
J. Math. Univ. Tokushima 

Vol.38(2004), 17-27 

New Quantum Theory and 
New Meaning of Specific Heat of a Solid 

By 

Yoshifumi ITO and Md Sharif UDDIN 

Department of Mathematical and Natural Sciences, Faculty of Integrated 
Arts and Sciences, The University of Tokushima, Tokushima 770-8502 

Japan 
and 

Department of Mathematics, Jahangirnagar University, Savar, Dhaka-1342 
Bangladesh 

e-mail : y-ito@ias. tokushima-u. ac.jp 
mshari, ガu@yahoo.com
(Received December 4, 2003) 

Abstract 

In this article, we consider the specific heat of a monatomic 
solid in the view point of the new quantum theory. Thereby we 
can clarify a new meaning of specific heat. At last, we give a new 
meaning of the Debye model of specific heat of a solid. 
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Introduction 

In this article, we consider the molar heat of a monatomic solid in the view 
point of the new quantum theory. We get a reasonable explanation of the molar 
heat of a monatomic solid. It gives a new explanation of the Debye's model of 
specific heat of a solid. In the old quantum theory, there are Einstein's theory 
of specific heat at 1907 and Debye's theory of specific heat at 1912. But they 
are different from ours with respect to the standing point. The new quantum 
theory was originated by Y. Ito [2J-[4] at 1998-2000. As for the new quantum 
theory, we refer the papers [1]-[8J of the references. 



18 Y oshifumi ho and Md Sharif UDDIN 

1. Axiom of the new quantum theory 

Here we remember the axiom of the new quantum theory which is the basis 
of this article. As for this we refer Ito[2], [3], Ito-Kayama[6],[7] and Ito-Kayama-
Kamoshita[8]. 
Axiom I (quantum system). A quantum system n is defined to be a 
probability space (11, B, P). Here n is a set of microparticles p, Bis a a-algebra 
of subsets of n and P is a completely additive probability measure on B. 
Axiom II (quantum state). The (quantum) state of a quantum system 
n = n(B, P)(= (11, B, P)) is defined to be the state of the quantum probability 
distribution of the position variables r(p) and the momentum variables p(p) 
of microparticles p which compose the quantum system. Here, we consider 
the orthogonal coordinate systems of n-dimensional Euclidean space Rn and 
its dual space Rn. Here we put n = dM, where d denotes the dimension of 
the physical space and M denotes the number of particles which compose one 
elementary event p. 
(Iii) The quantum probability distribution of the position variables r = 
r(p) is determined by an£2-densityゆonRn such that it satisfies the condition 

J伸(r)l2dr= 1, 
Rn 

where dr denotes the Lebesgue measure on Rn. 
(112) The quantum probability distribution of the momentum variable p = 

p(p) is determined by the Fourier transform炒ofゅ.Here we put 

蜘） = (2nn)―n/2 Jゆ(r)e―i(p-r)f'li.dr,
ゆ(r)= (2nn)―n/2 J炒(p)ei(p-r)/'li.dp,
r = (x1, X2, ・ ・ ・, Xn), P = (P1,P2, ・ ・ ・,Pn), 

p・r =p1X1 +p匹2+• ・ ・+ PnXn• 

h 
Here we put ti = - and h is the Planck constant. 

2n 
(113) We put 

μ(A)= JI的(r)l2dr
A 

for a Lebesgue measurable set A in Rn. Then we assume that 

P({p E n;r(p) EA})=μ(A). 

Then, μ(A) denotes the probability of the event "r(p) belongs to A". Thereby, 
we have the probability space (Rn, Mn,μ), where Mn is the family of all 
Lebesgue measurable sets in Rn. 
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(114) We put 

v(B) = f I炒(P)l2dp
B 

for a Lebesgue measurable set B in Rn. Then we assume that 

P({p E !1;p(p) EB})= v(B). 

Then, v(B) denotes the probability of the event "p(p) belongs to B". Thereby, 
we have the probability space (R,,, ふ，v),where Nn is the family of all Lebesgue 
measurable sets in凡．
Axiom III (motion of a quantum system). We call the time evolution 
of the£2-densityゆ(r,t) of a quantum system the motion of the quantum 
system. The law of the motion of the quantum system is described by the 
Schrodinger equation. We call the Schrodinger equation the equation of motion 
of the quantum system. 
A Schrodinger equation is defined by an equation of the form 

卯
ifi―=Hゅ．at 

We call the operator H a Hamiltonian, which has a various form corresponding 
to each quantum system. H is assumed to be a self-adjoint operator on some 
Hilbert space 1l. 

2. Physical setting of the system and the prob-

lem 

We consider a monatomic solid spreaded infinitely. Every atom of the solid 
is oscillating by the cause of heat. Approximately we may consider every atom 
as a harmonic oscillator near the equilibrium point. We wish to consider the 
specific heat of this solid. 
We consider the specific heat as molar heat. It is 3N times of the spe-
cific heat with respect to one degree of freedom of oscillation, where N is the 
Avogadro's number. 

3. Setting of the mathematical model 

We use the notation in chapter 1. Let n = O(B, P) be the probability 
space which represents the quantum system considered here. An elementary 
event p of n is a harmonic oscillator which oscillates harmonically in the 1-
dimensioanl Euclidean space R . Here we consider one degree of freedom of 
the 3-dimensional harmonic oscillator. Then we denote the position variable 
of a harmonic oscillator p by x = x(p), and the momentum variable of p by 
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p = p(p). Here we put n = dM = l because the space dimension is d = l, the 
number of harmonic oscillators which compose an elementary event p is M = l. 
The variable x changes in the space R1 and the variable p changes in its dual 
space R1. Then by the axiom II, the L2-densityゆ(x)determines the quantum 
probability distribution law of the position variable x and its Fourier transform 
炒(p)determines the quantum probability distribution law of the momentum 
variable p. The total energy of each harmonic oscillator pis determined by the 
cl邸 sicalmechanics. Its value is 

1 m —p(p)2 + -w(p)2x(p)2. 
2m 2 

Here the first term is the kinetic energy of the harmonic oscillator p and the 
second term is the potential energy of the harmonic oscillator p. w(p) is the an-
gular frequency of the harmonic oscillator p and m is the m邸 sof the harmonic 
oscillator. 
This energy variable is considered邸 aquantum random variable defined on 
the probability space n which represents the quantum system. The evaluation 
of the expectation value of this energy variable, namely the energy expectation 
value, is carried out by using the axiom IL 
Namely we use the relation 

P({p E it;x(p) EA})=/伸(x)l2dx,
A 

P({p E it;p(p) EB})=/ l~(p)l2dp 
B 

for a subset A in R1 and a subset Bin R1. Further we assume that the w(p) is 
a random variable whose probability distribution law is given by a probability 
density D(w) such邸
(1) 0~D(w)~oo. 00 
(2) / D(w)dw = l. 

(3) ]00 wD(w)dw < oo. 

゜Then we have the energy expectation value万：
万=E [~p(p)2 +½mw(p)2x(p)2] 

＝戸 [~p(p)2 +½mw(p)2x(p)叫 w(p) = w] D(w)dw. 
゜Then, for an admissible L2-densityゅ， wehave 

E[上p(p)2+1 
2m 

-mw(p)2x(p)叫w(p)= w] 
2 
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=E[土p(p)2+½mw2x(p)2] 

=E  [土叫 +E[½mw2x(p)2] 

=/~ 贔 (p)l2dp+ I½mw2x伽(x)l2dx

=/{羞菩l2 +½mw2x憎(x)l2}dx. 
Here we use the Plancherel formula for Fourier transformation. 
Here we denote this conditional energy expectation value by 

応］＝／
炉 dゆ(x)

2 

｛茄下 +½mw2x憎(x)l2}dx. 
We call J[ゆ；w] the conditional energy functional. 
Here we邸 sertthe following principle. 
Principle I (variational principle). The true physical state of the quan-
tum system is realized邸 astate such that the energy expectation value of the 
quantum system takes its stationary value under some conditions. 
From this principle, we can choose the true£2-density for each quantum 
system. So that we consider the following problem. 
Problem 1. Find out the£2-densityゅforwhich conditional energy ex-
pectation value J[ゆ；w] takes its stationary value under the condition that 

/1ゆ(x)l2dx= l. 
4. Mathematical analysis 

Solving the problem 1 in chapter 3 under the condition that w(p) = w is 
fixed by the way similar to lto-Kayama-Kamoshita [8], we have the Schrodinger 
equation 

(―竺王は 2 2 
2m dx2 2 

mw X)ゆ(x)=砂 (x)
as the Euler equation. Here e is the Lagrange's unknown constant. Namely, 
the functionゆwhichis the solution of the problem is obtained as a solution of 
the above Schrodinger equation. As solutions of the above eigenvalue problem, 
we have the eigenfunctionsむ(x)corresponding to the eigenvalues en for n = 
0, 1, 2, ・・・．

Namely we have 

en= (→）加，
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叫(x)= 土言凡（長x)·exp[-½い］，

Here we put 

Then we have 

(n=0,1,2, ・・・）．

2 dn 
Hn(x) = (-l)nex・ — e—"'2. 

dxn 

狐；w] = (n+~) 加， (n= 0, 1, 2, ・・・）．
Let S(Rりbethe space of all rapidly decreasing C00-functions on R1. Then 
for the system of eigenfunctions {如｝孟0,we have the following. (see Kuroda 
[10], Chapter 4). 
Theorem 1. The system of eigenfunctions {如｝孟。 isa complete or-
thonormal system in S(Rり．
By virtue of theorem 1, for anyゆES(Rり， thereexists only one se-
quence { cn}~=O of complex numbers such that we can expandゆ(x)asゆ(x)= 

f Cn"Pn(x). Here this series converges also in the space L2(Rり．
n=O 
If the true physical state of the total quantum system f2 is determined by 
some£2-densityゆ(x)at the initial time point, then we can expandゆ(x)by 
using {如｝孟0as above. Then we have the conditional energy expectation 
value 00 00 

江叫2 1 
珈；w]=~lc乎J[如；w] = n=O (n + 2)加．

00 
Further, since the functionゆ(x)satisfies the normalization condition J Iゆ(x)l2

-00 
dx = 1, we have 

00 

L le乎=1. 
n=O 

Then the sequence { Cn}品。 isa rapidly decreasing sequence. (see Kuroda [10], 
p.81). Here, using the experimental facts, we assume 

加加
le乎=(1-exp [-戸;])(exp[―戸;])n,(n=0,1,2,・・・）．

Here T is the absolute temperature and知 isthe Boltzmann constant. There-
fore we have the conditional energy expectation value 

00 

J[如；wJ=Z:lc才J恥；w] 
n=O 
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= (1 -exp [刷）加名（い） (exp [一合])n
1 加

=—加＋
2 exp [缶］ー 1

The£2-densityゆ(x)at the initial time point can be expanded as follows: 

如）＝シ昌贔亨Hn m 
n=O 

(~wx)•exp [—昇ふ2]
Here we follow the method of separation of variables in the reverse. At first we 
consider the function 

如(x,t) =疇）exp [-i争］•

Then we differentiate with respect to the time variable t and we have 

如 (x,t) ,£n 
in at =£ ふ (x)exp [-i-y;t] . 

Here we put 

H=  
炉 d2 m 2 2 ---+-w X.  
2md丑 2

Then we have 
H如(x)= Cn加(x),(n = 0, 1, 2, • • ・）．

Thereby we have 

in8誓 t)= H叫(x)-exp[令］
=H如(x,t). 

Therefore, considering the function 

00 

如，t)= LCふ (x,t), 
n=O 

we have 

in 
卯 (x,t) 

at 
Hゆ(x,t). 

This is the Schrodinger equation of the time evolution of the total quantum 
system n. This shows that this quantum system satisfies the axiom III in 
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chapter 1. Therefore we have the energy expectation value of the total quantum 
system n: 

万=E [~p(p)2 + ½mw(p)2x(p)2] 

= Joo J[ゆ；w]D(w)血

゜~f {托+exp [;1 _,} D(w)血
＝と加+Joo 加
2 o exp [ f':r] -1 

D(w)心

Here w is the mean of angular frequency: 

00 

w = j wD(w)dw. 
゜For considering the specific heat of the solid, we should evaluate the derivative 

d万
． 
dT 

屈 d oo 
d'f =石f 加

D(w)心
o exp [合］ー 1

The density D(w) of angular frequency should be determined for each solid 
concretely. 

5. Consideration and conclusion 

On the true physical system, the quantum system n = fi(B, P) of 1-
dimensional harmonic oscillators is decomposed into subsystems as follows: 

n=LJ飢w),
w 

糾w)= {p E fl;w(p) = w}. 

Then we have the probability space {fl(w), B(w), P. り}for every w. Then, for ev-
ery angular frequency w, the subsystem fl(w) is decomposed into characteristic 
subsystems as follows: 

00 

叫） = I: 出 (w),(direct sum). 
n=O 
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Then, for every A E B(w), we have 

00 

凡(A)=L凡（出(w))Pi氏 (w)(A).
n=O 

Here Pi氏 (w)(A)denotes the conditional probability. Then, for n = 0, 1, 2, ・・・，

the probability space {糾(w),B(w)n糾 (w),Pi氏 (w)}is said to be then-th char-
acteristic quantum system. 

Here we assume that, for n = 0, 1, 2, ・・・，

Pw(凡(w))= le記 =(1-exp[一占])(exp [—占])n 
holds. 

Then, for AC  R1 and BC  R1, we have 

00 00 

ど几（凡(w))= I: 1c記=1, 
n=O n=O 

枷叫{pE糾 (w);x(p)EA})= J出 (x)l2dx,
A 

p氏 (w)({pE出 (w);p(p)EB})= J心(p)l2dp.
B 

Therefore, for every w, the conditional energy expectation value of the charac-
teristic quantum system糾 (w)is 

E氏 (w)[~p(p)2 +~mw(p)2x(p)汽 w(p) = w] 

=!{羞翌□mw2x叶叫(x)l2}心
= J[叫；w]=(n+~) 加．

Then we have 

E [~p(p)2 +½mw(p)2x(p)叫 w(p) = w] 
00 

＝戸（出(w))Enい [~p(p)2 +½mw(p)2x(p)叫 w(p) = w 
n=O 

1 加
=—加＋
2 exp [缶］ー 1

］ 
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Therefore we have the energy expectation value万ofthe total quantum system 
f!: 

Here we put 

万=E忙
2m 
p(p)2 
1 
+ 2mw(p)2x(p)2] 

= j"°J[ゆ；w]D(w)血
゜=~ 加+j"° 加
2 
o exp [缶］ー 1

D(w)心

00 

w = j wD(w)dw. 
゜In the monatomic solid, each atom has 3 degree of freedom as a harmonic 

oscillation, so that if we consider the molar heat C of the considered monatomic 
solid, we have 

C=3N 
d万
． 
dT 

Here N is the Avogadro's number. 
Here we consider the Debye model of the specific heat of the rnonatorn1c 
solid. So that we put 

D(w)~{¾ 足 ，(wくゆ），

0 ,(w >叩）．

Hereゅ denotesthe Debye frequency. 
Then we have the molar heat C邸 follows:

C=3N 
屈

dT 

＝界rexp[:;;]-1心．
＝竺_!!__Jw D w4 exp [缶］
wもkBT2 ([加J r 
゜exp石T ―1

血

9N T 3 {加叫／｛知T} 4 z 
k4 Xe  

＝写B(サ1 (ex -1)2dx 

=9NkBは）31。胚/T轟 dx.
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Here we put 

0v 
加 D
＝．  
kB 

We call妬 tobe the Debye temperature. This gives the new meaning of the 
specific heat for the Debye model of a solid. 
The Debye model shows the good coincidence between the theoretical result 
and the experimental result. The Debye model gives a very good model of the 
true physical phenomena. 
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