i

(Aij +B⊥
ijΔ

⊥
ij(t)E⊥

ij )xj(t)

−Biϕi(ei, xri
, t). (A.14)

From the above, the design problem in this appendix is to determine the compen-

sation input vi(t) of (A.12) such that the tracking error ey(t) = (eT
y1

(t), · · · , eT
yN (t))T

is satisfactorily small, namely the overall system tracks the reference model as closely

as possible.

A.2 Design Method of Variable Gain Robust ε-

Tracking Controller

By using the symmetric positive definite matrices Pi ∈ R
ni×ni, we introduce the

following Lyapunov function candidate so as to derive the proposed decentralized

robust controller:

V(e, t)
�
=

N∑
i=1

Vi(ei, t), (A.15)

Vi(ei, t)
�
= eT

i (t)Piei(t). (A.16)
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For the quadratic function Vi(ei, t), its time derivative along the trajectory of the

error subsystem of (A.14) is given by

d

dt
Vi(ei, t) = eT

i (t)He{(AKi
− BiFi)

TPi}ei(t)

+ 2eT
i (t)PiBiΔii(t)Eii(ei(t) +Gixri

(t))

+ 2eT
i (t)PiB

⊥
i Δ⊥

ii(t)E⊥
ii (ei(t) +Gixri

(t))

+ 2eT
i (t)PiBi

N∑
j=1
j �=i

(Dij + Δij(t)Eij)(ej(t) +Gjxrj
(t))

+ 2eT
i (t)Pi

N∑
j=1
j �=i

(Aij +B⊥
ijΔ

⊥
ij(t)E⊥

ij )(ej(t) +Gjxrj
(t))

− 2eT
i (t)PiBiϕi(ei, xri

, t). (A.17)

For the relation of (A.17), applying the well-known inequality for any vectors with

appropriate dimensions and a positive scalar δi

2αβ ≤ δαTα +
1

δi
ββ (A.18)

and some algebraic manipulations give

d

dt
Vi(ei, t) ≤ eT

i (t)He{(AKi
−BiFi)

TPi}ei(t) + 2
∥∥BT

i Piei(t)
∥∥ ‖Eiiei(t)‖

+ 2
∥∥BT

i Piei(t)
∥∥ ‖EiiGixri

(t)‖ + 4(N − 1)δie
T
i (t)PiBiB

T
i Piei(t)

+
1

δi

N∑
j=1
j �=i

eT
j (t)(DT

ijDij + ET
ijEij)ej(t)

+
1

δi

N∑
j=1
j �=i

xT
rj

(t)GT
j (DT

ijDij + ET
ijEij)Gjxrj

(t)

+ 2δie
T
i (t)PiB

⊥
i

(
B⊥

i

)T Piei(t) +
1

δi
eT

i (t)
(E⊥

ii

)T E⊥
ii ei(t)

+
1

δi
xT

ri
(t)GT

i

(E⊥
ii

)T E⊥
iiGixri

(t) +
N∑

j=1
j �=i

2δie
T
i (t)PiAijA

T
ijPiei(t)
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+

N∑
j=1
j �=i

2δie
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Piei(t)

+
N∑

j=1
j �=i

1

δi
eT

j (t)
{
In +

(E⊥
ij

)T E⊥
ij

}
ej(t)

+
N∑

j=1
j �=i

1

δi
xT

rj
(t)GT

j

{
In +

(E⊥
ij

)T E⊥
ij

}
Gjxrj

(t)

− 2eT
i (t)PiBiϕi(ei, xri

, t). (A.19)

Now we define the nonlinear modification term ϕi(ei, xri
, t) as

ϕi(ei, xri
, t)

�
=
μi(ei, xri

, t) + ηi(ei, t)

‖BT
i Piei(t)‖2

BT
i Piei(t), (A.20)

where scalar functions μi(ei, xri
, t) and ηi(ei, t) are given by

μi(ei, xri
, t)

�
= ‖BiPiei(t)‖ (‖Eiiei(t)‖ + ‖EiiGixri

(t)‖) ,
ηi(ei, t)

�
= 2δi(N − 1)‖BiPiei(t)‖2.

(A.21)

By substituting (A.20) into (A.19) and some algebraic manipulations, we can derive

the following relation for the quadratic function Vi(ei, t):

d

dt
Vi(ei, t) ≤ eT

i (t)He{(AKi
−BiFi)

TPi}ei(t) +
1

δi

N∑
j=1
j �=i

eT
j (t)(DT

ijDij + ET
ijEij)ej(t)

+
1

δi

N∑
j=1
j �=i

xT
rj

(t)GT
j (DT

ijDij + ET
ijEij)Gjxrj

(t)

+ 2δie
T
i (t)PiB

⊥
i

(
B⊥

i

)T Piei(t) +
1

δi
eT

i (t)
(E⊥

ii

)T E⊥
ii ei(t)

+
1

δi
xT

ri
(t)GT

i

(E⊥
ii

)T E⊥
iiGixri

(t) +
N∑

j=1
j �=i

2δie
T
i (t)PiAijA

T
ijPiei(t)
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+

N∑
j=1
j �=i

2δie
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Piei(t)

+
N∑

j=1
j �=i

1

δi
eT

j (t)
{
In +

(E⊥
ij

)T E⊥
ij

}
ej(t) +

N∑
j=1
j �=i

1

δi
xT

rj
(t)GT

j

{
In +

(E⊥
ij

)T E⊥
ij

}
Gjxrj

(t).

(A.22)

Therefore, from (A.15), (A.16) and (A.22), the inequality of (A.23) for V(e, t) can

be obtained

d

dt
V(e, t) ≤

N∑
i=1

eT
i (t)He{(AKi

− BiFi)
TPi}ei(t)

+

N∑
i=1

1

δi

N∑
j=1
j �=i

eT
j (t)(DT

ijDij + ET
ijEij)ej(t)

+
N∑

i=1

1

δi

N∑
j=1
j �=i

xT
rj

(t)GT
j (DT

ijDij + ET
ijEij)Gjxrj

(t)

+
N∑

i=1

2δie
T
i (t)PiB

⊥
i

(
B⊥

i

)T Piei(t) +
N∑

i=1

1

δi
eT

i (t)
(E⊥

ii

)T E⊥
ii ei(t)

+

N∑
i=1

1

δi
xT

ri
(t)GT

i

(E⊥
ii

)T E⊥
iiGixri

(t) +

N∑
i=1

N∑
j=1
j �=i

2δie
T
i (t)PiAijA

T
ijPiei(t)

+

N∑
i=1

N∑
j=1
j �=i

2δie
T
i (t)PiB

⊥
ij

(
B⊥

ij

)T Piei(t)

+

N∑
i=1

N∑
j=1
j �=i

1

δi
eT

j (t)
{
In +

(E⊥
ij

)T E⊥
ij

}
ej(t)

+
N∑

i=1

N∑
j=1
j �=i

1

δi
xT

rj
(t)GT

j

{
In +

(E⊥
ij

)T E⊥
ij

}
Gjxrj

(t). (A.23)
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The inequality of (A.23) can be rewritten as

d

dt
V(e, t) ≤

N∑
i=1

eT
i (t)

{
He{(AKi

−BiFi)
TPi} +

N∑
j=1
j �=i

1

δj
(DT

jiDji + ET
jiEji)

+ 2δiPiB
⊥
i

(
B⊥

i

)T Pi +
1

δi

(E⊥
ii

)T E⊥
ii

+
N∑

j=1
j �=i

2δiPiAijA
T
ijPi +

N∑
j=1
j �=i

2δiPiB
⊥
ij

(
B⊥

ij

)T Pi

+
N∑

j=1
j �=i

1

δj

{
In +

(E⊥
ji

)T E⊥
ji

}}
ei(t)

+

N∑
i=1

xT
ri
(t)GT

i

{ N∑
j=1
j �=i

1

δj
(DT

jiDji + ET
jiEji) +

1

δi

(E⊥
ii

)T E⊥
ii

+

N∑
j=1
j �=i

1

δj

{
In +

(E⊥
ji

)T E⊥
ji

}}
Gixri

(t). (A.24)

From the assumption of (A.4) for the reference model, there exists a positive

scalar σi satisfying the following relation:

xT
ri
(t)GT

i

{ N∑
j=1
j �=i

1

δj
(DT

jiDji + ET
jiEji) +

1

δi

(E⊥
ii

)T E⊥
ii

+

N∑
j=1
j �=i

1

δj

{
In +

(E⊥
ji

)T E⊥
ji

}}
Gixri

(t) ≤ σi. (A.25)

Furthermore, we assume that for the symmetric positive definite matrix Pi ∈ R
ni×ni,

the fixed compensation gain matrix Fi and positive scalars αi, δi and δj , the inequal-
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ity

He{(AKi
−BiFi)

TPi} +
N∑

j=1
j �=i

1

δj
(DT

jiDji + ET
jiEji) + 2δiPiB

⊥
i

(
B⊥

i

)T Pi

+
1

δi

(E⊥
ii

)T E⊥
ii +

N∑
j=1
j �=i

2δiPiAijA
T
ijPi +

N∑
j=1
j �=i

2δiPiB
⊥
ij

(
B⊥

ij

)T Pi

+
N∑

j=1
j �=i

1

δj

{
In +

(E⊥
ji

)T E⊥
ji

}
< −αiIn (A.26)

holds. Therefore, from (A.24) – (A.26), we have

d

dt
V(e, t) < −

N∑
i=1

αie
T
i (t)ei(t) +

N∑
i=1

σi

= −eT (t)Ae(t) + σ. (A.27)

In (A.27), A �
=diag(α1, · · · , αN ) and σ

�
=

N∑
i=1

σi. One can easily see that the follow-

ing relation is obvious:

eT (t)Ae(t) ≥ λmin(A)‖e(t)‖2, (A.28)

and thus the inequality of (A.27) can be rewritten as

d

dt
V(e, t) < −min

i
{αi}‖e(t)‖2 + σ. (A.29)

Therefore if the inequality of (A.26) is satisfied, then the upper bound of e(t) is

given by

‖e(t)‖ <
√

σ

min
i
{αi} , (A.30)

i.e., from (A.9) and (A.30), the upper bound of ey(t) is given by

‖ey(t)‖ < |C|
√

σ

min
i
{αi} , (A.31)

where C = diag (C1, · · · , CN ).
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Finally, we consider the inequality of (A.26). By introducing the symmetric

positive definite matrices Si
�
=P−1

i and matrices Wi
�
=FiSi, and by pre- and post-

multiplying both sides of the inequality of (A.26) by Si, we have

He{AKi
Si − BiWi} +

N∑
j=1
j �=i

1

δj
Si(DT

jiDji + ET
jiEji)Si + 2δiB

⊥
i

(
B⊥

i

)T

+
1

δi
Si

(E⊥
ii

)T E⊥
ii Si +

N∑
j=1
j �=i

2δiAijA
T
ij +

N∑
j=1
j �=i

δiB
⊥
ij

(
B⊥

ij

)T

+

N∑
j=1
j �=i

1

δj
Si

{
In +

(E⊥
ji

)T E⊥
ji

}
Si + αiSiSi < 0. (A.32)

Thus by applying Lemma 1.2 (Schur complement) to (A.32), we find that the

inequalities of (A.32) are equivalent to the following LMIs:(
Θi(Si,Wi, δi) Λi(Si)

� −Ωi(βi, δi)

)
< 0. (A.33)

where, matrices Θi(Si,Wi, δi), Λi (Si) and Ωi(βi, δi) are given by

Θi(Si,Wi, δi)
�
=He{AKi

Si − BiWi} + 2δiB
⊥
i

(
B⊥

i

)T
+

N∑
j=1
j �=i

2δiAijA
T
ij

+
N∑

j=1
j �=i

2δiB
⊥
ij

(
B⊥

ij

)T
, (A.34)

Λi (Si)
�
=(Si SiDT

1i SiET
1i · · · SiDT

i−1i SiET
i−1i SiDT

i+1i SiET
i+1i · · ·

· · · SiDT
N i SiET

N i Si

(E⊥
ii

)T Si Si

(E⊥
1i

)T Si Si

(E⊥
2i

)T · · ·

· · · Si Si

(E⊥
N i

)T
), (A.35)

Ωi(βi, δi)
�
=diag(βiIni

, δ1Imi
, δ1Is1i

, · · · , δi−1Imi
, δi−1Isi−1 i

, δi+1Imi
, δi+1Isi+1 i

,

· · · , δN Imi
, δN IsN i

, δiIqii
, δ1Ini

, δ1Iq1i
, · · · , δi−1Ini

, δi−1Iqi−1 i
,

δi+1Ini
, δi+1Iqi+1 i

, · · · , δN Ini
, δN IqN i

), (A.36)

and a scalar βi is defined as βi
�
=α−1

i . Therefore by using the solution of the LMIs of
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(A.33), the fixed compensation gain matrix Fi and the nonlinear modification term

ϕi(ei, xri
, t) are determined as Fi

�
=WiS−1

i and (A.20), respectively.

Summarizing the above, we obtain the following theorem.

Theorem A.1 Consider the large-scale interconnected system of (A.1) and the con-

trol input of (A.9).

If there exist symmetric positive definite matrices Si ∈ R
ni×ni, matrices Wi ∈

R
mi×ni and positive constants βi and δi which satisfy the LMIs of (A.33), the

fixed compensation gain matrix Fi ∈ R
mi×ni and the nonlinear modification term

ϕi(ei, xri
, t) ∈ R

mi are determined as Fi
�
=WiS−1

i and (A.20). Then the upper

bound of ey(t) is given by (A.31).

Remark A.1 The nonlinear modification term ϕi(ei, xri
, t) of (A.20) is bounded,

because one can easily see that the norm of the function ϕi(ei, xi, t) can be represented

as
∥∥∥ϕi(ei, xi, t)

∥∥∥ = ‖Eiiei(t)‖ + ‖EiiGixri
(t)‖ + 2δi(N − 1)‖BiPiei(t)‖.

Remark A.2 The tracking performance of the proposed decentralized controller is

high comparing with the conventional decentralized control scheme, because the feasi-

ble region of the LMIs of (A.33) is more larger than one of the LMIs corresponding

to the conventional decentralized controller design strategies, and the relation σi < σC
i

for the parameters σi of (A.25) and σC
i corresponding to σi is satisfied. Therefore,

we find that the proposed decentralized variable gain robust ε-tracking controller is

useful.

A.3 Numerical Examples

A numerical example is provided to demonstrate the efficiency of the proposed robust

controller.

The uncertain large-scale interconnected systems consisting of three two-dimensional

subsystems (N = 3) is involved. The parameters of the controlled system are given

by

A11 =

(
−1.0 1.0

1.0 0.1

)
, A22 =

(
1.0 3.0

0.0 −2.0

)
, A33 =

(
−1.0 1.0

2.0 0.0

)
,

A12 =

(
3.0 × 10−1 0.0

0.0 0.0

)
, A13 =

(
0.0 3.0 × 10−1

0.0 0.0

)
,
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A21 =

(
0.0 0.0

2.0 × 10−1 0.0

)
, A23 =

(
0.0 0.0

3.0 × 10−1 0.0

)
,

A31 =

(
0.0 2.0 × 10−1

0.0 0.0

)
, A32 =

(
1.0 × 10−1 0.0

0.0 0.0

)
,

B1 =

(
0.0

1.0

)
, B2 =

(
1.0

0.0

)
, B3 =

(
0.0

1.0

)
, CT

1 =

(
1.0

0.0

)
,

CT
2 =

(
1.0

0.0

)
, CT

3 =

(
0.0

1.0

)
, E11 =

(
1.0 0.0

0.0 0.0

)
, E22 =

(
0.0 1.0

1.0 0.0

)
,

E33 =

(
1.0 0.0

1.0 0.0

)
, B⊥

1 =

(
1.0 × 10−1 0.0

0.0 0.0

)
, B⊥

2 =

(
0.0 0.0

3.0 × 10−1 0.0

)
,

B⊥
3 =

(
0.0 5.0 × 10−1

0.0 0.0

)
, E⊥

11 =

(
1.0 × 10−1 0.0

0.0 0.0

)
,

E⊥
22 =

(
1.0 × 10−1 0.0

0.0 0.0

)
, E⊥

33 =

(
0.0 0.0

2.0 × 10−1 0.0

)
, DT

12 =

(
0.0

2.0

)
,

DT
13 =

(
2.0

0.0

)
, DT

21 =

(
1.0

0.0

)
, DT

23 =

(
0.0

1.0

)
, DT

31 =

(
1.0

1.0

)
,

DT
32 =

(
1.0

0.0

)
, E12 =

(
1.0 1.0

0.0 1.0

)
, E13 =

(
1.0 0.0

0.0 0.0

)
, E21 =

(
1.0 0.0

0.0 1.0

)
,

E23 =

(
0.0 2.0

1.0 0.0

)
, E31 =

(
1.0 0.0

1.0 1.0

)
, E32 =

(
0.0 0.0

1.0 0.0

)
,

B⊥
12 =

(
1.0 × 10−1 0.0

0.0 0.0

)
, B⊥

13 =

(
1.0 × 10−1 0.0

0.0 0.0

)
,

B⊥
21 =

(
0.0 0.0

1.0 × 10−1 0.0

)
, B⊥

23 =

(
0.0 0.0

1.0 × 10−1 0.0

)
,

B⊥
31 =

(
2.0 × 10−1 0.0

0.0 0.0

)
, B⊥

32 =

(
1.0 × 10−1 0.0

0.0 0.0

)
,

E⊥
12 =

(
0.0 0.0

2.0 × 10−1 0.0

)
, E⊥

13 =

(
0.0 1.0 × 10−1

0.0 0.0

)
,

E⊥
21 =

(
3.0 × 10−1 0.0

0.0 0.0

)
, E⊥

23 =

(
0.0 0.0

0.0 2.0 × 10−1

)
,

E⊥
31 =

(
1.0 × 10−1 0.0

0.0 0.0

)
, E⊥

32 =

(
0.0 0.0

0.0 2.0 × 10−1

)
,

(A.37)
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and the parameters of the reference models for each subsystem are given by

Ar1 =

(
0.0 1.0

−1.0 0.0

)
, Ar2 =

(
0.0 −1.0

1.0 0.0

)
, Ar3 =

(
0.0 1.0

−1.0 0.0

)
,

Cr1 =
(

0.0 1.0
)
, Cr2 =

(
0.0 1.0

)
, Cr3 =

(
0.0 1.0

)
.

(A.38)

Firstly, by solving the the matrix equation of (A.5), the solutions Gi ∈ R
2×2 and

Hi ∈ R
1×2 are obtained as

G1 =

(
0.0 1.0

−1.0 0.1

)
, G2 =

(
0.0 1.0

0.0 0.0

)
, G3 =

(
0.4 −0.2

1.0 0.0

)
,

H1 =
(

−0.9 −2.1
)
, H2 =

(
1.0 −1.0

)
, H3 =

(
−0.8 1.4

)
.

(A.39)

Now, in order to design the feedback gain matrices Ki ∈ R
1×2, we consider the

standard LQ optimal control problem. By selecting weighting matrices Qi ∈ R
2×2

and Ri as Q1 = Q2 = Q3 = I2 and R1 = R2 = R3 = 1, respectively, we solve

the algebraic Riccati equation of (2.5). Then we can obtain the LQ optimal gain

matrices K ∈ R
1×2 as

K1 =
(

1.0361 1.8556
)
,

K2 =
(

2.4142 2.1213
)
,

K3 =
(

2.1481 2.3014
)
.

(A.40)

Next, we consider Theorem A.1. By solving LMIs of (A.33), we can obtain the

following solutions:

S1 =

(
5.5310 −5.5213

� 1.0599

)
× 10−1, WT

1 =

(
1.0540

6.5998 × 10−1

)
,

S2 =

(
6.0460 −7.0482

� 5.7199

)
× 10−1, WT

2 =

(
5.7658

6.3485

)
× 10−1,

S3 =

(
3.7559 −3.2534

� 8.1638

)
× 10−1, WT

3 =

(
8.7626

1.3804

)
× 10−1,

β1 = 3.4846, β2 = 3.0113, β3 = 3.0437,

δ1 = 2.5598, δ2 = 2.8465, δ3 = 2.6082.

(A.41)

Therefore, the symmetric positive definite matrices Pi ∈ R
2×2, the positive scalars
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αi and the fixed compensation gain matrices Fi ∈ R
1×2 can be computed as

P1 =

(
3.7667 1.9621

� 1.9656

)
, P2 =

(
1.6781 2.0678 × 10−1

� 1.7738

)
,

P3 =

(
4.0661 1.6204

� 1.8707

)
,

α1 = 3.4846, α2 = 3.0113, α3 = 3.0437,

F1 =
(

5.2651 3.3654
)
, F2 =

(
1.0988 1.2453

)
, F3 =

(
3.7867 1.6781

)
.

(A.42)

In this example, initial values of large-scale interconnected system of (A.37) and

reference models of (A.38) are selected as

x(0) =
(

−1.0 −2.0 −1.0 0.0 0.0 2.0
)T

, (A.43)

and xr1(0) = xr2(0) = xr3(0) = (1.0 1.0)T . Furthermore, unknown parameters are

given by

Δii(t) =
(

cos(2.0πt) 0
)
, Δij(t) =

(
0 cos(−πt)

)
,

Δ⊥
ii (t) = diag

(
sin(−6.0πt), cos(−6.0πt)

)
,

Δ⊥
ij(t) = diag

(
− cos(πt), sin(πt)

)
.

(A.44)

Figures A.1–A.5 are the simulation results of this numerical example. These

figures show that the time histories of the output y(t) and y(t), the norm of the error

ey(t) = y(t) − y(t) and the proposed decentralized variable gain robust controller

u(t).

From these figures, we can see that the proposed decentralized variable gain robust

controller achieves good tracking performance for each subsystem with uncertain-

ties. Therefore, the effectiveness of the proposed decentralized variable gain robust

controller have been shown.
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Figure A.1: Time histories of y1(t) and y1(t)
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Figure A.2: Time histories of y2(t) and y2(t)
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Figure A.3: Time histories of y3(t) and y3(t)
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Figure A.4: Time histories of ‖ey(t)‖
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Figure A.5: Time histories of u(t)
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