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Highlights 

 

· N-(3-oxododecanoyl)-L-homoserine-lactone (ODHL) is a quorum sensing molecule. 

· ODHL induced a ‘bell-shaped’ change in the glutathione content of rat thymocytes. 

· ODHL concentration-dependently elevated intracellular Zn2+ levels. 

· ODHL increased cellular O2
- content in a concentration-dependent manner. 

· ODHL may exhibit diverse actions on host cells. 

 



 

 -3- 

Abstract 

 

     Cellular actions of N-(3-oxododecanoyl)-L-homoserine-lactone (ODHL), a quorum 

sensing molecule of bacteria, were studied on rat thymocytes using a flow cytometer with 

appropriate fluorescent dyes to elucidate the effects of ODHL on host cells. A bell-shaped 

concentration-response relation was observed in the ODHL-induced changes in cellular 

glutathione content ([GSH]i). ODHL concentration-dependently increased intracellular Zn2+ 

levels ([Zn2+]i) and cellular O2
- content ([O2

-]i). The bell-shaped relation induced by ODHL can 

be explained as follows: a low concentration of ODHL is expected to induce moderate oxidative 

stress that intracellularly releases Zn2+ by converting thiols to disulfides. A slight elevation of 

[Zn2+]i may increase the [GSH]i. On the other hand, it is likely that a high concentration of 

ODHL causes severe oxidative stress that further causes both the decrease in [GSH]i and the 

increase in [Zn2+]i. Excessive increase in [Zn2+]i may augment oxidative stress that further 

decreases the [GSH]i. Other notable actions induced by ODHL included the elevation of [Zn2+]i 

by Zn2+ influx and the increase in [GSH]i under Zn2+-free conditions. Therefore, it is suggested 

that ODHL elicits diverse actions on host cells. 
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1. Introduction 

 

     Quorum sensing (QS) molecules are signal mediators for cell-to-cell communication in 

bacteria to monitor cell population density (Bassler, 1999; Williams, 2007). QS allows bacteria 

to synchronize biological events in a group. Since QS molecules are secreted in considerable 

amounts during bacterial growth, several types of host cells respond to these molecules (Holm 

and Vikström, 2014). N-(3-oxododecanoyl)-L-homoserine-lactone (ODHL), a QS molecule, 

disrupts the barrier of human epithelial colorectal adenocarcinoma Caco-2 cells (Vikström et al., 

2006; Eum et al., 2014) and enters membranes of primary murine T cells (Ritchie et al., 2007); 

it also causes direct cytotoxicity in human pancreatic carcinoma cells (Kumar et al., 2014). 

Furthermore, ODHL treatment increases intracellular Ca2+ release in both P815 mastocytoma 

and HMC-1 human mast cells (Li et al., 2009). In case of lymphocytes, ODHL inhibits cell 

differentiation (Ritchie et al., 2005) and induces apoptosis (Tateda et al., 2003). Thus, ODHL is 

expected to exert diverse actions on mammalian cells. It is important to examine the cellular 

actions of ODHL on host cells. In this study, using a flow cytometer and rat thymic 

lymphocytes as a cell model, we first confirmed the threshold concentration of ODHL to induce 

cell death. Thereafter, the cellular actions of ODHL at sublethal concentrations were examined. 

We found that ODHL induced a bell-shaped change in cellular GSH content ([GSH]i) that was 

associated with changes in cellular O2
- content ([O2

-]i) and intracellular Zn2+ concentration 

([Zn2+ ]i), and also discussed the underlying mechanism. 

 

2. Materials and methods 

 

2.1. Chemicals 
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     ODHL was purchased from Sigma-Aldrich Corporation (St. Louis, Missouri, USA). 

Fluorescent probes used to measure cellular parameters are listed in Table 1. Other chemical 

reagents were obtained from Wako Pure Chemicals (Osaka, Japan).  

(Table 1 near here) 

 

2.2. Cell preparation 

     The Animal Experiment Committee of Tokushima University approved this study using 

experimental animals (T29-54). Cell suspension was prepared as follows: thymus glands were 

dissected from 14 ether-anesthetized male Wistar rats (8–12-week-old). Razor-sliced glands 

were triturated in Tyrode's solution buffered with 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid to dissociate single cells (Chikahisa et al., 1996). The solution 

containing single cells was passed through a 50 µm diameter mesh, following which the cell 

suspension was used for the experiments. 

 

2.3. Experimental procedures and cytometric measurements 

     All experiments using the cell suspension were carried out at a temperature of 36–37ºC. 

ODHL was dissolved in dimethyl sulfoxide (DMSO) and the ODHL solution (3–300 mM) was 

then added to the suspension to achieve final concentrations (3–300 µM) of ODHL.  

     Fluorescence analysis was done using flow cytometry (CytoACE-150; JASCO, Tokyo, 

Japan) and JASCO software (Version 3.06). Cell lethality was assessed by adding 5 µM 

propidium iodide (PI). Exposed phosphatidylserine (PS) on the outer surface of membrane was 

detected using FITC fluorescence after treating the cells with 10 µL/mL of annexin V- FITC 

and 5 µM PI for 30 min (Koopman et al., 1994). 5-CMF-DA was employed to estimate changes 

in [GSH]i (Chikahisa et al., 1996). The cells were treated with 500 nM 5-CMF-DA for 30 min 

before the measurement of 5-CMF fluorescence. FluoZin-3-AM was used to monitor changes in 

[Zn2+]i (Gee et al., 2002). The cells were treated with 1 µM FluoZin-3-AM for 1 h prior to the 
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FluoZin-3 fluorescence measurement. The [O2
-]i was estimated by BES-So-AM (Maeda et al., 

2005). The cells were treated with 5 µM BES-SO-AM for 1 h before measuring BES-SO 

fluorescence. Excitation and emission wavelengths for the fluorescent probes are also listed in 

Table 1. 

 

2.4. Statistical analysis 

     Numerical results were statistically analyzed using Tukey's multivariate analysis. P-

values of 0.05 or less were considered significant. Experimental values were described as mean 

± standard deviation of 4–6 samples. Each experiment was performed twice to validate the 

results. 

 

3. Results 

 

3.1. Threshold concentration of ODHL to induce cell death 

     The cells were treated with 30–300 µM ODHL for 3 h. ODHL at 30 µM did not change 

the population of cells with PI fluorescence, indicating that 30 µM ODHL did not alter cell 

viability. The population of cells exhibiting PI fluorescence (areas P and AP, dead cells) was 

increased by 300 µM ODHL (Fig. 1A). ODHL at 300 µM also increased the population of cells 

with FITC fluorescence and without PI fluorescence (area A), indicating that ODHL increased 

the population of living cells with PS-exposed membranes. In case of 100 µM ODHL the dead 

cell population was slightly increased. Therefore, the threshold ODHL concentration to induce 

cell death was > 30 µM and < 100 µM under present experimental conditions. Results are 

summarized in Fig. 1B. 

(Figure 1 near here) 

 

3.2. ODHL-induced change in [GSH]i 
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     Cell treatment with 30 µM ODHL for 3 h shifted the fluorescence histogram of 5-CMF to 

a region of higher intensity while it was not the case for 300 µM ODHL (Fig. 2A). Treatment 

with 300 µM ODHL for 3 h did not cause an increase in fluorescence intensity. A bell-shaped 

concentration-response relation was observed in the ODHL-induced changes in 5-CMF 

fluorescence (Fig. 2B). In a previous study (Kinazaki et al., 2011), the elevation of [Zn2+]i 

increased [GSH]i. Therefore, to determine whether Zn2+ contributed to the ODHL-induced 

increase in [GSH]i, the changes in 5-CMF fluorescence by 10–30 µM ODHL treatment were 

examined in the presence of N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a 

chelator of intracellular Zn2+. TPEN at 10 µM did not affect the control fluorescence level. 

However, TPEN attenuated the ODHL-induced increase in intensity, suggesting the 

contribution of Zn2+ (Fig. 2C). 

(Figure 2 near here) 

 

3.3. ODHL-induced elevation of [Zn2+ ]i  

     The treatment of cells with 30–300 µM ODHL for 3 h shifted the fluorescence histogram 

of FluoZin-3 to a higher intensity region (Fig. 3A), suggesting the ODHL-induced elevation of 

[Zn2+]i . Treatment with ODHL at 10–300 µM for 3 h concentration-dependently increased the 

mean intensity of FluoZin-3 fluorescence (Fig. 3B), suggesting that ODHL at concentrations of 

10 µM or higher increased the of [Zn2+]i. To determine if extracellular Zn2+ contributed to the 

ODHL-induced increase in FluoZin-3 fluorescence, the action of ODHL was examined in the 

presence of diethylenetriamine-N,N,N',N",N"-pentaacetic acid (DTPA), a chelator of 

extracellular Zn2+. DTPA application reduced the control fluorescence of FluoZin-3, suggesting 

the contribution of extracellular Zn2+ to the [Zn2+]i. The FluoZin-3 fluorescence of the control, 

as well as ODHL-treated cells, was lower in DTPA, although 30–100 µM ODHL increased the 

fluorescence even in the presence of DTPA (Fig. 3C), suggesting that the ODHL action is partly 

independent from extracellular Zn2+. 
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(Figure 3 near here) 

 

3.4. ODHL-induced oxidative stress 

     The results presented in Fig. 3C suggest that ODHL increased oxidative stress, resulting 

in the release of intracellular Zn2+ from nonprotein thiols, leading to an increase in [Zn2+]i. 

Therefore, the [O2
-]i level was estimated using BES-SO in the ODHL-treated cells. Treatment 

with 30–100 µM ODHL for 3 h shifted the histogram of BES-SO fluorescence to a region of 

higher intensity (Fig. 4A). Thus, ODHL is expected to increase [O2
-]i , leading to an increase in 

oxidative stress. Results of the ODHL-induced increase in the mean intensity of BES-SO 

fluorescence are summarized in Fig. 4B. 

(Figure 4 near here) 

 

4. Discussion 

 

4.1. Mechanism of the ODHL-induced bell-shaped change in [GSH]i 

    The bell-shaped response of ODHL-induced change in [GSH]i can be explained by the 

oxidative stress induced by ODHL. At concentrations of 10–100 µM, ODHL at 10–100 µM 

significantly increased the [O2
-]i in a concentration-dependent manner (Fig. 4). A low 

concentration of ODHL is expected to induce moderate oxidative stress that induces an 

intracellular release of Zn2+ by converting thiols to disulfides (Maret, 1994). In rat thymic 

lymphocytes, the external application of micromolar concentrations of ZnCl2 concentration-

dependently increases both [Zn2+]i and [GSH]i , with a positive correlation (correlation 

coefficient, 0.99) (Kinazaki et al., 2011). Zinc increases the [GSH]i either by activating the de 

novo synthesis pathway of GSH or by increasing transcription of the catalytic subunit of 

glutamate-cysteine ligase, a GSH synthetase (Ha et al., 2006; Cortese et al., 2008). Therefore, 

the increase in [GSH]i by zinc may exceed the decrease in [GSH]i by oxidative stress. On the 
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other hand, a high concentration of ODHL elicits severe oxidative stress that causes a further 

decrease in [GSH]i. Excessive increase in [Zn2+]i augments oxidative stress (Kim et al., 1999; 

Matsui et al., 2010). Thus, the decrease in [GSH]i by oxidative stress may exceed the increase 

in [GSH]i by zinc. Consequently, ODHL induced a bell-shaped change in [GSH]i . 

 

4.2. Experimental implication 

     Numerous bacteria use QS molecules as signals for cell-to-cell communication to sense a 

cell mass (Waters and Bassler, 2005). In addition, QS molecules affect the host cells to 

minimize host defense mechanisms and establish infection (Costerton et al., 1999; Yi-Hu et al., 

2001). Therefore, it is not surprising that QS molecules exert adverse actions on host cells. The 

present study showed that ODHL at micromolar concentrations altered some cellular parameters 

in rat thymic lymphocytes. The change in [GSH]i is considered to be a secondary action of 

ODHL, as discussed above. The effects of ODHL on [Zn2+]i and [O2
-]i are important. ODHL 

increased the [Zn2+]i by intracellular Zn2+ release and Zn2+ influx (Fig. 3), in addition to [O2
-]i 

(Fig. 4). An excessive increase in [Zn2+]i and [O2
-]i causes cell injury and death (Kim et al., 

1999; Weiss et al, 2000; Ryter et al., 2007; Ott et al., 2007). Oxidative stress elevates [Zn2+]i , 

which in turn induces oxidative stress. Therefore, it is likely that Zn2+ and oxidative stress 

synergistically damage the cells. The minimum concentration of ODHL necessary to 

simultaneously increase the [Zn2+]i and [O2
-]i was 10 µM (Figs. 3 and 4). Although the 

information on the local levels of ODHL around bacterial biofilms is unavailable, micromolar 

concentrations of ODHL are expected to be cytotoxic in mammalian cells.  
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Figure legends 

 

Fig. 1. ODHL-induced changes in cell populations classified with annexin V-FITC and PI. (A) 

Fluorescence (PI fluorescence versus FITC fluorescence) of control cells (CONTROL) and 

ODHL-treated cells (ODHL 300 µM). Each panel consisted of 2500 cells. Area N: intact living 

cells, area A: annexin V-positive living cells exhibiting strong FITC fluorescence, and areas P + 

AP: dead cells exhibiting strong PI fluorescence. (B) ODHL-induced changes in the percentage 

of populations of respective areas (N, A, and P + PA). Column and bar indicate the mean and 

standard deviation of 4 samples, respectively. Asterisks (**) indicate significant difference (P < 

0.01) between the control cells and ODHL-treated cells. 

 

Figure 2. ODHL-induced changes in 5-CMF fluorescence as a parameter of [GSH]i. (A) 5-CMF 

fluorescence of ODHL-treated cells. Each histogram was constructed using 2500 cells. (B) 

Concentration-response of ODHL-induced changes as mean intensity of 5-CMF fluorescence. 

Column and bar indicate the mean and standard deviation of four samples. Asterisks (*, **) 

indicate significant difference (P < 0.05, 0.01) between control cells and ODHL-treated cells. 

(C) ODHL-induced increase in mean intensity of 5-CMF fluoresce in absence (open column) 

and presence (filled column) of TPEN. Column and bar indicate the mean and standard 

deviation of four samples. Symbol (##) indicates significant difference (P < 0.01) between the 

groups of cells in absence and presence of TPEN. Asterisks (*, **) indicate significant 

difference (P < 0.05, 0.01) between the control cells and cells treated with ODHL in presence of 

TPEN. 

 

Figure 3. ODHL-induced changes in FluoZin-3 fluorescence as a parameter of [Zn2+ ]i. (A) (A) 

Changes in the histogram of FluoZin-3 fluorescence by ODHL. Each histogram was constructed 

using 2500 cells. (B) Concentration-response relation of ODHL-induced changes in mean 
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intensity of FluoZin-3 fluorescence. Column and bar indicate the mean and standard deviation 

of four samples. Asterisks (*, **) indicate significant difference (P < 0.05, 0.01) between 

control cells and ODHL-treated cells. (C) ODHL-induced increase in mean intensity of 

FluoZin-3 fluorescence in the absence (open column) and presence (filled column) of DTPA. 

Column and bar indicate the mean and standard deviation of four samples. Symbol (##) 

indicates significant difference (P < 0.01) between the groups of cells in absence and presence 

of DTPA. Asterisks (*, **) indicate significant difference (P < 0.05, 0.01) between the control 

cells and cells treated with ODHL in presence of DTPA. 

 

Figure 4. ODHL-induced changes in BES-So fluorescence as a parameter of [O2
- ]i. (A) 

Changes in the histogram of BES-SO fluorescence by ODHL. Each histogram was constructed 

using 2500 cells. (B) Concentration-response relation of ODHL-induced changes in mean 

intensity of BES-SO fluorescence. Column and bar indicate the mean and standard deviation of 

four samples. Asterisks (*, **) indicate significant difference (P < 0.05, 0.01) between control 

cells and ODHL-treated cells. 
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Table 1. Fluorescent probes used in this study 

Excitation wavelength was 488 nm for all fluorescent probes.  

Fluorescent probes [Manufacturer] Emission Wavelength 

Propidium Iodide (PI) [Molecular Probes, Inc., Eugene, OR, USA] PI: 600 ± 20 nm 

Annexin V-FITC [Molecular Probes] FITC: 530 ± 20 nm 

5-Chloromethylfluorescein Diacetate (5-CMF-DA) [Molecular Probes] 5-CMF: 530 ± 20 nm 

FluoZin-3-AM [Molecular Probes] FluoZin-3: 530 ± 20 nm 

BES-SO-AM [Wako Pure Chemicals, Osaka, Japan] BES-SO: 530 ± 20 nm 
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Figure 4 
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