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The abc Conjecture. (cf. [15], [22])

1

The abc Conjecture and Square Free Parts
of Fibonacci Numbers

By

Nadia Khan and Shin-ichi Katayama

Nadia Khan
Department of Mathematics, National University of Computer& Emerging Sciences,

Peshawar Campus, 160-Industorial Estate, Hayatabad, The Islamic Republic of PAKISTAN

e-mail address : p109958@nu.edu.pk

and
Department of Mathematical Sciences, Graduate School of Science and Technology

Tokushima University, Minamijosanjima-cho 2-1, Tokushima 770-8506, JAPAN

e-mail address : shinkatayama@tokushima-u.ac.jp

Received December 1 2016, Revised April 4 2017

Abstract

In the paper [11], the second author considered a conjecture on
the fundamental units of certain family of real quadratic fields re-
lated to Fibonacci numbers. In this paper, we shall investigate this
conjecture more precisely in section 3, using the constant terms of
the abc conjecture. We also prove the conjecture in section 4 for
some special cases, using the integer points of several elliptic curves.

2010 Mathematics Subject Classification. Primary 11R17; Sec-
ondary 11B39, 11D25 and 11G05

1 Introduction

The well known abc conjecture of Masser-Oesterlé states that
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For any ε > 0, there exists a constant K(ε) depending only on ε such that if

(∗) a+ b = c

where a, b and c are coprime positive integers, then the following inequality
holds

c ≤ K(ε)r1+ε.

Here r is defined by putting
∏
p|abc

p and called the radical of abc.

The following diophantine equations are called the simultaneous Pell equations

(1)

{
x2 − az2 = 1
y2 − bz2 = 1 ,

where a, b are distinct positive integers such that a, b and ab are not perfect
squares. Recently considerable works have been done on the number of positive
integer solutions of simultaneous Pell equations by various mathematicians (see
for instance [1], [2], [25] and [26]). It was proved the number of positive integer
solutions to be at most two in general and was proved at most one for several
families of simultaneous Pell equations (see for example [26]).
It is easy to see the positive integer solution (x, y, z) of (1) determine two units
x + z

√
a and y + z

√
b of real quadratic fields Q(

√
a) and Q(

√
b) respectively.

Let εa and εb be the fundamental units of Q(
√
a) and Q(

√
b). It is a natural

problem to investigate the group indices e(a) and e(b) which is determined by
e(a) = [⟨−1, εa⟩ : ⟨−1, x+ z

√
a⟩] and e(b) = [⟨−1, εb⟩ : ⟨−1, y+ z

√
b⟩]. Though

there have been many progress concerning the simultaneous Pell equations,
these properties were treated only in [25] for the special cases a = 2d and b = d.
In [25], G. Walsh has proved e(2d) = 1 in general, but e(d) was not treated
explicitly. In our previous papers [10], [12] and [13], we have investigated more
general cases and shown e(a) = e(b) = 1 under the abc conjecture. It should be
noted our results include the index e(d) = 1 of [25] as a special case. However
in those papers, we have utilized the results on the square free part of binary
recurrence sequences of P. Ribemboim and G. Walsh [23] depending on the abc
conjecture. Since their results are asymptotic, our conclusions obtained in our
previous papers are also asymptotic.
In this note, we shall show more explicit and precise conclusions for the fol-
lowing special family of simultaneous Pell equations using the abc conjecture
directly.

(2)

{
x2 − 5dz2 = 1
y2 − dz2 = 1 , (3)

{
x2 − 5dz2 = −1
y2 − dz2 = −1

We note that our conclusions on the indices e(5d) and e(d) contain the abc
constant K(ε) explicitly. Our methods may work for more general cases which
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we have treated in [12] and [13], but here we restrict ourselves to the above
two special cases for the sake of simplicity. We also note that the latter system
of simultaneous Pell equations (3) which corresponds to the Pell equations
with norm −1 have been rarely covered by recent papers. Finally we quote
that S. Mochizuki has announced that he had proved the abc conjecture in
his preprints [17], [18], [19] and [20] in 2012. Hence it will be of some interest
to investigate the above simultaneous Pell equations and give explicit results
containing the abc constant term K(ε). In the next section, we will investigate
the asymptotic behavior of the square free part of Fibonacci numbers and
prepare several preliminary propositions in the first four sections. We shall
show those explicit results on our simultaneous Pell equations in section 5.
At last, we shall report the numerical data which suggests our results on the
fundamental units of Q(

√
d) and Q(

√
5d), where d is the positive square free

integer in the simultaneous Pell equations (2) and (3).

2 Square Free Part of Fibonacci Numbers

Let δ be a fixed positive constant such that 0 < δ < 1. Take a positive
number ε which satisfies 0 < ε < δ

4−δ . Then, from the assumption 0 < δ < 1,

we know that ε < 1
3 . For any positive integer m, we shall write s(m) to be

the square free part of m and q(m)2 to be the perfect square part of m, that
is, m = s(m)q(m)2. Let Fn and Ln be nth Fibonacci number and Lucas
number, respectively. Though the following property on the square free part of
Fibonacci numbers has been proved in [23], we shall give a simple and direct
proof as follows.

Proposition 2.1 Under the abc conjecture, there exists a positive constant
N(δ, ε) which depends only on δ and ε, such that, for any 0 < δ < 1 and
n > N(δ, ε)

F 1−δ
n ≤ s(Fn) ≤ Fn.

Proof. Since Fn = s(Fn)q(Fn)
2, we know

F 1−δ
n ≤ s(Fn)⇐⇒ s(Fn)

1−δq(Fn)
2−2δ ≤ s(Fn)⇐⇒ q(Fn)

2−2δ ≤ s(Fn)δ.

Suppose on the contrary s(Fn)
δ < q(Fn)

2−2δ. Take 0 < ε such as 0 < ε < δ
4−δ .

Applying the abc conjecture to the equation L2
n−5F 2

n = 4(−1)n, we get 5F 2
n ≤

K(ε)r1+ε. From the assumption s(Fn)
δ < q(Fn)

2−2δ, we know

s(Fn)q(Fn) = s(Fn)
1− δ

2 s(Fn)
δ
2 q(Fn) < s(Fn)

1− δ
2 q(Fn)

2−δ = F
1− δ

2
n .

3



The abc Conjecture and Square Free Parts of Fibonacci Numbers �

For any ε > 0, there exists a constant K(ε) depending only on ε such that if

(∗) a+ b = c

where a, b and c are coprime positive integers, then the following inequality
holds

c ≤ K(ε)r1+ε.

Here r is defined by putting
∏
p|abc

p and called the radical of abc.

The following diophantine equations are called the simultaneous Pell equations

(1)

{
x2 − az2 = 1
y2 − bz2 = 1 ,

where a, b are distinct positive integers such that a, b and ab are not perfect
squares. Recently considerable works have been done on the number of positive
integer solutions of simultaneous Pell equations by various mathematicians (see
for instance [1], [2], [25] and [26]). It was proved the number of positive integer
solutions to be at most two in general and was proved at most one for several
families of simultaneous Pell equations (see for example [26]).
It is easy to see the positive integer solution (x, y, z) of (1) determine two units
x + z

√
a and y + z

√
b of real quadratic fields Q(

√
a) and Q(

√
b) respectively.

Let εa and εb be the fundamental units of Q(
√
a) and Q(

√
b). It is a natural

problem to investigate the group indices e(a) and e(b) which is determined by
e(a) = [⟨−1, εa⟩ : ⟨−1, x+ z

√
a⟩] and e(b) = [⟨−1, εb⟩ : ⟨−1, y+ z

√
b⟩]. Though

there have been many progress concerning the simultaneous Pell equations,
these properties were treated only in [25] for the special cases a = 2d and b = d.
In [25], G. Walsh has proved e(2d) = 1 in general, but e(d) was not treated
explicitly. In our previous papers [10], [12] and [13], we have investigated more
general cases and shown e(a) = e(b) = 1 under the abc conjecture. It should be
noted our results include the index e(d) = 1 of [25] as a special case. However
in those papers, we have utilized the results on the square free part of binary
recurrence sequences of P. Ribemboim and G. Walsh [23] depending on the abc
conjecture. Since their results are asymptotic, our conclusions obtained in our
previous papers are also asymptotic.
In this note, we shall show more explicit and precise conclusions for the fol-
lowing special family of simultaneous Pell equations using the abc conjecture
directly.

(2)

{
x2 − 5dz2 = 1
y2 − dz2 = 1 , (3)

{
x2 − 5dz2 = −1
y2 − dz2 = −1

We note that our conclusions on the indices e(5d) and e(d) contain the abc
constant K(ε) explicitly. Our methods may work for more general cases which

2

we have treated in [12] and [13], but here we restrict ourselves to the above
two special cases for the sake of simplicity. We also note that the latter system
of simultaneous Pell equations (3) which corresponds to the Pell equations
with norm −1 have been rarely covered by recent papers. Finally we quote
that S. Mochizuki has announced that he had proved the abc conjecture in
his preprints [17], [18], [19] and [20] in 2012. Hence it will be of some interest
to investigate the above simultaneous Pell equations and give explicit results
containing the abc constant term K(ε). In the next section, we will investigate
the asymptotic behavior of the square free part of Fibonacci numbers and
prepare several preliminary propositions in the first four sections. We shall
show those explicit results on our simultaneous Pell equations in section 5.
At last, we shall report the numerical data which suggests our results on the
fundamental units of Q(

√
d) and Q(

√
5d), where d is the positive square free

integer in the simultaneous Pell equations (2) and (3).

2 Square Free Part of Fibonacci Numbers

Let δ be a fixed positive constant such that 0 < δ < 1. Take a positive
number ε which satisfies 0 < ε < δ

4−δ . Then, from the assumption 0 < δ < 1,

we know that ε < 1
3 . For any positive integer m, we shall write s(m) to be

the square free part of m and q(m)2 to be the perfect square part of m, that
is, m = s(m)q(m)2. Let Fn and Ln be nth Fibonacci number and Lucas
number, respectively. Though the following property on the square free part of
Fibonacci numbers has been proved in [23], we shall give a simple and direct
proof as follows.

Proposition 2.1 Under the abc conjecture, there exists a positive constant
N(δ, ε) which depends only on δ and ε, such that, for any 0 < δ < 1 and
n > N(δ, ε)

F 1−δ
n ≤ s(Fn) ≤ Fn.

Proof. Since Fn = s(Fn)q(Fn)
2, we know

F 1−δ
n ≤ s(Fn)⇐⇒ s(Fn)

1−δq(Fn)
2−2δ ≤ s(Fn)⇐⇒ q(Fn)

2−2δ ≤ s(Fn)δ.

Suppose on the contrary s(Fn)
δ < q(Fn)

2−2δ. Take 0 < ε such as 0 < ε < δ
4−δ .

Applying the abc conjecture to the equation L2
n−5F 2

n = 4(−1)n, we get 5F 2
n ≤

K(ε)r1+ε. From the assumption s(Fn)
δ < q(Fn)

2−2δ, we know

s(Fn)q(Fn) = s(Fn)
1− δ

2 s(Fn)
δ
2 q(Fn) < s(Fn)

1− δ
2 q(Fn)

2−δ = F
1− δ

2
n .

3



Nadia Khan and Shin-ichi Katayama�

Therefore, combining the fact L2
n ≤ 5F 2

n +4 < 10F
2
n , the radical r satisfies the

inequality r ≤ 10Lns(Fn)q(Fn) ≤ 10
√
10F

2− δ
2

n . Thus we have

5F 2
n < K(ε)(10

√
10F

2− δ
2

n )1+ε = K(ε)2
3+3ε

2 5
3+3ε

2 F
2+2ε− δ+δε

2
n

and then F
δ−(4−δ)ε

2
n < K(ε)2

3+3ε
2 5

3+3ε
2 . Put δ0 =

δ−(4−δ)ε
2 . From the assump-

tion 0 < ε < δ
4−δ , we see δ0 > 0. Hence we can show the following inequality

φn−1

√
5
< Fn < (K(ε)2

3+3ε
2 5

3+3ε
2 )

1
δ0 ,

where φ is the golden ratio φ = 1+
√
5

2 . Taking the log of the above inequality,
we have

(n−1) logφ < 2

δ − (4− δ)ε
log(K(ε))+

3(1 + ε)

δ − (4− δ)ε
log 2+

(2 + δ)(1 + ε)

2(δ − (4− δ)ε)
log 5.

We will denote N(δ, ε)

= (
2

δ − (4− δ)ε
log(K(ε))+

3(1 + ε)

δ − (4− δ)ε
log 2+

(2 + δ)(1 + ε)

2(δ − (4− δ)ε)
log 5+logφ)/ logφ.

Thus we have shown that the assumption s(Fn)
δ < q(Fn)

2−2δ implies n <
N(δ, ε). Therefore, for any n ≥ N(δ, ε), s(Fn)

δ ≥ q(Fn)
2−2δ, i.e., F 1−δ

n ≤
s(Fn) ≤ Fn, under the abc conjecture, which completes the proof.

In section 5, we shall use this proposition to show the growth of the sequence
of d which has the positive integer solutions of the simultaneous Pell equations
(2) or (3).

3 Explicit Bound

Here we shall notice that the simultaneous Pell equations (2) and (3) imply
x2 − 5y2 = ∓4, that is, x = Ln and y = Fn, where Ln and Fn are nth Lucas
number and nth Fibonacci number, as before. Combining the fact F 2

n+(−1)n =
Fn−1Fn+1 and (F2n, F2n+2) = 1, we have d = s(F 2

2n+1 − 1) = s(F2n)s(F2n+2)
in (2). Moreover x = L2n+1, y = F2n+1 and z = q(F2n)q(F2n+2). Similarly
in (3), d = s(F 2

2n + 1) = s(F2n−1)s(F2n+1), x = L2n, y = F2n and z =
q(F2n−1)q(F2n+1).
In the following, we shall consider the cases 2|Fn and 2̸ |Fn separately, because
we should apply the abc conjecture to the different equations according to the
conditions 2|Fn or 2̸ |Fn. We shall obtain the following constant containing the
constant term K( 15 ) in the abc conjecture

NF =
25
2 log(K(

1
5 )) + 30 log 3 + 3 log 5− 12 log 2 + logφ

2 logφ
.

4

We shall show the following proposition.

Proposition 3.1 If n > NF then we have

s(Fn)
2 > 2q(Fn), under the abc conjecture.

Similarly we shall determine the following constant NL and prove the following
proposition.

NL =
25
2 log(K(

1
5 )) + 30 log 3 + 7 log 5− 12 log 2 + logφ

2 logφ
,

Proposition 3.2 If n > NL then we have

s(Fn)
2 > 10

√
5q(Fn), under the abc conjecture.

Here we shall give a table of small Fibonacci and Lucas numbers for the readers
who are not familiar with the properties of these numbers.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144
Ln 2 1 3 4 7 11 18 29 47 76 123 199 322

Since the period length of Fibonacci number mod 2 is 3, that is, Fn+3 ≡ F3
mod 2, we see that
F2n ≡ 0 mod 2⇐⇒ n ≡ 0 mod 3, and F2n+1 ≡ 0 mod 2⇐⇒ n ≡ 1 mod 3.

Case 1. We shall consider the case n ̸≡ 1 mod 3. Since 2 ̸ | F2n+1, we know
(L2n+1, 5F2n+1) = 1. Then we can apply the abc conjecture to the following
equality

L2
2n+1 − 5F 2

2n+1 = −4.
We note that L2

2n+1 < L
2
2n+1 + 4 = 5F 2

2n+1. Suppose s(F2n+1)
2 ≤ 2q(F2n+1)

under the abc conjecture. Taking ε = 1/5 in the abc conjecture, we have

5F 2
2n+1 ≤ K(1/5)r1+ 1

5 ,

where r is the radical of 10F2n+1L2n+1. Hence

r ≤ 10L2n+1s(F2n+1)q(F2n+1).

Since L2n+1 ≤
√
5F2n+1 and s(F2n+1)

2
5 ≤ 2

1
5 q(F2n+1)

1
5 , we know

r < 2× 5× (
√
5F2n+1)× (s(F2n+1)q

2(F2n+1))
3
5 × 2 1

5 = 2
6
5 × 5 3

2 × F
8
5
2n+1.

5
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Thus
5F 2

2n+1 < K(1/5)(2
6
5 × 5 3

2 × F
8
5
2n+1)

6
5 .

Hence
F

2
25
2n+1 < K(1/5)× 2

36
25 × 5 4

5 .

Then
φ2n+1

√
5
< F2n+1 < K(1/5)

25
2 × 218 × 510,

where φ = 1+
√
5

2 . Taking the log of the above inequality

(2n+ 1) logφ <
25

2
log(K(1/5)) + 18 log 2 +

21

2
log 5.

Hence we can conclude

n <
25
2 log(K(1/5)) + 18 log 2 +

21
2 log 5− logφ

2 logφ

Case 2. Consider the case n ≡ 1 mod 3. Then 2|F2n+1 and (L2n+1/2, 5F2n+1/2) =
1 in the following equality

(L2n+1/2)
2 − 5(F2n+1/2)

2 = −1.

In the same way as above, the assumption s(F2n+1)
2 ≤ 2q(F2n+1) and the abc

conjecture implies

n <
25
2 log(K(

1
5 ))− 2 log 2 +

21
2 log 5− logφ

2 logφ

Case 3. Consider the case n ̸≡ 0 mod 3. Then 2̸ |F2n and (L2n, 5F2n) = 1 in
the following equality

L2
2n − 5F 2

2n = 4.

Thus L2
2n < 5F 2

2n + 4 ≤
(
9
4F2n

)2
for n ≥ 3. Suppose s(F2n)

2 ≤ 2q(F2n).
Applying the abc conjecture to the above equality with ε = 1/5, we have

5F 2
2n ≤ K(1/5)r 6

5 ,

where r is the radical of 10F2nL2n. Thus

r ≤ 2× 5× L2ns(F2n)q(F2n).

Since L2n <
9
4F2n and s(F2n)

2
5 ≤ 2

1
5 q(F2n)

1
5 , we know

r < 2× 5
(
9

4
F2n

)
(s(F2n)q

2(F2n))
3
5 × 2 1

5 = 2−
4
5 × 32 × 5F

8
5
2n.

6

Thus
5F 2

2n < K(1/5)(2
− 4

5 × 32 × 5× F
8
5
2n)

6
5 .

Hence
F

2
25
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 1
5 .

Then
φ2n−1

√
5
< F2n−1 < F2n < K(1/5)

25
2 × 330 × 2−12 × 53.

Hence

(2n− 1) logφ < 25

2
log(K(1/5)) + 30 log 3− 12 log 2 + 5

2
log 5.

Then we can conclude

n <
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ

Case 4. Consider the case n ≡ 0 mod 3. Then 2|F2n and (L2n/2, 5F2n/2) = 1
in the following equality

(L2n/2)
2 − 5(F2n/2)2 = 1.

In the same way as above, the assumption s(F2n)
2 ≤ 2q(F2n) implies

n <
25
2 log(K(

1
5 )) + 30 log 3− 32 log 2 + 3 log 5 + logφ

2 logφ

Put

N1 =
25
2 log(K(

1
5 )) + 18 log 2 +

21
2 log 5− logφ

2 logφ
,

N2 =
25
2 log(K(

1
5 ))− 2 log 2 +

21
2 log 5− logφ

2 logφ
,

N3 =
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ
,

N4 =
25
2 log(K(

1
5 )) + 30 log 3− 32 log 2 + 3 log 5 + logφ

2 logφ
.

Since max(N1, N2, N3, N4) = N3, put

NF = N3 =
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ
.
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Thus
5F 2

2n+1 < K(1/5)(2
6
5 × 5 3

2 × F
8
5
2n+1)

6
5 .

Hence
F

2
25
2n+1 < K(1/5)× 2

36
25 × 5 4

5 .

Then
φ2n+1

√
5
< F2n+1 < K(1/5)

25
2 × 218 × 510,

where φ = 1+
√
5

2 . Taking the log of the above inequality

(2n+ 1) logφ <
25

2
log(K(1/5)) + 18 log 2 +

21

2
log 5.

Hence we can conclude

n <
25
2 log(K(1/5)) + 18 log 2 +

21
2 log 5− logφ

2 logφ

Case 2. Consider the case n ≡ 1 mod 3. Then 2|F2n+1 and (L2n+1/2, 5F2n+1/2) =
1 in the following equality

(L2n+1/2)
2 − 5(F2n+1/2)

2 = −1.

In the same way as above, the assumption s(F2n+1)
2 ≤ 2q(F2n+1) and the abc

conjecture implies

n <
25
2 log(K(

1
5 ))− 2 log 2 +

21
2 log 5− logφ

2 logφ

Case 3. Consider the case n ̸≡ 0 mod 3. Then 2̸ |F2n and (L2n, 5F2n) = 1 in
the following equality

L2
2n − 5F 2

2n = 4.

Thus L2
2n < 5F 2

2n + 4 ≤
(
9
4F2n

)2
for n ≥ 3. Suppose s(F2n)

2 ≤ 2q(F2n).
Applying the abc conjecture to the above equality with ε = 1/5, we have

5F 2
2n ≤ K(1/5)r 6

5 ,

where r is the radical of 10F2nL2n. Thus

r ≤ 2× 5× L2ns(F2n)q(F2n).

Since L2n <
9
4F2n and s(F2n)

2
5 ≤ 2

1
5 q(F2n)

1
5 , we know

r < 2× 5
(
9

4
F2n

)
(s(F2n)q

2(F2n))
3
5 × 2 1

5 = 2−
4
5 × 32 × 5F

8
5
2n.

6

Thus
5F 2

2n < K(1/5)(2
− 4

5 × 32 × 5× F
8
5
2n)

6
5 .

Hence
F

2
25
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 1
5 .

Then
φ2n−1

√
5
< F2n−1 < F2n < K(1/5)

25
2 × 330 × 2−12 × 53.

Hence

(2n− 1) logφ < 25

2
log(K(1/5)) + 30 log 3− 12 log 2 + 5

2
log 5.

Then we can conclude

n <
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ

Case 4. Consider the case n ≡ 0 mod 3. Then 2|F2n and (L2n/2, 5F2n/2) = 1
in the following equality

(L2n/2)
2 − 5(F2n/2)2 = 1.

In the same way as above, the assumption s(F2n)
2 ≤ 2q(F2n) implies

n <
25
2 log(K(

1
5 )) + 30 log 3− 32 log 2 + 3 log 5 + logφ

2 logφ

Put

N1 =
25
2 log(K(

1
5 )) + 18 log 2 +

21
2 log 5− logφ

2 logφ
,

N2 =
25
2 log(K(

1
5 ))− 2 log 2 +

21
2 log 5− logφ

2 logφ
,

N3 =
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ
,

N4 =
25
2 log(K(

1
5 )) + 30 log 3− 32 log 2 + 3 log 5 + logφ

2 logφ
.

Since max(N1, N2, N3, N4) = N3, put

NF = N3 =
25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

5
2 log 5 + logφ

2 logφ
.
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Then, for the case n ≥ NF , the following inequality holds

s(Fn)
2 > 2q(Fn).

Thus we have proved Proposition 3.1.

Now we shall show the explicit unit Fn+
√
F 2
n + (−1)n is not a higher power

of the other unit
t+

√
t2 + (−1)n4
2

of the quadratic field Q(
√
F 2
n + (−1)n) =

Q(
√
t2 + (−1)n4).

We consider the cases F2n+1 +
√
F 2
2n+1 − 1 and F2n +

√
F 2
2n + 1 separately.

Suppose F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)k

for k ≥ 5. Then

(
t+

√
t2 − 4
2

)k

=
vk(t) + uk(t)

√
t2 − 4

2
, where uk(t) is the Lucas sequences

associated to the pair (k, 1) and vk(t) is the companion Lucas sequences asso-
ciated to the pair (k, 1). Thus uk and vk are the binary recurrence sequences
which satisfy

uk+1 = tuk − uk−1, vk+1 = tvk − vk−1

with initial terms u0 = 1, u1 = 1 and v0 = 2, v1 = t (t ≥ 3). Hence we have

F 2
2n+1 − 1 =

uk(t)
2(t2 − 4)
4

. Thus we have s(F 2
2n+1 − 1) ≤ t2 − 4, and

q(F 2
2n+1 − 1) ≥

uk(t)

2
≥ u5(t)

2
=
t4 − 3t2 + 1

2
.

Then from the condition t ≥ 3 we have

4q(F 2
2n+1 − 1) ≥ 2(t4 − 3t2 + 1) > (t2 − 4)2 ≥ s(F 2

2n+1 − 1)2.

On the other hand, from Proposition 3.1, we have s(Fn)
2 > q(Fn) for n ≥ NF .

Since (F2n+2, F2n) = 1, we have

s(F 2
2n+1−1)2 = s(F2nF2n+2)

2 = s(F2n)
2s(F2n+2)

2 > 4q(F2n)q(F2n+2) = 4q(F
2
2n+1−1),

which contradicts the above inequality. Hence we can conclude that if F2n+1+
√
F 2
2n+1 − 1 is the power of some unit

(
t+

√
t2 − 4
2

)k

, then k ≤ 4 under the

abc conjecture.

Now suppose F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)k

for k ≥ 5. Then

(
t+

√
t2 + 4

2

)k

=
vk(t) + uk(t)

√
t2 + 4

2
,

8

where uk(t) is the Lucas sequences associated to the pair (k,−1) and vk(t) is
the companion Lusas sequences associated to the pair (k,−1). Thus uk and vk
are the binary recurrence sequences which satisfy

uk+1 = tuk + uk−1, vk+1 = tvk + vk−1

with initial terms u0 = 1, u1 = 1 and v0 = 2, v1 = t (t ≥ 3). Hence we have

F 2
2n + 1 =

uk(t)
2(t2 + 4)

4
. Thus we have

s(F 2
2n + 1) ≤ t2 + 4,

and

q(F 2
2n + 1) ≥

uk(t)

2
≥ u5(t)

2
=
t4 + 3t2 + 1

2

Then we have

4q(F 2
2n + 1) ≥ 2(t4 + 3t2 + 1) > (t2 + 4)2 ≥ s(F 2

2n + 1)
2

for the case t ≥ 3. We shall consider the cases t = 1 and 2 in later. On the
other hand, from Proposition 3.1, we have s(Fn)

2 > q(Fn) for n ≥ NF . Since
(F2n+1, F2n−1) = 1, we have

s(F 2
2n+1)

2 = s(F2n+1F2n−1)
2 = s(F2n+1)

2s(F2n−1)
2 > 4q(F2n+1)(F2n−1) = 4q(F

2
2n+1),

which contradicts the above inequality,
Now we shall consider the exceptional case t = 1. Here we use the symbol
a = � if the integer a is a perfect square. Then

F2n +
√
F 2
2n + 1 =

(
1 +

√
5

2

)k

for some k implies F 2
2n+1 = F2n−1F2n+1 = 5�. It was proved by J. H. E. Cohn

in [3] that when n > 0, Fn = � ⇐⇒ n = 1, 2, 12 (see for details Proposition
5.1). One can easily examine no such case occurs.
Now we shall consider the exceptional case t = 2. Then

F2n +
√
F 2
2n + 1 = (1 +

√
2)k

for some k implies F 2
2n + 1 = F2n−1F2n+1 = 2�. From Cohn’s result we must

have n = 1 and F2 +
√
F 2
2 + 1 is the fundamental unit 1 +

√
2 for this case.

Thus under the abc conjecture, if n ≥ NF , F2n +
√
F 2
2n + 1 is the power of

some unit

(
t+

√
t2 + 4

2

)k

, then k is also satisfies k ≤ 4.

9
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Then, for the case n ≥ NF , the following inequality holds

s(Fn)
2 > 2q(Fn).

Thus we have proved Proposition 3.1.

Now we shall show the explicit unit Fn+
√
F 2
n + (−1)n is not a higher power

of the other unit
t+

√
t2 + (−1)n4
2

of the quadratic field Q(
√
F 2
n + (−1)n) =

Q(
√
t2 + (−1)n4).

We consider the cases F2n+1 +
√
F 2
2n+1 − 1 and F2n +

√
F 2
2n + 1 separately.

Suppose F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)k

for k ≥ 5. Then

(
t+

√
t2 − 4
2

)k

=
vk(t) + uk(t)

√
t2 − 4

2
, where uk(t) is the Lucas sequences

associated to the pair (k, 1) and vk(t) is the companion Lucas sequences asso-
ciated to the pair (k, 1). Thus uk and vk are the binary recurrence sequences
which satisfy

uk+1 = tuk − uk−1, vk+1 = tvk − vk−1

with initial terms u0 = 1, u1 = 1 and v0 = 2, v1 = t (t ≥ 3). Hence we have

F 2
2n+1 − 1 =

uk(t)
2(t2 − 4)
4

. Thus we have s(F 2
2n+1 − 1) ≤ t2 − 4, and

q(F 2
2n+1 − 1) ≥

uk(t)

2
≥ u5(t)

2
=
t4 − 3t2 + 1

2
.

Then from the condition t ≥ 3 we have

4q(F 2
2n+1 − 1) ≥ 2(t4 − 3t2 + 1) > (t2 − 4)2 ≥ s(F 2

2n+1 − 1)2.

On the other hand, from Proposition 3.1, we have s(Fn)
2 > q(Fn) for n ≥ NF .

Since (F2n+2, F2n) = 1, we have

s(F 2
2n+1−1)2 = s(F2nF2n+2)

2 = s(F2n)
2s(F2n+2)

2 > 4q(F2n)q(F2n+2) = 4q(F
2
2n+1−1),

which contradicts the above inequality. Hence we can conclude that if F2n+1+
√
F 2
2n+1 − 1 is the power of some unit

(
t+

√
t2 − 4
2

)k

, then k ≤ 4 under the

abc conjecture.

Now suppose F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)k

for k ≥ 5. Then

(
t+

√
t2 + 4

2

)k

=
vk(t) + uk(t)

√
t2 + 4

2
,

8

where uk(t) is the Lucas sequences associated to the pair (k,−1) and vk(t) is
the companion Lusas sequences associated to the pair (k,−1). Thus uk and vk
are the binary recurrence sequences which satisfy

uk+1 = tuk + uk−1, vk+1 = tvk + vk−1

with initial terms u0 = 1, u1 = 1 and v0 = 2, v1 = t (t ≥ 3). Hence we have

F 2
2n + 1 =

uk(t)
2(t2 + 4)

4
. Thus we have

s(F 2
2n + 1) ≤ t2 + 4,

and

q(F 2
2n + 1) ≥

uk(t)

2
≥ u5(t)

2
=
t4 + 3t2 + 1

2

Then we have

4q(F 2
2n + 1) ≥ 2(t4 + 3t2 + 1) > (t2 + 4)2 ≥ s(F 2

2n + 1)
2

for the case t ≥ 3. We shall consider the cases t = 1 and 2 in later. On the
other hand, from Proposition 3.1, we have s(Fn)

2 > q(Fn) for n ≥ NF . Since
(F2n+1, F2n−1) = 1, we have

s(F 2
2n+1)

2 = s(F2n+1F2n−1)
2 = s(F2n+1)

2s(F2n−1)
2 > 4q(F2n+1)(F2n−1) = 4q(F

2
2n+1),

which contradicts the above inequality,
Now we shall consider the exceptional case t = 1. Here we use the symbol
a = � if the integer a is a perfect square. Then

F2n +
√
F 2
2n + 1 =

(
1 +

√
5

2

)k

for some k implies F 2
2n+1 = F2n−1F2n+1 = 5�. It was proved by J. H. E. Cohn

in [3] that when n > 0, Fn = � ⇐⇒ n = 1, 2, 12 (see for details Proposition
5.1). One can easily examine no such case occurs.
Now we shall consider the exceptional case t = 2. Then

F2n +
√
F 2
2n + 1 = (1 +

√
2)k

for some k implies F 2
2n + 1 = F2n−1F2n+1 = 2�. From Cohn’s result we must

have n = 1 and F2 +
√
F 2
2 + 1 is the fundamental unit 1 +

√
2 for this case.

Thus under the abc conjecture, if n ≥ NF , F2n +
√
F 2
2n + 1 is the power of

some unit

(
t+

√
t2 + 4

2

)k

, then k is also satisfies k ≤ 4.

9
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Proposition 3.3 (Assuming the abc conjecture) In the case n ≥ NF ,

Fn +
√
F 2
n + (−1)n =

(
t+

√
t+ (−1)n4
2

)k

implies k ≤ 4.

We can determine NL in the same way as above. We must consider the
following 4 cases separately,
Case 1) Consider the case n ̸≡ 1 mod 3 and suppose s(F2n+1)

2 ≤ 10
√
5q(F2n+1).

Then we have

n < N ′
1 =

25
2 log(K(

1
5 )) + 18 log 2 + 15 log 5− logφ

2 logφ

Case 2) Consider the case n ≡ 1 mod 3 and suppose s(F2n+1)
2 ≤ 10

√
5q(F2n+1).

Then we have

n < N ′
2 =

25
2 log(K(

1
5 ))− 2 log 2 + 15 log 5− logφ

2 logφ

Case 3) Consider the case n ̸≡ 0 mod 3 and suppose s(F2n)
2 ≤ 10

√
5q(F2n).

We shall write down this case explicitly. Then s(L2
2n + 1)s(5F2n−1F2n+1) ≥

s(F2n−1F2n+1)

5
. In the case n ≥ 3, we know L2n ≤ 9

4
F2n. From the assumption

s(F2n)
2 ≤ 10

√
5q(F2n), applying the abc conjecture to the equation L

2
2n −

5F 2
2n = 4 we have the inequality 5F

2
2n ≤ r 6

5 . From the assumption we obtain

r ≤ 10L2ns(F2n)q(F2n) ≤ 2× 5
(
9

4
F2n

)
s(F2n)

3
5 (10

√
5)

1
5 q(F2n)

6
5 .

Hence the radical satisfies r < 2−
4
5 × 32 × 5 13

10F
8
5
2n. Then

5F 2
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 39
25F

48
25
2n

Thus we have
F

2
25
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 14
25 .

Hence
φ2n−1

√
5
< F2n−1 < F2n < K(1/5)

25
2 × 2−12 × 330 × 57.

Taking the log of the both hand side, we have

n < N ′
3 =

25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

15
2 log 5 + logφ

2 logφ
.

Case 4) Consider the case n ≡ 0 mod 3 and suppose s(F2n)
2 ≤ 10

√
5q(F2n).

Then we have

n < N ′
4 =

25
2 log(K(

1
5 )) + 30 log 3− 32 log 2 +

15
2 log 5 + logφ

2 logφ
.

10

NL denotes max(N
′
1, N

′
2, N

′
3, N

′
4) = N

′
3. Then under the abc conjecture, s(Fn)

2 >
10
√
5q(Fn) for n ≥ NL. Thus we have proved Proposition 3.2.

Now we shall show the explicit unit Ln +
√
L2
n + (−1)n is not a higher power

of the other unit
t+

√
t2 + (−1)n4
2

of the quadratic field Q(
√
L2
n + (−1)n) =

Q(
√
t2 + (−1)n4).

Since s(Fn)
2 > 10

√
5q(Fn) for n > NL, we know

s(L2
n+(−1)n)2 = s(5Fn−1Fn+1)

2 ≥ s(Fn−1)
2s(Fn+1)

2

52
>
102 × 5q(Fn−1)q(Fn+1)

52

= 4(5q(Fn−1)q(Fn+1)) ≥ 4q(5Fn−1Fn+1) = 4q(L
2+(−1)n).

Hence we have s(L2
n + (−1)n) > 4q(L2 + (−1)n), for n ≥ NL. If Ln +

√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

for k ≥ 5, we have s(L2
n + (−1)n) ≤

4q(L2 + (−1)n) in the same way as above for the case t ≥ 3. Thus Ln +

√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

implies k ≤ 4 for the case t ≥ 3. Now

we shall take care of the following exceptional cases t = 1 and t = 2, that is,

L2n +
√
L2
2n + 1 =

(
1 +

√
5

2

)k

, and L2n +
√
L2
2n + 1 = (1 +

√
2)k.

Since L2
2n + 1 = 5F2n−1F2n+1, the above equalities imply one of F2n−1 and

F2n+1 is square or 2 times square. Using Cohn’s results Fn = � ⇐⇒ n =
1, 2, 12 and Fn = 2� ⇐⇒ n = 3, 6. we can conclude that there are only two
cases

L0+
√
L2
0 + 1 = 2+

√
5 =

(
1 +

√
5

2

)3

, L4+
√
L2
4 + 1 = 7+

√
50 = (1+

√
2)3.

Combining these, if Ln +
√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

for some k,

then k ≤ 4.

Proposition 3.4 (Assuming the abc conjecture) In the case n > NL,

Ln +
√
L2
n + (−1)n =

(
t+

√
t+ (−1)n4
2

)k

implies k ≤ 4.
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Proposition 3.3 (Assuming the abc conjecture) In the case n ≥ NF ,

Fn +
√
F 2
n + (−1)n =

(
t+

√
t+ (−1)n4
2

)k

implies k ≤ 4.

We can determine NL in the same way as above. We must consider the
following 4 cases separately,
Case 1) Consider the case n ̸≡ 1 mod 3 and suppose s(F2n+1)

2 ≤ 10
√
5q(F2n+1).

Then we have
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1 =

25
2 log(K(
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5 )) + 18 log 2 + 15 log 5− logφ

2 logφ
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√
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25
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2 logφ

Case 3) Consider the case n ̸≡ 0 mod 3 and suppose s(F2n)
2 ≤ 10

√
5q(F2n).
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5q(F2n), applying the abc conjecture to the equation L
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2n = 4 we have the inequality 5F

2
2n ≤ r 6

5 . From the assumption we obtain

r ≤ 10L2ns(F2n)q(F2n) ≤ 2× 5
(
9

4
F2n

)
s(F2n)

3
5 (10

√
5)

1
5 q(F2n)

6
5 .

Hence the radical satisfies r < 2−
4
5 × 32 × 5 13

10F
8
5
2n. Then

5F 2
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 39
25F

48
25
2n

Thus we have
F

2
25
2n < K(1/5)× 2−

24
25 × 3 12

5 × 5 14
25 .

Hence
φ2n−1

√
5
< F2n−1 < F2n < K(1/5)

25
2 × 2−12 × 330 × 57.

Taking the log of the both hand side, we have

n < N ′
3 =

25
2 log(K(

1
5 )) + 30 log 3− 12 log 2 +

15
2 log 5 + logφ

2 logφ
.

Case 4) Consider the case n ≡ 0 mod 3 and suppose s(F2n)
2 ≤ 10

√
5q(F2n).

Then we have

n < N ′
4 =
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2 log(K(

1
5 )) + 30 log 3− 32 log 2 +

15
2 log 5 + logφ

2 logφ
.
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NL denotes max(N
′
1, N

′
2, N

′
3, N

′
4) = N

′
3. Then under the abc conjecture, s(Fn)

2 >
10
√
5q(Fn) for n ≥ NL. Thus we have proved Proposition 3.2.

Now we shall show the explicit unit Ln +
√
L2
n + (−1)n is not a higher power

of the other unit
t+

√
t2 + (−1)n4
2

of the quadratic field Q(
√
L2
n + (−1)n) =

Q(
√
t2 + (−1)n4).

Since s(Fn)
2 > 10

√
5q(Fn) for n > NL, we know

s(L2
n+(−1)n)2 = s(5Fn−1Fn+1)

2 ≥ s(Fn−1)
2s(Fn+1)

2

52
>
102 × 5q(Fn−1)q(Fn+1)

52

= 4(5q(Fn−1)q(Fn+1)) ≥ 4q(5Fn−1Fn+1) = 4q(L
2+(−1)n).

Hence we have s(L2
n + (−1)n) > 4q(L2 + (−1)n), for n ≥ NL. If Ln +

√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

for k ≥ 5, we have s(L2
n + (−1)n) ≤

4q(L2 + (−1)n) in the same way as above for the case t ≥ 3. Thus Ln +

√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

implies k ≤ 4 for the case t ≥ 3. Now

we shall take care of the following exceptional cases t = 1 and t = 2, that is,

L2n +
√
L2
2n + 1 =

(
1 +

√
5

2

)k

, and L2n +
√
L2
2n + 1 = (1 +

√
2)k.

Since L2
2n + 1 = 5F2n−1F2n+1, the above equalities imply one of F2n−1 and

F2n+1 is square or 2 times square. Using Cohn’s results Fn = � ⇐⇒ n =
1, 2, 12 and Fn = 2� ⇐⇒ n = 3, 6. we can conclude that there are only two
cases

L0+
√
L2
0 + 1 = 2+

√
5 =

(
1 +

√
5

2

)3

, L4+
√
L2
4 + 1 = 7+

√
50 = (1+

√
2)3.

Combining these, if Ln +
√
L2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

for some k,

then k ≤ 4.

Proposition 3.4 (Assuming the abc conjecture) In the case n > NL,

Ln +
√
L2
n + (−1)n =

(
t+

√
t+ (−1)n4
2

)k

implies k ≤ 4.

11
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4 Cube Power and Elliptic Curves

In this section, we shall determine the exceptional n and t such that

F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

for some t ≥ 3,

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

for some t ≥ 1,

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

for some t ≥ 3,

or

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

for some t ≥ 1.

Our strategy is to change these problems to the determination of integer points
on corresponding elliptic curves. Let us consider the first case

(
t+

√
t2 − 4
2

)3

=
t(t2 − 3) + (t2 − 1)

√
t2 − 4

2
.

Then F2n+1 =
t(t2 − 3)

2
for some t ≥ 3. Since L2

2n+1 − 5F 2
2n+1 = −4, we have

(10L2n+1)
2 = (5t2)(5t2 − 15)2 − 400.

Put X = 5t2 − 10 and Y = 10L2n+1. Then we obtain an elliptic curve

E : Y 2 = X3 − 75X − 150.

Then the solutions of F2n+1 =
t(t2 − 3)

2
correspond to the integer points on the

above elliptic curve. The discriminant of this elliptic curve is ∆(E) = 26 ·32 ·54
and Nagell-Lutz’s theorem states that Etor(Q) = {O}, i.e., trivial. Moreover
the conductor of E is 10800 and the Mordell-Weil rank of E is one. Actually
this curve is called 10800bt1 in Cremona’s table [4]. We can show E(Q) ∼= Z =
⟨P = (−5, 10)⟩. Then we must verify when nP is integer points. Using the
methods developed in [5] with the help of LLL-reduction, n is bounded up to
10. We have calculated all the cases 1 ≤ n ≤ 10 and verified nP ̸∈ E(Z) for
|n| ≥ 3, that is,

E(Z) = {±P,±2P} = {(−5,±10), (10,±10)}.

12

X = 5t2 − 10 = −5 and 10 imply t = 1 and 2. Since for t ≥ 3, there exists no

case such that F2n+1 =
t(t2 − 3)

2
.

Proposition 4.1 There exists no n and t ≥ 3 which satisfy

F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

.

We can treat the following case similarly

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

.

Then (
t+

√
t2 + 4

2

)3

=
t(t2 + 3) + (t2 + 1)

√
t2 + 4

2
.

Suppose F2n =
t(t2 + 3)

2
for some t ≥ 1 in the equality L2

2n − 5F 2
2n = 4. Then

we have
(10L2n)

2 = (5t2)(5t2 + 15)2 + 400.

Putting X = 5t2 + 10 and Y = 10L2n, we get an elliptic curve

E : Y 2 = X3 − 75X + 150.

The solutions of F2n =
t(t2 + 3)

2
correspond to the integer points on the above

elliptic curve. The discriminant of this elliptic curve is also ∆(E) = 26 · 32 · 54
and we can verify Etor(Q) = {O}, i.e., trivial. The conductor of E is 5400 and
the Mordell-Weil rank of E is one. This curve is called 5400bj1 in Cremona’s
table and E(Q) ∼= Z = ⟨P = (−5, 20)⟩. In the same way as above, we have
examined nP ̸∈ E(Z) for |n| ≥ 3. Hence we can conclude

E(Z) = {±P,±2P} = {(−5,±20), (10,±20)}.

Thus X = 5t2 + 10 = −5 and 10 imply t = 0. Since for t ≥ 1, there exists no

case such that F2n =
t(t2 + 3)

2
.

Proposition 4.2 There exists no n and t ≥ 1 which satisfy

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

.

13
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4 Cube Power and Elliptic Curves

In this section, we shall determine the exceptional n and t such that

F2n+1 +
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F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

for some t ≥ 3,

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

for some t ≥ 1,

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

for some t ≥ 3,

or

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

for some t ≥ 1.

Our strategy is to change these problems to the determination of integer points
on corresponding elliptic curves. Let us consider the first case

(
t+

√
t2 − 4
2

)3

=
t(t2 − 3) + (t2 − 1)

√
t2 − 4

2
.

Then F2n+1 =
t(t2 − 3)

2
for some t ≥ 3. Since L2

2n+1 − 5F 2
2n+1 = −4, we have

(10L2n+1)
2 = (5t2)(5t2 − 15)2 − 400.

Put X = 5t2 − 10 and Y = 10L2n+1. Then we obtain an elliptic curve

E : Y 2 = X3 − 75X − 150.

Then the solutions of F2n+1 =
t(t2 − 3)

2
correspond to the integer points on the

above elliptic curve. The discriminant of this elliptic curve is ∆(E) = 26 ·32 ·54
and Nagell-Lutz’s theorem states that Etor(Q) = {O}, i.e., trivial. Moreover
the conductor of E is 10800 and the Mordell-Weil rank of E is one. Actually
this curve is called 10800bt1 in Cremona’s table [4]. We can show E(Q) ∼= Z =
⟨P = (−5, 10)⟩. Then we must verify when nP is integer points. Using the
methods developed in [5] with the help of LLL-reduction, n is bounded up to
10. We have calculated all the cases 1 ≤ n ≤ 10 and verified nP ̸∈ E(Z) for
|n| ≥ 3, that is,

E(Z) = {±P,±2P} = {(−5,±10), (10,±10)}.

12

X = 5t2 − 10 = −5 and 10 imply t = 1 and 2. Since for t ≥ 3, there exists no

case such that F2n+1 =
t(t2 − 3)

2
.

Proposition 4.1 There exists no n and t ≥ 3 which satisfy

F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

.

We can treat the following case similarly

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

.

Then (
t+

√
t2 + 4

2

)3

=
t(t2 + 3) + (t2 + 1)

√
t2 + 4

2
.

Suppose F2n =
t(t2 + 3)

2
for some t ≥ 1 in the equality L2

2n − 5F 2
2n = 4. Then

we have
(10L2n)

2 = (5t2)(5t2 + 15)2 + 400.

Putting X = 5t2 + 10 and Y = 10L2n, we get an elliptic curve

E : Y 2 = X3 − 75X + 150.

The solutions of F2n =
t(t2 + 3)

2
correspond to the integer points on the above

elliptic curve. The discriminant of this elliptic curve is also ∆(E) = 26 · 32 · 54
and we can verify Etor(Q) = {O}, i.e., trivial. The conductor of E is 5400 and
the Mordell-Weil rank of E is one. This curve is called 5400bj1 in Cremona’s
table and E(Q) ∼= Z = ⟨P = (−5, 20)⟩. In the same way as above, we have
examined nP ̸∈ E(Z) for |n| ≥ 3. Hence we can conclude

E(Z) = {±P,±2P} = {(−5,±20), (10,±20)}.

Thus X = 5t2 + 10 = −5 and 10 imply t = 0. Since for t ≥ 1, there exists no

case such that F2n =
t(t2 + 3)

2
.

Proposition 4.2 There exists no n and t ≥ 1 which satisfy

F2n +
√
F 2
2n + 1 =

(
t+

√
t2 + 4

2

)3

.

13
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Now we can treat the following case similarly

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

, for some t ≥ 3.

Putting X = 5t2−10 and Y = 50F2n+1, we have obtained the following elliptic
curve

E : Y 2 = X3 − 75X + 2250.

The solutions of L2n+1 =
t(t2 − 3)

2
correspond to the integer points on the

above elliptic curve. The discriminant of this elliptic curve is ∆(E) = −210 ·
33 · 57 and Etor(Q) ∼= Z/2Z = ⟨Q = (−15, 0)⟩. This curve is called 3600d1 in
Cremona’s table and the Mordell-Weil rank is one. We can show

E(Q) ∼= Z/Z× Z = ⟨Q = (−15, 0)⟩ × ⟨P = (−5, 50)⟩.

In the same way as above, we have examined mQ + nP ̸∈ E(Z) for |n| ≥ 5.
Calculating these cases

E(Z) = {Q,±P,±2P,Q± P.Q± 2P,Q± 4P}

= {(−15, 0), (−5,±50), (10,±50), (45,±300), (9,±48), (9585,±938400)}.

X = 5t2 − 10 implies t = 1 or 2. Since for t ≥ 3, there exists no case such that

L2n+1 =
t(t2 − 3)

2
.

Proposition 4.3 There exists no n and t ≥ 3 which satisfy

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

.

Finally we shall consider the following case similarly

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

, for some t ≥ 1.

Putting X = 5t2 + 10 and Y = 50F2n, we have obtained an elliptic curve

E : Y 2 = X3 − 75X − 2250.

The solutions of L2n =
t(t2 + 3)

2
correspond to the integer points on the above

elliptic curve. The discriminant of this elliptic curve is ∆(E) = −210 · 33 · 57

14

and Etor(Q) ∼= Z/2Z = ⟨Q = (15, 0)⟩. This curve is called 1800b1 in Cremona’s
table and the Mordell-Weil rank is one. We can show

E(Q) ∼= Z/Z× Z = ⟨Q = (15, 0)⟩ × ⟨P = (30, 150)⟩.

In the same way as above, we have examined mQ + nP ̸∈ E(Z) for |n| ≥ 3.
Hence

E(Z) = {Q,±P,Q±P,Q±2P} = {(15, 0), (30,±150), (55,±400), (399,±7968)}.

Then X = 5t2 + 10 implies t = 1, 2 or 3. t = 1 corresponds to the case L0 = 2
and

L0 +
√
L2
0 + 1 = 2 +

√
5 =

(
1 +

√
5

2

)3

.

t = 2 corresponds to the case L4 = 7 and

L4 +
√
L2
4 + 1 = 7 + 5

√
2 = (1 +

√
2)3.

t = 3 corresponds to the case L6 = 18 and

L6 +
√
L2
6 + 1 = 18 + 5

√
13 =

(
3 +

√
13

2

)3

.

Hence we have shown the following proposition,

Proposition 4.4

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

, for some t ≥ 1

if and only if n = 0, 2 and 3.

Now we shall quote some related problem which is called Eisenstein’s problem.
Let D be a positive integer congruent to 5 mod 8. In 1844 Eisenstein asked
when the following equation has the odd solutions X and Y ;

(5) X2 −DY 2 = 4.

Let ℓ and ℓ∗ be the length of the continued fraction expansions of
√
D and√

D+1
2 , respectively. In [8], P. Kaplan and K. S. Williams have given a necessary

and sufficient condition when the equation x2 − Dy2 = −1 is solvable, i.e.,
ℓ ≡ ℓ∗ ≡ 1 mod 2 as follows.

Proposition 4.5 ([8]) The above equation (5) is solvable if and only if ℓ ≡ ℓ∗

15
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Now we can treat the following case similarly

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

, for some t ≥ 3.

Putting X = 5t2−10 and Y = 50F2n+1, we have obtained the following elliptic
curve

E : Y 2 = X3 − 75X + 2250.

The solutions of L2n+1 =
t(t2 − 3)

2
correspond to the integer points on the

above elliptic curve. The discriminant of this elliptic curve is ∆(E) = −210 ·
33 · 57 and Etor(Q) ∼= Z/2Z = ⟨Q = (−15, 0)⟩. This curve is called 3600d1 in
Cremona’s table and the Mordell-Weil rank is one. We can show

E(Q) ∼= Z/Z× Z = ⟨Q = (−15, 0)⟩ × ⟨P = (−5, 50)⟩.

In the same way as above, we have examined mQ + nP ̸∈ E(Z) for |n| ≥ 5.
Calculating these cases

E(Z) = {Q,±P,±2P,Q± P.Q± 2P,Q± 4P}

= {(−15, 0), (−5,±50), (10,±50), (45,±300), (9,±48), (9585,±938400)}.

X = 5t2 − 10 implies t = 1 or 2. Since for t ≥ 3, there exists no case such that

L2n+1 =
t(t2 − 3)

2
.

Proposition 4.3 There exists no n and t ≥ 3 which satisfy

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 − 4
2

)3

.

Finally we shall consider the following case similarly

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

, for some t ≥ 1.

Putting X = 5t2 + 10 and Y = 50F2n, we have obtained an elliptic curve

E : Y 2 = X3 − 75X − 2250.

The solutions of L2n =
t(t2 + 3)

2
correspond to the integer points on the above

elliptic curve. The discriminant of this elliptic curve is ∆(E) = −210 · 33 · 57

14

and Etor(Q) ∼= Z/2Z = ⟨Q = (15, 0)⟩. This curve is called 1800b1 in Cremona’s
table and the Mordell-Weil rank is one. We can show

E(Q) ∼= Z/Z× Z = ⟨Q = (15, 0)⟩ × ⟨P = (30, 150)⟩.

In the same way as above, we have examined mQ + nP ̸∈ E(Z) for |n| ≥ 3.
Hence

E(Z) = {Q,±P,Q±P,Q±2P} = {(15, 0), (30,±150), (55,±400), (399,±7968)}.

Then X = 5t2 + 10 implies t = 1, 2 or 3. t = 1 corresponds to the case L0 = 2
and

L0 +
√
L2
0 + 1 = 2 +

√
5 =

(
1 +

√
5

2

)3

.

t = 2 corresponds to the case L4 = 7 and

L4 +
√
L2
4 + 1 = 7 + 5

√
2 = (1 +

√
2)3.

t = 3 corresponds to the case L6 = 18 and

L6 +
√
L2
6 + 1 = 18 + 5

√
13 =

(
3 +

√
13

2

)3

.

Hence we have shown the following proposition,

Proposition 4.4

L2n +
√
L2
2n + 1 =

(
t+

√
t2 + 4

2

)3

, for some t ≥ 1

if and only if n = 0, 2 and 3.

Now we shall quote some related problem which is called Eisenstein’s problem.
Let D be a positive integer congruent to 5 mod 8. In 1844 Eisenstein asked
when the following equation has the odd solutions X and Y ;

(5) X2 −DY 2 = 4.

Let ℓ and ℓ∗ be the length of the continued fraction expansions of
√
D and√

D+1
2 , respectively. In [8], P. Kaplan and K. S. Williams have given a necessary

and sufficient condition when the equation x2 − Dy2 = −1 is solvable, i.e.,
ℓ ≡ ℓ∗ ≡ 1 mod 2 as follows.

Proposition 4.5 ([8]) The above equation (5) is solvable if and only if ℓ ≡ ℓ∗
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mod 4.

More general conditions for the solvability of Eisenstein’s problem have been
investigated in [7] and [16]. We can verify that L2

n + (−1)n and hence s(L2
n +

(−1)n) is congruent to 5 mod 8 for the case n = 6m. Put Dm = s(L2
6m + 1).

Though we could not use the above criterion for Dm, because we could not
express the exact value Dm explicitly. But the existence of the explicit unit
L6m+

√
L2
6m + 1 of Q(

√
Dm) will play as a key ingredient as follows. Suppose

that there exists an odd solution X and Y for the equation X2 − DmY
2 =

4. Then the fundamental unit ε of Q(
√
Dm) must be written in the form

t0 +
√
t20 + 4

2
with odd t0. Then the explicit unit L6m+

√
L2
6m + 1 is expressed

as ε3k for some k ≥ 1. From Proposition 4.4, we see that it occurs if and only
if m = 1. Thus we have proved the following theorem.

Theorem 4.1With the notations, the following equation has the odd solutions
X and Y if and only if m = 1,

X2 −DmY
2 = 4.

Let ℓm and ℓm
∗ be the length of the continued fraction expansions of

√
Dm and√

Dm+1
2 , respectively. Then combining Proposition 4.5 and the above theorem,

we can state the following corollary.

Corollary 4.1 With the above notations

ℓm ≡ ℓm∗ mod 4⇐⇒ m = 1.

Numerical examples. Since L2
6 + 1 = 325 = 52 · 13, we see D1 = 13 and

the length of the continued fraction expansions of
√
13 and

√
13+1
2 are 5 and

1 and hence ℓ1 = 5 ≡ 1 = ℓ∗1 mod 4. In the case D2 = 103685 = 5 · 89 · 233,
the length of the continued fraction expansions of

√
103685 and

√
103685+1

2 are
1 and 3 and hence ℓ2 = 1 ̸≡ 3 = ℓ∗2 mod 4.

5 Simultaneous Pell Equations

We shall recall our previous results in [12] which determine all n such that

F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2

16

for some t ≥ 3, and

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2

for some t ≥ 3.
For the sake of completeness, we shall give the sketch of proofs of our results
as follows. We shall prepare the following elementary lemma on the properties
on Fibonacci and Lucas numbers.

Lemma 5.1

F2n+1L2n = F4n+1 + 1, F2nL2n+1 = F4n+1 − 1,
F2n−1L2n = F4n−1 + 1, F2nL2n−1 = F4n−1 − 1,
5F2n−1F2n = L4n−1 + 1, 5F2n+1F2n = L4n+1 − 1,
L2nL2n+1 = L4n+1 + 1, L2n−1L2n = L4n+1 − 1.

We can verify the first case of this lemma, using Binet’s formula as follows. Let

us denote φ = 1+
√
5

2 and φ̄ = 1−
√
5

2 . Then

F2n+1L2n =
(φ2n+1 − φ̄2n+1)(φ2n + φ̄2n)√

5
=
φ4n+1 − φ̄4n+1 + φ− φ̄√

5
= F4n+1+1.

One can easily verify other cases similarly. Here we shall recall J. H. E. Cohn’s
results in [3] which we have already mentioned.

Proposition 5.1 ([3], [21]) Fn and Ln (n ≥ 0) satisfy

Fn = � ⇐⇒ n = 0, 1, 2 or 12 ⇐⇒ Fn = F0 = 0, F1 = F2 = 1 or F12 = 12
2,

Fn = 2� ⇐⇒ n = 0, 3 or 6 ⇐⇒ Fn = F0 = 0, F3 = 2 or F6 = 2 · 22,
Ln = � ⇐⇒ n = 1 or 3 ⇐⇒ Ln = L1 = 1 or L2 = 2

2,
Fn = 2� ⇐⇒ n = 0 or 4 ⇐⇒ Ln = L0 = 2 or L6 = 2 · 32.

Here we shall recall the case

F4n+1 +
√
F 2
4n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2

.

Since (
t+

√
t2 ± 4
2

)2

=
t2 ± 2 +

√
(t2 ± 2)2 − 4
2

,

17
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mod 4.

More general conditions for the solvability of Eisenstein’s problem have been
investigated in [7] and [16]. We can verify that L2

n + (−1)n and hence s(L2
n +

(−1)n) is congruent to 5 mod 8 for the case n = 6m. Put Dm = s(L2
6m + 1).

Though we could not use the above criterion for Dm, because we could not
express the exact value Dm explicitly. But the existence of the explicit unit
L6m+

√
L2
6m + 1 of Q(

√
Dm) will play as a key ingredient as follows. Suppose

that there exists an odd solution X and Y for the equation X2 − DmY
2 =

4. Then the fundamental unit ε of Q(
√
Dm) must be written in the form

t0 +
√
t20 + 4

2
with odd t0. Then the explicit unit L6m+

√
L2
6m + 1 is expressed

as ε3k for some k ≥ 1. From Proposition 4.4, we see that it occurs if and only
if m = 1. Thus we have proved the following theorem.

Theorem 4.1With the notations, the following equation has the odd solutions
X and Y if and only if m = 1,

X2 −DmY
2 = 4.

Let ℓm and ℓm
∗ be the length of the continued fraction expansions of

√
Dm and√

Dm+1
2 , respectively. Then combining Proposition 4.5 and the above theorem,

we can state the following corollary.

Corollary 4.1 With the above notations

ℓm ≡ ℓm∗ mod 4⇐⇒ m = 1.

Numerical examples. Since L2
6 + 1 = 325 = 52 · 13, we see D1 = 13 and

the length of the continued fraction expansions of
√
13 and

√
13+1
2 are 5 and

1 and hence ℓ1 = 5 ≡ 1 = ℓ∗1 mod 4. In the case D2 = 103685 = 5 · 89 · 233,
the length of the continued fraction expansions of

√
103685 and

√
103685+1

2 are
1 and 3 and hence ℓ2 = 1 ̸≡ 3 = ℓ∗2 mod 4.

5 Simultaneous Pell Equations

We shall recall our previous results in [12] which determine all n such that

F2n+1 +
√
F 2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2
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for some t ≥ 3, and

L2n+1 +
√
L2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2

for some t ≥ 3.
For the sake of completeness, we shall give the sketch of proofs of our results
as follows. We shall prepare the following elementary lemma on the properties
on Fibonacci and Lucas numbers.

Lemma 5.1

F2n+1L2n = F4n+1 + 1, F2nL2n+1 = F4n+1 − 1,
F2n−1L2n = F4n−1 + 1, F2nL2n−1 = F4n−1 − 1,
5F2n−1F2n = L4n−1 + 1, 5F2n+1F2n = L4n+1 − 1,
L2nL2n+1 = L4n+1 + 1, L2n−1L2n = L4n+1 − 1.

We can verify the first case of this lemma, using Binet’s formula as follows. Let

us denote φ = 1+
√
5

2 and φ̄ = 1−
√
5

2 . Then

F2n+1L2n =
(φ2n+1 − φ̄2n+1)(φ2n + φ̄2n)√

5
=
φ4n+1 − φ̄4n+1 + φ− φ̄√

5
= F4n+1+1.

One can easily verify other cases similarly. Here we shall recall J. H. E. Cohn’s
results in [3] which we have already mentioned.

Proposition 5.1 ([3], [21]) Fn and Ln (n ≥ 0) satisfy

Fn = � ⇐⇒ n = 0, 1, 2 or 12 ⇐⇒ Fn = F0 = 0, F1 = F2 = 1 or F12 = 12
2,

Fn = 2� ⇐⇒ n = 0, 3 or 6 ⇐⇒ Fn = F0 = 0, F3 = 2 or F6 = 2 · 22,
Ln = � ⇐⇒ n = 1 or 3 ⇐⇒ Ln = L1 = 1 or L2 = 2

2,
Fn = 2� ⇐⇒ n = 0 or 4 ⇐⇒ Ln = L0 = 2 or L6 = 2 · 32.

Here we shall recall the case

F4n+1 +
√
F 2
4n+1 − 1 =

(
t+

√
t2 + 4

2

)2

for some t ≥ 1, or

(
t+

√
t2 − 4
2

)2

.

Since (
t+

√
t2 ± 4
2

)2

=
t2 ± 2 +

√
(t2 ± 2)2 − 4
2

,

17
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the above equality shows F4n+1∓1 = 2�, that is, F2nL2n+1 = 2� or F2n+1L2n =
2�. Thus at least L2n = �, 2� or L2n+1 = �, 2�. From Proposition 5.2,
L0 = 2, L1 = 1, L3 = 2 or L6 = 18, and F1 + 1 = 2, i.e., n = 0 is the only
case. Since F 2

1 − 1 = 0, it is not the case. In the same way, one can check
finitely many candidates and there is no n except the case L11 +

√
L2
11 − 1 =

199 + 20
√
99 = (10 + 3

√
11)2.

Proposition 5.2 With the above notations, there exists no n

F2n+1+
√
F 2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

(resp.

(
t+

√
t2 − 4
2

)2

) for some t ≥ 1

(resp.t ≥ 3 ), and

L2n+1+
√
L2
2n+1 − 1 =

(
t+

√
t2 + 4

2

)2

(resp.

(
t+

√
t2 − 4
2

)2

) for some t ≥ 1

(resp.t ≥ 3 ) ⇐⇒ n = 5.

Now we shall recall our conclusion in section 3 and 4. In section 3, we have
proved, for the case n ≥ NF ,

Fn +
√
F 2
n + (−1)n =

(
t+

√
t2 + (−1)n4
2

)k

implies k ≤ 4,

under the abc conjecture. In section 4, we have examined,

Fn +
√
F 2
n + (−1)n ̸=

(
t+

√
t2 + (−1)n4
2

)3

.

Since

(
t+

√
t2 ± 4
2

)4

=

(
t2 ± 2 +

√
(t2 ± 2)2 − 4
2

)2

, we have verified

Fn +
√
F 2
n + (−1)n ̸=

(
t+

√
t2 + (−1)n4
2

)k

for any k ≥ 2.

Theorem 5.1 (Assuming the abc conjecture) In the case n ≥ NF ,

Fn +
√
F 2
n + (−1)n ̸=

(
t+

√
t2 + (−1)m4
2

)k

for any t,m and k(≥ 2).
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In the same way as above, from the fact NL ≫ 6, we can show the following
similar result.

Theorem 5.2 (Assuming the abc conjecture) In the case n ≥ NL,

Ln +
√
L2
n + (−1)n ̸=

(
t+

√
t2 + (−1)m4
2

)k

for any t,m and k(≥ 2).

Let us denote the set of positive integers {Dn = s(F
2
n + (−1)n) | n ≥ 2} by D

and max{Dn ∈ D | n ≤ NF } by D0. Then as a corollary of this theorem, we
can show the precise description of the existence of positive integer solutions
of our simultaneous Pell equations (2) and (3) as follows.

Theorem 5.3 (Assuming the abc conjecture) The simultaneous Pell equations

(2)

{
x2 − 5dz2 = 1
y2 − dz2 = 1 , (3)

{
x2 − 5dz2 = −1
y2 − dz2 = −1

have positive integer solutions if and only if d ∈ D. The number of positive
integer solutions of (2) or (3) is at most one for the case d > D0, and d is
expressed as d = s(F 2

n+(−1)n) for some n > NF . Moreover the unique positive
integer solution (x, y, z) is given by x = Ln, y = Fn and z = q(F

2
n + (−1)n).

Finally we shall show that d ∈ D grows exponentially under the abc conjecture.
Analogous result has been obtained by G. Walsh in [25]. By virtue of the Binet’s
formula, it is easy to show

φn

3
< Fn =

φn − (1/φ)n√
5

<
φn

2
for n ≥ 4.

On the other hand, assuming the abc conjecture, we have proved that, for any
δ such that 0 < δ < 1, the following inequality holds for sufficiently large n in
Preposition 2.1.

F 1−δ
n ≤ s(Fn) ≤ Fn.

Since Dn = s(F
2
n + (−1)n) = s(Fn−1Fn+1) = s(Fn−1)s(Fn+1), one can see

(
1

9

)1−δ

φ2n < Dn <
1

4
φ2n.

Denote C(δ) = (1/9)1−δ. Then we have obtained the following exponential
growth of Dn.
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Theorem 5.4 (Assuming the abc conjecture) Let Dn denote in increasing order
d ∈ D, that is, d with (2) or (3) has a solution. Then, for any 0 < δ < 1, there
exists a constant C(δ) which satisfies

C(δ)φ2n < Dn <
1

4
φ2n.

6 Biquadratic Fields

Let K = Q(
√
d1,

√
d2) be a real biquadratic field. k1, k2 and k3 denote the

real quadratic subfield Q(
√
d1),Q(

√
d2) and Q(

√
d1d2), respectively. Let ε1, ε2

and ε3 be the fundamental units of k1, k2 and k3. EK denotes the unit group
of K. Then the Hasse unit index QK of E = ⟨−1, ε1, ε2, ε3⟩ in EK is defined
by the group index [EK : E]. We note here that QK is known to be 1, 2 or 4
(see for example [24]). Let hki be the class number of the real quadratic field
ki and hK be the class number of the biquadratic field K. Then the classical
Dirichlet’s class number formula states that

hK =
QK

4
hk1hk2hk3 .

Now we shall recall our previous results on K = Q(
√
5,
√
F 2
2 + (−1)n). Then

k1 = Q(
√
5), k2 = Q(

√
F 2
n + (−1)n) and k3 = Q(

√
L2
n + (−1)n) and ε1 =

1+
√
5

2 = φ. We verified QK = 2 for the cases n = 2, 3, 4, 5, 6, 11 and 13 and
QK = 1 for other cases.

Proposition 6.1

EK =




⟨−1, ε1,
√
ε2, ε3⟩ for n = 11,

⟨−1, ε1, ε2,
√
ε3⟩ for n = 5,

⟨−1, ε1, ε2,
√
ε2ε3⟩ for n = 3 or 13,

⟨−1, ε1, ε2,
√
ε1ε2ε3⟩ for n = 2, 4 or 6,

⟨−1, ε1, ε2, ε3⟩ otherwise.

Put h2 = hF and h3 = hL. Then assuming the abc conjecture, we have the
following theorem.

Theorem 6.1 For any n ≥ NL, we have

EK = ⟨−1, 1 +
√
5

2
, Fn+

√
F 2
n + (−1)n, Ln+

√
L2
n + (−1)n⟩ and hK =

hFhL
4
.
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7 Numerical Calculations

In our previous paper [11], we have given the following conjecture.

Conjecture. For any n ≥ 2, Fn +
√
F 2
n + (−1)n is the fundamental unit of

the real quadratic fields Q(
√
F 2
n + (−1)n).

In our previous paper, we have calculated the fundamental unit using the con-
tinued fraction expansion of

√
s(F 2

n + (−1)n) and verified this conjecture for
small n ≤ 225. We also checked the square free parts of Fibonacci numbers
and verified this conjecture for 2 ≤ n ≤ 702. We have stopped to verify this
conjecture at that time, because F703 is the smallest Fibonacci number which
is not completely factorized at that time. From the proof of Proposition 3.1
and Proposition 4.1, 4.2 and 5.2, to verify the above conjecture, one only need
to show s(Fn)

2 > 2q(Fn). Using the new table of the prime factorizations of
Fibonacci numbers of B. Kelly [14], we can easily verify that s(Fn)

2 > 2q(Fn)
holds for any 13 ≤ n ≤ 1270. Now F1271 is the smallest Fibonacci number
which is not completely factorized so far. Thus we have verified the following
proposition.

Proposition 7.1 For any 2 ≤ n ≤ 1270, Fn+
√
F 2
n + (−1)n is the fundamen-

tal unit of the real quadratic fields Q(
√
F 2
n + (−1)n).

In the same way as above, we have verified the square free parts of Fibonacci
numbers satisfy s(Fn)

2 > 10
√
10q(Fn) for 13 ≤ n ≤ 1270. From the proof

of Proposition 3.2 we know each Ln +
√
L2
n + (−1)n is at most 4th power

of the fundamental unit. Combining Proposition 4.3, 4.4 and 5.2, we know
Ln +

√
L2
n + (−1)n is the fundamental unit except for the cases n = 4, 6 and

11. Thus we have obtained the following proposition.

Proposition 7.2 For n = 2, 3, 5, 7, 8, 9, 10 and 12 ≤ n ≤ 1270, Ln+
√
L2
n + (−1)n

is the fundamental unit of the real quadratic fields Q(
√
L2
n + (−1)n). For the

case n = 4, 6 and 11,
L4 +

√
L2
4 + 1 = 7 + 5

√
2 = (1 +

√
2)3,

L6 +
√
L2
6 + 1 = 18 + 5

√
13 =

(
3 +

√
13

2

)3

,

L11 +
√
L2
11 − 1 = 199 + 20

√
99 = (10 + 3

√
11)2.

LetK be the biquadratic fieldQ(
√
5,
√
F 2
n + (−1)n) = Q(

√
F 2
n + (−1)n,

√
L2
n + (−1)n)

as above. Then k1 = Q(
√
5), k2 = Q(

√
F 2
n + (−1)n) and k3 = Q(

√
L2
n + (−1)n)

and ε1 =
1+

√
5

2 = φ. We also denote the fundamental units of k2 and k3
by ε2 and ε3. Here we shall quote the numerical data on the unit group

21
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Theorem 5.4 (Assuming the abc conjecture) Let Dn denote in increasing order
d ∈ D, that is, d with (2) or (3) has a solution. Then, for any 0 < δ < 1, there
exists a constant C(δ) which satisfies

C(δ)φ2n < Dn <
1

4
φ2n.
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EK for small n. Let UK be the subgroup of unit group EK generated by
ε1, Fn +

√
F 2
n + (−1)n and Ln +

√
L2
n + (−1)n. We define the group index In

by putting

In = [EK : ⟨−1, ε = 1 +
√
5

2
, Fn +

√
F 2
n + (−1)n, Ln +

√
L2
n + (−1)n⟩].

Then In = 1 for 2 ≤ n ≤ 1270 except for n = 2, 3, 4, 5, 6, 11 and 13. In = 2 for
the cases n = 2, 3, 5 or 13 and In = 4 for the case n = 11 and In = 6 for the
cases n = 4 or 6. More precisely, we shall give the following table: Unit groups
with exceptional group indices In.

n In EK UK

2 2 ⟨−1, ε1, ε2,
√
ε1ε2ε3⟩ ⟨−1, ε1, ε2, ε3⟩

3 2 ⟨−1, ε1, ε2,
√
ε2ε3⟩ ⟨−1, ε1, ε2, ε3⟩

4 6 ⟨−1, ε1, ε2,
√
ε1ε2ε3⟩ ⟨−1, ε1, ε2, ε33⟩

5 2 ⟨−1, ε1, ε2,
√
ε3⟩ ⟨−1, ε1, ε2, ε3⟩

6 6 ⟨−1, ε1, ε2,
√
ε1ε2ε3⟩ ⟨−1, ε1, ε2, ε33⟩

11 4 ⟨−1, ε1,
√
ε2, ε3⟩ ⟨−1, ε1, ε2, ε23⟩

13 2 ⟨−1, ε1, ε2,
√
ε2ε3⟩ ⟨−1, ε1, ε2, ε3⟩

Combining these data on In for 13 ≤ n ≤ 1270 and Theorem 6.1, now we shall
state a new conjecture which generalize the above conjecture,

Conjecture. For any n ≥ 13, In = 1, that is, the set of the units
{φ, Fn+

√
F 2
n + (−1)n, Ln+

√
L2
n + (−1)n} is the fundamental system of units

of the biquadratic field Q(
√
F 2
n + (−1)n,

√
L2
n + (−1)n).
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L2
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ε2ε3⟩ ⟨−1, ε1, ε2, ε3⟩

Combining these data on In for 13 ≤ n ≤ 1270 and Theorem 6.1, now we shall
state a new conjecture which generalize the above conjecture,

Conjecture. For any n ≥ 13, In = 1, that is, the set of the units
{φ, Fn+

√
F 2
n + (−1)n, Ln+

√
L2
n + (−1)n} is the fundamental system of units

of the biquadratic field Q(
√
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√
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Abstract

We show a connection formula of a linear q-differential equation
satisfied by rϕr−1(0; b; q, x) where any element of b are not zero.
We use a q-Laplace transformation to obtain an integral represen-
tation of solutions of the q-differential equation.
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1 Introduction

We show a connection formula of a linear q-differential equation satisfied by

rϕr−1(0, 0, ..., 0; b1, ..., br−1; q, x) in case that b1b2 · · · br−1 ̸= 0. The basic hyper-
geometric series rϕr−1(0, 0, ..., 0; b1, ..., br−1; q, x) satisfies a linear q-differential
equation of the r-th order:

[
x− (1− σq)

r−1∏
k=1

(1− bk
q
σq)

]
y(x) = 0, (1)

where σqy(x) = y(xq). The condition b1b2 · · · br−1 ̸= 0 implies that the origin
is a regular singular point of (1). Around the infinity (1) has r solutions which
are represented by convergent power series on x1/r. In this sense, (1) is the
most degenerate case of hypergeometric equations.
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