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Abstract

We propose a computation method to obtain bifurcation sets of periodic solu-

tions in non-autonomous systems with discontinuous properties. If the system

has discontinuity for the states and/or the vector field, conventional methods

cannot be applied. We have developed a method for autonomous systems with

discontinuity by taking the Poincaré mapping on the switching point in the pre-

ceded study, however, this idea does not work well for some non-autonomous

systems with discontinuity. We overcome this difficulty by extending the system

to an autonomous system. As a result, bifurcation sets of periodic solutions are

solved accurately with a shooting method. We show two numerical examples

and demonstrate the corresponding laboratory experiment.
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1. Introduction

To analyze stability or bifurcations for a periodic solution of an ordinary dif-

ferential equation (ODE) with smooth nonlinear characteristics, a bunch of com-

putational packages or algorithms are available[1][2][3]. Basically these methods

convert the periodic motion into a fixed point problem by taking Poincaré map

and solve it by applying an appropriate shooting method.

On the other hand, if the system contains non-smooth properties, some spe-

cial treatments should be considered since continuousness of the map for the

given ODE is lost [4][5][6], Fortunately some non-smooth systems can be ana-

lyzed by putting an approximated smooth function into the ODE. Otherwise,

defining a composite Poincaré map with multiple sections attached to break

points is required[7]. How to construct the differentiable Poincaré map whose

characteristic equation results correct multipliers is a key point of these methods.

Previous study[8] showed bifurcation analysis of behaviors on the stepping motor

which has an autonomous dynamical system and has discontinuity on its vector

field. Another one[9] showed global bifurcation analysis of such systems. How-

ever, as far as we know, there are no bifurcation analysis for non-autonomous

systems with discontinuity, thus we focus on these systems. In fact, if we apply

Kousaka’s method which is for autonomous systems to these non-autonomous

systems, the shooting method converges slowly and leaves some errors. Thereby

tracing bifurcation sets sometimes fails because of accumulation of these errors.

We intuitively guess that some special treatment for adding a forcing term in

evaluation of the Jacobian matrix.

At first, we tried applying previously mentioned method[7] simply to the

forced Izhikevich neuron model[10], which is a non-autonomous system with

discontinuity, but then we obtained the differentiable Poincaré map with some

errors. The error could not be ignored to analyze bifurcation structure of the

system.

In this paper, we investigate a cause of the errors and propose a universal

algorithm for solving bifurcation problems of nonlinear non-autonomous hybrid
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systems. The remaining contents are organized as follows; Section 2 describes

the problem formulation, Section 3 investigates what is a cause of the errors

with numerical experiments and propose our idea to solve it. Section 4 devotes

to show validation of our method with two examples, i.e., we discuss agreement

among computed bifurcation diagrams, numerical solutions, and laboratory ex-

periments of each system. Section 5 concludes our study.

2. Numerical analysis of nonlinear non-autonomous system with dis-

continuous characteristic

As proposed on the previous study[11], when we consider systems with dis-

continuous characteristics, we often define the Poincaré section with the condi-

tion of discontinuity. However on smooth non-autonomous systems, we often

define the Poincaré section with the time because periodic solutions have a pe-

riodicity synchronized with the frequency of the external force. Thus on this

paper we define the Poincaré section of the systems with the time and try to

analyze it by previously mentioned method.

Similarly to the previous study[12], let us consider an n-dimensional non-

autonomous system with m-tuple differential equations described by

x = (x1 . . . xn)
⊤ ∈ Rn, (1)

dx

dt
= fi (t,x) , i = 0, · · · ,m− 1, (2)

where t ∈ S1 is the adjusted time with S1 = {t ∈ R mod τ}, τ ∈ R, which is

often 2π/ω, is a parameter for an initial section Π0, x ∈ Rn is the state and

fi : R
n → Rn is a C∞ class function.

Assume that there is a periodic solution for Eq. (2). When we suppose that

Πi is a traversal section to the solution orbit and put x0 = x(0) ∈ Π0, then the

solution of Eq. (2) is given by

x(t) = φ(t,x0). (3)
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Moreover, each solution following fi is given by φi(t,xi, ti), where ti is the

starting time of the solution. Now we provide Πi with threshold values as

follows:

Πi =
{
t ∈ S1,x ∈ Rn | qi(t,x, λi) = 0

}
, (4)

where qi is a differentiable scalar function and λi ∈ R is a unique parameter

that defines the position of Πi. In addition, on the non-autonomous system,

Π0 =
{
t ∈ S1,x ∈ Rn | q0(t,x, τ) = t = 0

}
, (5)

When an orbit governed by fi reaches the section Πi+1, the governing function

is changed to fi+1. If the orbit passing through several sections reaches Π0

again, then m sub maps are defined as follows:

T0 : Π0 → Π1

x0 7→ x1 = φ0 (t1,x0, t0 = 0)

T1 : Π1 → Π2

x1 7→ x2 = φ1 (t2,x1, t1)
...

Tm−1 : Πm−1 → Π0

xm−1 7→ xm = φm−1 (tm,xm−1, tm−1) .

(6)

From Eq. (6), the Poincaré map T is given by the following composite map:

T (x(k), τ, λ1, . . . , λm−1) = Tm−1 ◦ · · · ◦ T1 ◦ T0. (7)

Hence

x(k + 1) = T (x(k), τ, λ1, . . . , λm−1). (8)

When the orbit starting from x0 ∈ Π0 returns x0 itself, this orbit forms a

periodic orbit and the corresponding fixed point of T is written as follows:

x0 = T (x0, τ, λ1, . . . , λm−1). (9)
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The characteristic equation is given by

χ(µ) = det

(
∂T (x0)

∂x0
− µI

)
= 0, (10)

where µ is a multiplier of ∂T (x0)/∂x0. When the multiplier satisfies |µ| = 1,

solution attractors of the system occurs bifurcation phenomena. In other words,

µ can be given as |µ| = 1 to obtain a bifurcation parameter set.

3. Problem and solution idea

3.1. Problem on numerical analysis

Here we found a problem on numerical analysis previously mentioned. In

common for the systems with discontinuous characteristics, we could use com-

position of maps for ∂T/∂x0 as:

∂T

∂x0
=

m−1∏
i=0

∂Tm−1−i

∂xm−1−i

∣∣∣∣tm−i

tm−1−i

. (11)

However on numerical experiment, right hand of Eq. (11) is not equal to its left

hand of it. Now we confirm this with an example of 1-periodic orbit observed

in forced Izhikevich neuron model introduced in Sec.4.1, see Fig. 1.

By using numerical differentiation, we can obtain ∂Ti/∂xi roughly:

∂T0

∂x0
=

 0.00000 0.00000

−0.05423 0.70627

 , (12)

∂T1

∂x1
=

 0.00000 0.00000

1.00000 1.00000

 , (13)

∂T2

∂x2
=

 −0.99281 0.36780

0.24401 −0.09478

 , (14)

and for this example, we can regard m = 3 and then Eq. (11) is expressed by

∂T

∂x0
=

∂T2

∂x2
· ∂T1

∂x1
· ∂T0

∂x0
. (15)
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Figure 1: A phase portrait of 1-periodic orbit observed in forced Izhikevich neuron model.

Hence the right hand of Eq. (15) is calculated as

∂T2

∂x2
· ∂T1

∂x1
· ∂T0

∂x0
=

 −0.01994 0.25977

0.00514 −0.06694

 . (16)

However the characteristic equation according to Eq. (16) does not have correct

multipliers.

To investigate a reason of this problem, we focus on the relation between

the map T and the time t, and between the time t and the initial value x0

on non-autonomous nonlinear discontinuous systems. On autonomous systems

with discontinuous characteristics, ∂T/∂x0 = (∂T1/∂x1) · (∂T0/∂x0) is satisfied

because the map T1 is assumed to depend only on the initial value x1 and thus

the map has been defined as T1(x1) = x2. In fact in autonomous systems, a

solution orbit is not invariant for the starting time because vector fields of the

system does not depend on the starting time. This is because the ODE of such

system dose not include the time term explicitly. However on non-autonomous
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systems, the map T1 also depends on the starting time t1 as shown in (6) and

then the map is defined as T1(t1,x1) = x2. The reason is that solution orbits of

the system are varied with the starting time because ODEs of non-autonomous

systems include the time term explicitly and vector fields spanned by the system

depend on the time.

Figure 2: A conceptual figure describing how ∆x0 affects the states and the collision time on
non-autonomous systems with interruptions.

On Fig. 2, ∆x0 is an infinitesimal difference of x0, ∆x1 and ∆t1 on Π1 is

differences of x1 and t1 caused by ∆x0 and ∆x2 on Π0(t = t2) is a difference of

x2 caused by ∆x1 and ∆t1. Hence from Fig. 2, we can observe the infinitesimal

difference of x0 affects x2 via affecting t1 and x1. Consequently the correct

Jacobian J is actually developed as

J =
∂T

∂x0
=

∂T1

∂t1
· ∂t1
∂x0

+
∂T1

∂x1
· ∂T0

∂x0
. (17)

As is previously mentioned in Eq. (6) that T1 depends on t1 in non-autonomous
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systems and therefore ∂T1/∂t1 ̸= 0. Moreover t1 that is the starting time of

φ1 depends on x0 if Π1 is independent of the time t and then ∂T1/∂t1 ̸= 0.

Above all, Eq. (17) is not the same as Eq. (15) and therefore it is required to

obtain ∂T1/∂t1 and ∂t1/∂x0 to get the Jacobian J . Actually from ∂T2/∂t2 and

∂t2/∂x0 that is calculated by numerical differentiation,

∂T2

∂t2
=

 3.06086

−0.75304

 ,
∂t2
∂x0

=
(
−0.18123 0.16996

)
,

∂T1

∂t1
= 0, (18)

J =
∂T2

∂t2
· ∂t2
∂x0

+
∂T2

∂x2

·
(
∂T1

∂t1
· ∂t1
∂x0

+
∂T1

∂x1

· ∂T0

∂x0

)

=

 3.06086

−0.75304

 · ( −0.18123 0.16996
)

+

 −0.99281 0.36780

0.24401 −0.09478

 ·
0+

 0 0

1 1


·

 0.00000 0.00000

−0.05423 0.70627


=

 −0.57469 0.78001

0.14162 −0.19493

 . (19)

Here the characteristic equation according to Eq. (19) has correct multipliers.

For m-tuple systems, it is derived as follows:

J =
∂T (x0)

∂x0

=
∂

∂x0

(
m−1∏
i=0

Tm−1−i

)

=
∂

∂x0

(
Tm−1 (tm−1,xm−1) ◦

m−1∏
i=1

Tm−1−i

)

=
∂Tm−1

∂tm−1

∂tm−1

∂x0

+
∂Tm−1

∂xm−1

∂

∂x0

(
m−1∏
i=1

Tm−1−i

)
. (20)

Thus for analysis of non-autonomous systems with interruptions, it is nec-
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essary to consider ∂Tm−1/∂tm−1 and ∂tm−1/∂xm−1.

3.2. An idea to solve the problem

To obtain ∂Ti/∂ti and ∂ti/∂x0, we regarded the time ti as the state variable.

Specifically let us define the system by

y = (x0 . . . xn−1, t)
⊤ ∈ Rn × S1, (21)

dy

dt
=

 fi(t,x)

1

 = gi(y), i = 0, · · · ,m− 1. (22)

At this time, the system g(y) is the same as f(t,x). Putting the initial point

y0 = y(0) ∈ Π′
0 and the solution orbit y(t) = Φ(y0, t) and yi(t) = Φi(t,yi),

each sub map T ′
i is defined as follows:

T ′
0 : Π′

0 → Π′
1

y0 7→ y1 = Φ0 (t1,y0)

T ′
1 : Π′

1 → Π′
2

y1 7→ y2 = Φ1 (t2,y1)
...

T ′
m−1 : Π′

m−1 → Π′
0

ym−1 7→ ym = Φm−1 (tm,ym−1) .

(23)

Assume that x(k) ∈ Π ⊂ Rn is a location on local coordinates, then there is

the projection satisfying p(y(k)) = x(k). Let the composite map of T ′
i be the

9



solution starting in p−1(x(0)) = y(0) ∈ Π′
0. From Eq. (5),

p−1(x) = y = (x0 . . . xn−1, 0)
⊤ (24)

p(y) = x = (x0 . . . xn−1)
⊤ (25)

∂p−1

∂x
=



1 0 · · · 0

0 1 · · · 0
...

. . .
...

0 0 · · · 1

0 0 · · · 0


,

∂p

∂y
=


1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 . (26)

From Eq. (23), the Poincaré map T is given by

T (x(k), τ, λ1, . . . , λm−1) = p ◦ T ′
m−1 ◦ · · · ◦ T ′

1 ◦ T ′
0 ◦ p−1. (27)

From Eq. (23), each map T ′
i only depends on the state y0 because the state y0

includes the time t. Consequently, the Jacobian matrix of the Poincaré map is

given by

∂T (x0)

∂x0

=
∂p

∂y

(
m−1∏
i=0

∂T ′
m−1−i

∂ym−1−i

)
∂p−1

∂x0
. (28)

Since ∂T ′
i/∂yi is obtained similarly to ∂Ti/∂xi, derivative of the Poincaré map

T with respect to x0 is calculated appropriately. In fact, the infinite product
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part on Eq. (28) is developed as

∂T ′(y0)

∂y0

=
m−1∏
i=0

∂T ′
m−1−i

∂ym−1−i

=
∂T ′

m−1

∂ym−1

· ∂

∂y0

(
m−1∏
i=1

T ′
m−1−i

)

=


∂Tm−1

∂xm−1

∂Tm−1

∂tm−1
∂tm

∂xm−1

∂tm
∂tm−1



·


∂

∂x0

(
m−1∏
i=1

Tm−1−i

)
∂

∂t0

(
m−1∏
i=1

Tm−1−i

)
∂tm−1

∂x0

∂tm−1

∂t0



=


∂Tm−1

∂xm−1

∂

∂x0

(
m−1∏
i=1

Tm−1−i

)
+

∂Tm−1

∂tm−1

∂tm−1

∂x0

∂tm
∂xm−1

∂

∂x0

(
m−1∏
i=1

Tm−1−i

)
+

∂tm
∂tm−1

∂tm−1

∂x0

∂Tm−1

∂xm−1

∂

∂t0

(
m−1∏
i=1

Tm−1−i

)
+

∂Tm−1

∂tm−1

∂tm−1

∂t0

∂tm
∂xm−1

∂

∂t0

(
m−1∏
i=1

Tm−1−i

)
+

∂tm
∂tm−1

∂tm−1

∂t0

 .

(29)

This result shows ∂T/∂x0 on Eq. (28) is the same as ∂T (x0)/∂x0 on Eq. (20).

Therefore, the correct Jacobian is given by simple calculation process shown at

Eq. (28).

4. Examples

4.1. Forced Izhikevich model

Let us consider the Izhikevich neuron model[10]. As is well known that

this model is two dimensional and behaves chaotically in certain parameter

setting[11] and another research[13] shows bifurcation analysis of two coupled

Izhikevich neuron models. Also the model has discontinuous characteristics on
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the state space. By adding an external force, the model becomes nonlinear non-

autonomous system with discontinuous characteristics. Equations (30), (31) are

given as follows:

u̇(t) =

 0.04u2
1 + 5u1 + 140− u2 + I0 + I cosωIt

a(bu1 − u2)

 , (30)

if u1 = λ1, then u1 ← c, u2 ← u2 + d, (31)

where u = (u1, u2)
⊤ is the state, and I0, I, ωI, a, b, c, d and λ1 are parameters.

Equation (31) shows the jumping dynamics, and λ1 defines the threshold values

of the jumping.

We implemented the method shown in Sect. 3.2. Then we could observe

the stability of fixed point and solve bifurcation problems. Figure 3 shows the

bifurcation diagram in the ωI -I plane.

Let us define each line as follows :

1. Ip: Period doubling bifurcations for p-periodic orbits.

2. Gp: Tangent bifurcations for p-periodic orbits.

3. NSp: Neimark-Sacker bifurcations for p-periodic orbits.

In addition, the shaded area in Fig. 3 denotes period-doubling cascades[14].

The cascades continue constantly and terminated by each tangent bifurcation

curve G1. From the top side of Fig. 4, we confirm the period-adding cascade

and thus we obtain the bifurcation diagram exactly. Also, we obtain the max-

imum Lyapunov exponent(MLE) values from the Jacobian of Poincaré map,

see bottom side of Fig. 4. Above all, we could observe some fixed or chaotic

attractors shown in Fig. 6.
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Figure 3: ωI - I plane bifurcation diagram with I0 = 0, a = 0.2, b = 0.2, c = −50, d = 2, λ1 =
30.
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Figure 6: Attractors on I = 10
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4.2. Forced Alpazur oscillator

As the second example, we choose the Alpazur oscillator[15] and attach an

alternative voltage source under a coil in series as Fig.7.

Figure 7: Forced Alpazur oscillator

The normalized circuit equation is given as follows:

dv1
dt

= −kv1 − v2 + V̂0 + V̂ cos ω̂Vt

dv2
dt

=


v1 + (1− g1)v2 −

1

3
v32 +B1 if SW is on α

v1 + (1− g2)v2 −
1

3
v32 +B2 if SW is on β

, (32)

where, v1 = (v1, v2)
⊤ is the state, and k, g1, g2, B1, B2, V̂0, V̂ and ω̂V are param-

eters. Solution orbits of the model are switched at their boundaries

∂H =
{
(v1, v2) ∈ R2|v2 = λ2

}
∂B =

{
(v1, v2) ∈ R2|v2 = λ3

}
. (33)

Now we assume that λ3 > λ2. The behavior of the state is described as follows:

1. The flow starting from an arbitrary initial point moves within the half

plane H or B, defined by Eq. (32).

2. If the flow reaches the edge ∂H or ∂B, then switching occurs.
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Now we apply the method described in Sec. 3.2 to analyze bifurcation prob-

lems of this system. Figure 8 shows phase portraits of numerical solution orbits.

Red points are the Poincaré mapping. Figure 8 (a)–(c) demonstrates Neimark-

Sacker and period-doubling bifurcations of solutions whose trajectories touch

neither ∂H nor ∂B, and then are not appeared in the original Alpazur oscilla-

tor. Since the circuit shown in Fig. 7 is physically realized by adding an AC

source to the Alpazur oscillator. Figure 9 demonstrates laboratory experiments

according to Fig. 8 (d)–(f).

Figure 10 is a bifurcation diagram of Eq.(32) in the V̂ -B1 parameter plane.

In this diagram, period-doubling and Neimark-Sacker bifurcations are obtained.

With parameter variation of V̂ from P2 to P3, the solution orbit changes its

response from the quasi-periodic orbit shown in Fig. 8 (a) to 1-periodic orbit

shown in Fig. 8 (b) by crossing NS1 curve. Similarly a 2-periodic orbit at

P4 shown in Fig. 8 (c) is given be crossing I1. Now we should note that a

period-doubling bifurcation corresponding to I1 between P5 to P6 is computed

concretely. In addition to this fact, corresponding numerical and experimental

results of Fig. 8 (d),(e), and 9 (a),(b), we validate that our numerical method

for switched periodic orbits works well. Also we observe chaotic attractors both

numerically and experimentally as shown in Fig. 8 (f) and 9 (c).
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Figure 8: Phase portraits by numerical computation with k = 0.1, g1 = 0.2, g2 = 2.0, B2 =
5, λ2 = −1.0, λ3 = −0.1, V̂0 = 0, ω̂V = 1.26, (a) P2 : V̂ = 0.5, B1 = 6, (b) P3 : V̂ = 0.65, B1 =

6, (c) P4 : V̂ = 1, B1 = 8, (d) P5 : V̂ = 2.5, B1 = 0.1, (e) P6 : V̂ = 2.5, B1 = −0.1 and (f)

P7 : V̂ = 0.5, B1 = 6.

(a) (b) (c)

Figure 9: Laboratory experiments with L = 50[mH], r = 113[Ω], C = 0.09[µF], R0 =
0[Ω], R1 = 811.7[Ω], R2 = 212.9[Ω], E2 = 6[V], V0 = 0[Ω], ωV = 1.88 × 103[rad/s]. (a)
V = 9[V], E1 = −3.0[V]. (b) V = 9[V], E1 = −4.0[V]. (i : 24.0mA/div, v : 2.0V/div) (c)
V = 0.4[V], E1 = 0.1[V]. (i : 9.6mA/div, v : 2.0V/div)
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Figure 10: V̂ - B1 plane bifurcation diagram with k = 0.1, g1 = 0.2, g2 = 2.0, B2 = 5, λ2 =
−1.0, λ3 = −0.1, V̂0 = 0, ω̂V = 0.2
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5. Conclusion

We have proposed an analysis method for a bifurcation problem on the non-

linear non-autonomous system with discontinuous characteristics. The method

spuriously transforms the non-autonomous system to an autonomous system

by including the time t to the state. By transforming, we could consider the

effect of the starting time tm at the local section Πm on a non-autonomous

system and thus we could obtain the stability of the solution exactly. For an

application of the method, we analyzed the forced Izhikevich model which has

a discontinuous characteristic on the state space. We could obtain the bifur-

cation set exactly and found that the model has three types of bifurcations;

period-doubling, tangent and Neimark-Sacker. In addition, the system shows

some period adding cascades and chaotic attractor. For another application,

we proposed the model for forced Alpazur oscillator which has discontinuous

characteristics on the space of time derivative of the state Also we could obtain

the bifurcation diagram exactly and found there are two types of local bifurca-

tions; period-doubling and Neimark-Sacker bifurcation, and global bifurcation;

grazing bifurcation. Moreover we confirmed the results with labo experiments.

From two examples, we found the method can be applied to any pattern

which has discontinuous characteristics.
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