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Abstract. We have developed a low-cost, high-efficiency fluorometer using a 

field-programmable gate array and simultaneous detection of photoelectron pulse trains. The 

fluorometer covers a time span of 64 ns with a resolution of 1.0 ns/channel. Depending on the 

number of channels, the signal-gathering efficiency was improved by a factor of 100 relative to 

that of conventional time-correlated single-photon-counting. This is assuming that the 

fluorescence intensity is moderately high but still requires photon counting. The dead time for 

building a histogram has been reduced to zero, which means that the upper limit of the 

repetitive excitation frequency could exceed that determined by the time span. We describe 

instrumental details and demonstrate the basic performance. 
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1. Introduction 

 

One of the most popular methods for measuring fluorescence lifetimes is time-correlated 

single-photon counting (TC-SPC) [1-4], which is based on statistical sampling using a 

time-to-amplitude converter (TAC) as a time analyzer. Although the TAC easily enables time 

resolution of a few picoseconds, it has two major problems. The first is that it has a low fluorescence 

signal-gathering efficiency. Therefore, depending on the fluorescence lifetime, the fluorescence 

intensity incident on a photo-detector has to be severely restricted so that only one photoelectron pulse 

arrives on average for 100 excitations. Otherwise, the fluorescence decay histogram will be distorted 

because of the nonlinear count rate of the arrival photons. Hence, the fluorescence intensity must be 

attenuated, even for samples having high quantum yields. This can be tolerated for samples with 

extremely low fluorescence intensities, but not for many other samples. The second problem is that the 

data gathering (or histogram building) efficiency is low because the excitation frequency usually 

cannot be increased. In TC-SPC, the output voltage from the TAC is processed via an 

analogue-to-digital converter (ADC) and the content of the memory address that corresponds to the 

ADC value is increased by one. This “add-one” process is repeated continuously to build the 

fluorescence decay histogram in a multichannel analyzer (MCA) operating in pulse-height-analyzer 

mode. The time required for one cycle of this process is a dead time that limits the maximum 

excitation frequency. This problem has been relaxed somewhat with high-count-rate TAC systems, but 

not solved completely. These two problems result in long measurement times. Thus there have been 

efforts, especially for biological and medical applications, to shorten measurement times, even at the 



cost of time resolution. 

    The use of multiple TACs operated in parallel has increased the signal-gathering efficiency in 

proportion to the number of TACs
1
. However, critical adjustments of individual TACs are still required, 

and the data-gathering efficiency is the same as that of a single TAC system. Another way to increase 

the signal-gathering efficiency is to employ a photoelectron-pulse-train simultaneous-detection method 

(PPT-SDM), where the fluorescence-induced photoelectron pulse train following pulsed excitation is 

captured simultaneously. For that purpose, shift-register (SR)-based [5, 6] and vernier 

chronotron-based methods [7] have been proposed. The former is a commercially available 

multichannel scaler [8]. Common to both two methods is that the time-series information for 

photoelectron pulse arrival times is recorded as spatial information in a bit pattern on the SR, or 

flip-flops, to build the histogram. The signal-gathering efficiency is thus improved markedly, at the 

cost of time resolution, relative to that of conventional TC-SPC, depending on the number of channels 

(or measurement time span). However, the data-gathering efficiency decreases with increasing time 

span. Even if a hardware-based direct-memory-access (DMA) is used for building the histogram, the 

system dead time cannot be shortened appreciably. [7] For example, if there are total of 50 channels 

with a time resolution of 1 ns/channel, and the add-one cycle per channel is 1 s, then, it takes more 

than 50 s to finish the whole process, resulting in a 20-kHz maximum excitation frequency. Similarly, 

for a time span of 50 ns, the excitation frequency should be 20 MHz. For the multichannel scaler 

mentioned above, this can be performed with a multichannel parallel adder (add-one) circuit, resulting 

in no system dead time. However, this approach is expensive and is not flexible because the hardware 

specifications are fixed. Other approaches also have been reported, such as use of a digital 

frequency-domain hardware [9], a high speed time-to-digital converter (TDS) [10], a combination of 

multiple detectors and TDS [11,12], and a combination of multiple detectors and a multiplexed 

counting with a single TAC [13]. Although those approaches seem promising in many applications, 

they are somewhat complicated or cost consuming to build up. 

    Here, we demonstrate a PPT-SDM-based fluorometer that uses a field-programmable gate array 

(FPGA). The array is a highly integrated, rewritable logic device that features: (i) a highly flexible 

circuit design, (ii) high-speed operation, and (iii) relatively low cost. Many scientific instruments using 

FPGAs have been reported [14-19]. The time span of the fluorometer is 64.0 ns (64 channels), with a 

resolution of 1.0 ns and zero dead time for building histogram. Therefore, the maximum excitation 

frequency is limited only by the time span. Furthermore, a laboratory-made amplifier/discriminator 

pair has a 1.5-ns pulse-pair resolution, which improves the signal-gathering efficiency. To achieve a 

1.0-ns/channel time resolution, a decoder circuit is incorporated for detecting leading edges of arriving 

photoelectron pulses. 

 

 

2. Instrumental 

 

2.1. Principle of operation 

 

Figure 1 depicts the working principle of the PPT-SDM. As shown in Figure 1(a), when the 

fluorescence intensity is low, the probability distribution of generating fluorescence photons after 

pulsed excitation is proportional to the amplitude of the observable, high-intensity fluorescence decay 

(dotted line). In this illustration, two fluorescence photons are depicted. Figure 1(b) shows 

conventional TAC operation that registers only the first photon when building a histogram; the second 

photon is not used. This distorts the histogram. To eliminate the distortion, the fluorescence intensity 

must be attenuated so that only one photon is detected per excitation. Usually, the number of photons 

counted per excitation is restricted to 0.01, resulting in a low signal-detection efficiency. In contrast, as 

                                                 
1 For example, a multichannel-TAC NAES-500/550 system had been manufactured by HORIBA Ltd. (Kyoto, Japan) from 

1982 to 2000. 



shown in Figure 1(c), multiple fluorescence photons generated after pulsed excitation can be fed into 

the SR driven by a high-frequency shift clock of the PPT-SDM system, and then recorded as a spatial 

bit pattern. The first problem of the conventional TAC system is therefore solved. In a conventional 

PPT-SDM system, however, the bit pattern information recorded on the SR is read by a slow shift 

clock, and then the add-one procedure is performed to build the histogram. The content of a 

random-access-memory corresponding to each channel (bit) of the SR is increased by one. The time 

required for this process increases with the number of channels, even if the DMA is employed, 

resulting in a long dead time. Thus, a large reduction in measurement time cannot always be attained. 

To solve the second problem, we developed a system shown in Figure 1(d), where the bit pattern 

information on the SR is simultaneously fed into counter arrays via latches. The number of the counter 

is the same as that of the channel, and the counter arrays work as a memory bank for building and 

storing the histogram. Because the timing of the latch is synchronized with the excitation, the system 

dead time for building the histogram is zero. 

In the PPT-SDM system, the resolution time is determined by the shift-clock frequency that 

drives the SR, which can be up to 500-MHz. To further improve the time resolution, we arranged two 

SRs [Figure 2(a)] that were operated by shift clocks with mutually inverted phases. Therefore, the 

clock frequency is essentially 1.0 GHz, with 1.0-ns time resolution. Furthermore, as shown in Figure 

2(b), a decoder circuit was inserted between the SRs and the counter arrays so that the leading edge of 

each photoelectron pulse could be extracted, thereby ensuring the overall 1.0-ns time resolution (but 

not for a single excitation cycle). The signal-gathering efficiency of the PPT-SDM is limited by the 

1.5-ns pulse-pair resolution of the pulse amplifier/discriminator pairs connected to the photomultiplier 

tube (PMT).  

 
Figure 1. (a) Photoelectron pulse trains after pulsed excitation. A dotted line shows the fluorescence 

decay   that is observable when its intensity is high. (b) Operation of a conventional TAC system. 



(c) Working principle of the PPT-SDM. (d) A PPT-SDM-based system combined with counter arrays. 

 

 
Figure 2. (a) Two series of SRs that are driven by shift clocks with mutually inverted phases. (b) An 

AND-gate decoder for detecting leading edges of a photoelectron pulse train. 

 

 

2.2. PPT-SDM-based fluorometer 

 

Figure 3 is a schematic of the PPT-SDM-based fluorometer. The excitation source was a commercially 

available 375-nm, 60-ps picosecond light pulser (PLP-10-038, Hamamatsu Photonics K. K., Shizuoka, 

Japan) operated at 10 or 20 MHz. Fluorescence was focused onto a PMT (H6780-01, Hamamatsu 

Photonics K. K.) after passing through a long-wavelength-pass filter (LPF). Photoelectron pulses from 

the PMT were connected to the FPGA system via a laboratory-made amplifier/discriminator pair 

described below. 

 



 
Figure 3. Schematic of the PPT-SDM-based fluorometer. 

 

 

2.3. Photon-counting unit in the FPGA 

 

Figure 4 is a schematic of the photon-counting unit for the PPT-SDM-based fluorometer that was 

constructed on an FPGA board (Cyclone V GX Starter Kit, Terasic Inc., Hsinchu, Taiwan). The 10- or 

20-MHz repetition frequency of the excitation pulse was set by a phase-locked-loop (PLL) circuit so 

that mf=500 MHz (m=50 or 25), where f stands for an excitation frequency and m is an integer. The 

fluorescence-induced PMT photoelectron pulse train is fed into a series of two 32-bit SRs driven by 

the 500-MHz shift clock and recorded as a spatial bit pattern. As described above, the SR shift clocks 

are mutually out of phase, producing 1.0-ns time resolution essentially. To build the fluorescence 

decay histogram, the 2×32-bit pattern information is added and recorded on 64-channel, 32-bit-counter 

arrays in parallel during completion of the whole shift after every excitation cycle. Thus, the dead time 

for histogram building is zero when f is larger than that determined by the time span (here, it is 64 ns 

or 15.625 MHz). The histogram data is read out and sent to a personal computer (PC) through a USB 

interface every 0.1 sec, asynchronous with the excitation. The leading-edge detection circuit described 

in Figure 2(b) ensures overall 1.0-ns time resolution. 

 



 
Figure 4. Schematic of PPT-SDM-based photon counter constructed on an FPGA board. 

 

 

2.4. Pulse amplifier/discriminator pair 

 

Figure 5 is a circuit diagram of a laboratory-made pulse amplifier/discriminator pair that uses a 

high-speed monolithic amplifier and comparator. PMT photoelectron pulses are inputted into the 

amplifier (GN1021, DC~1.5 GHz frequency bandwidth, 25-dB gain, Panasonic Co., Osaka, Japan) and 

then inputted into the comparator (ADCMP604BKSZ, 600-ps output rise time and fall time, 70-ps 

propagation delay time, Analog Devices, MA, USA). The pulse-pair resolution is 1.5 ns. The output 

pulse from the pair is inputted into the FPGA board at a LVDS (low voltage differential signaling) 

level. The frequency bandwidth of the PMT is around 1.0 GHz. Therefore, the dominant dead time in 

the signal-gathering efficiency in the system is still determined by the pulse pair resolution of the pulse 

amplifier/discriminator pair. Another problem caused by the PMT is timing jitter mainly introduced by 

the fluctuation of electron transit time of PMT, around 100 ps depending on the applied voltage, which 

restricts precision in fluorescence lifetime measurements. 

 



 
Figure 5. Circuitry diagram of high-speed pulse amplifier/discriminator pair. 

 

 

 

3. Fundamental Performance Tests 

 

3.1. Linearity of the count rate 

 

Figure 6 is a plot of count rate vs. incident light intensity for the PPT-SDM-based fluorometer. The 

incident light was a dc-driven blue LED (NSPB300B, Nichia Co., Tokushima, Japan) that was 

attenuated with neutral density filters. The frequency of the trigger signal for the system was fixed at 

10 MHz, and the count rate was defined as the average number of photoelectron pulses per one trigger 

pulse recorded on the 64-bit SR over 64 ns. The linearity of the count rate was degraded at high 

incident light intensities because of the pulse-pair resolution of the amplifier/discriminator pair. If we 

define the upper limit of the count rate linearity as a point with a 5.0-% deviation from linearity, the 

value becomes 2.1 at 0.33-nW incident light power. This count rate is about 200 times better than that 

of conventional TC-SPC [1,13], depending on the number of channels. At the 5.0% point, the number 

of counts per 0.1 sec was 2.14×10
7
. 

 

 
Figure 6. Count rate vs. incident light intensity. 

 

 



3.2. Differential linearity of the channel width 

 

Figure 7 plots the differential linearity of the channel width (or count uniformity) for each channel. 

This is a histogram obtained at 0.33-nW light power at point “A” in Figure 6, where the relative 

standard deviation (RSD) is 0.22%. The value should be 0.17 % theoretically when the incident light 

obeys Poisson statistics [20]. The deviation might be due to detector noise. 

 

 
Figure 7. Differential linearity of the channel width. The incident light power was 0.33 nW at point 

“A” in Figure 6. 

 

 

3.3. Linearity of the channel interval 

 

Figure 8 plots the linearity of the channel interval, using a digital delay pulse generator (DG645, 

Stanford Research Systems, Inc., CA, USA). Two pulses whose interval was a maximum of 64 ns 

were inputted into the FPGA with a 1.0-ns step. The linearity indicates that the time analysis was 

performed correctly. 

 

 
Figure 8. Linearity of the channel interval. 



4. Results and discussion 

 

4.1. Fluorescence measurements of standard samples 

 

The performance of the PPT-SDM-based fluorometer was tested with standard fluorescent samples 

(Figure 9): (a) 10-ppm quinine sulfate in 0.1-N H2SO4, (b) 1.0-M rhodamine 6G in ethanol, and (c) 

1.0-M coumarin 152 in ethanol. The excitation wavelength was 375 nm with a repetition frequency 

of 10 MHz for (a) and 20 MHz for (b) and (c), and an average power of 50 pW. The emission was 

filtered with an LPF with a -3 dB cutoff wavelength of 420 nm (SCF-50S-42L, SigmaKoki Co., Ltd., 

Saitama, Japan) for all three samples. The solid lines in Figure 9 are numerically fitted curves 

assuming that each decay was a single exponential. Dotted lines indicate the pulsed-excitation 

waveforms. The estimated fluorescence lifetimes  were derived by convoluting the excitation 

waveform with the exponential decay by a template matching procedure:(a) 18.4 ns, (b) 4.0 ns, and (c) 

1.6 ns, which agreed with the respective literature values [21-23]. The reduced  -squared values, 2

R
 , 

representing the goodness of fit were (a) 1.10, (b) 1.01, and (c) 1.02, respectively. The values of 

around 1.0 indicate the good fit [1,2]. The measurement times were all 1.0 sec, with count rates of (a) 

1.01, (b) 0.22, and (c) 0.15, which demonstrate the superiority of the PPT-SDM relative to 

conventional TC-SPC. The count rate was defined here as the average number of photoelectron pulses 

per one excitation. The incident power calculated from the count rates was almost agreed with that 

measured. For Figure 9(b,c), the repetition frequency was 20 MHz (m = 50). Therefore, two decays 

with an interval of 50 ns were built within the time span of 64 ns, which demonstrate no system dead 

time for building histogram. 

 

 

 



 
Figure 9. Fluorescence decays for standard samples: (a) 10-ppm quinine sulfate in 0.1-N H2SO4, (b) 

1.0-M rhodamine 6G in ethanol, and (c) 1.0-M coumarin 152 in ethanol. The dotted lines are 

pulsed-excitation waveforms. The estimated fluorescence lifetimes  were (a) 18.4 ns, (b) 4.0 ns, and 

(c) 1.6 ns. 

 

 

4.2. Measurements of successive fluorescence decays 

 

To demonstrate the rapid measurement of fluorescence decays with the PPT-SDM-based fluorometer, 

we carried out successive decay measurements: the series of fluorescence decay measurements with 

different time elapsed from the origin. The sample was a 2.0 ml solution of 10-ppm quinine sulfate in 

0.1-N H2SO4 with an added 200-l droplet of 3.0 w/v% H2O2 solution at time t=0. Figure 10 plots the 

fluorescence decays, where  is 18.4 ns at t=0 and 9.6 ns at t=15 sec. For each decay histogram, the 

number of counts at the peak position was 10
5
 for a measurement time of 0.1 sec. The 

2

R
 -values for 

the individual fits were between 1.10 and 1.22. The PPT-SDM-based fluorometer enables such 

measurements rapidly and precisely, which might be useful as a time-resolved fluorescence detector 

for high-performance liquid chromatography [24, 25]. 

 

(a) quinine sulfate f = 10 MHz

(b) rhodamine 6G f = 20 MHz

(c) coumarin 152 f = 20 MHz
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Figure 10. Successive fluorescence decay measurements with different time elapsed from the origin 

The sample was a 2.0-ml solution of 10-ppm quinine sulfate in 0.1-N H2SO4, with a 200-l droplet of 

3.0-w/v% H2O2 solution added at t=0. 

 

 

5. Conclusions 

 

We constructed a PPT-SDM-based fluorometer with a signal-detection efficiency greater than 200 

times that achieved by conventional TC-SPC (depending on the number of channels). A FPGA enabled 

markedly improved data collection efficiency because of the zero dead time to build a histogram. Thus, 

measurement times were reduced for samples with moderately high fluorescence intensities. The 

FPGA also allows the number of channels to be changed with ease. The 1.0-ns/channel time resolution 

might be further improved by using a SERDES (serializer/deserializer) circuit embedded in a more 

advanced FPGA chip [26]. A PPT-SDM-based fluorescence-lifetime Hadamard-imaging microscope 

[27] is a potential application.  
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