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Highlights 

 

• Hydroxyhydroquinone (HHQ) is known as a by-product of coffee bean roasting.  

• HHQ at sublethal levels increased intracellular Zn2+ concentration in rat thymocytes. 

• HHQ at higher levels decreased cellular glutathione content. 

• HHQ protected the cells against H2O2-induced oxidative stress. 

• HHQ exerts contrasting cellular actions related to redox status. 
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Abstract 

     Coffee contains hydroxyhydroquinone (HHQ). HHQ is one of by-products released 

during bean roasting. Therefore, it is important to elucidate the bioactivity of HHQ to predict its 

beneficial or adverse effects on humans. We studied zinc-dependent and independent actions of 

commercially-procured synthetic HHQ in rat thymocytes using flow cytometric techniques with 

propidium iodide, FluoZin-3-AM, 5-chloromethylfluorescein diacetate, and annexin V-FITC. 

HHQ at 1050 µM elevated intracellular Zn2+ levels by releasing intracellular Zn2+. HHQ at 10 

µM increased cellular thiol content in a Zinc-dependent manner. However, HHQ at 30–50 µM 

reduced cellular thiol content. Although the latter actions of HHQ (30–50 µM) were suggested 

to increase cell vulnerability to oxidative stress, HHQ at 0.3–100 µM significantly protected 

cells against oxidative stress induced by H2O2. The process of cell death induced by H2O2 was 

delayed by HHQ, although both H2O2 and HHQ increased the population of annexin V-positive 

living cells. However, HHQ at 10–30 µM promoted cell death induced by A23187, a calcium 

ionophore. HHQ at 10–30 µM exerted contrasting effects on cell death caused by oxidative 

stress and Ca2+ overload. Because HHQ is considered to possess diverse cellular actions, coffee 

with reduced amount of HHQ may be preferable to avoid potential adverse effects. 
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Introduction 

 

Hydroxyhydroquinone (HHQ) is a by-product of coffee bean roasting (Müller et al, 2006). A 

cup of coffee contains 0.1–1.7 mg of HHQ (Ochiai et al., 2008). Coffee is a popular beverage, 

and thus, a large amount of HHQ may be ingested per day. It is important to elucidate the 

biological actions of HHQ to predict its beneficial or adverse effects on humans. In our previous 

study (Kamae et al., 2017) using Fluo-3, a fluorescent indicator of intracellular Ca2+, HHQ 

increased intracellular Ca2+ concentration ([Ca2+]i) in rat thymocytes, potentially leading to cell 

death. We also found that the application of a chelator of intracellular Zn2+ further increased the 

intensity of Fluo-3 fluorescence in the presence of 50 µM HHQ, suggesting that Zn2+ interfered 

with Ca2+ binding to Fluo-3. In addition, 50 µM HHQ augmented FluoZin-3 fluorescence, an 

indicator of intracellular Zn2+ concentration ([Zn2+]i), indicating that [Zn2+]i was increased by 

HHQ. Since our previous study was conducted to examine the contribution of intracellular Ca2+ 

to the cytotoxicity of HHQ, basic information on the HHQ-induced elevation of [Zn2+]i, such as 

threshold concentration (concentration-response relation), mechanism of action, and 

toxicological (or pharmacological) implications, were totally lacking. Therefore, in this study, 

we revealed the Zinc-dependent and independent actions of HHQ because of following reasons. 

Zn2+ has many physiological roles as an intracellular signal (Haase and Rink, 2014; Hojyo and 

Fukada, 2016). Dyshomeostasis of [Zn2+]i is proposed to trigger pathological events (Park et al, 

2014; Yoo et al., 2016). Furthermore, zinc potentiated the cytotoxicity of some biocidal 

chemicals such as imidazole antifungals, isothiazolinone preservatives, and hydrogen peroxide 

under in vitro conditions (Matsui et al., 2008, 2010; Fukunaga et al., 2015; Saitoh et al., 2015). 

Therefore, we also examined the effects of HHQ on the increase in cell lethality respectively 

induced by oxidative stress and intracellular Ca2+ overload. 

     In this study, cellular actions of sublethal concentrations of HHQ were examined using 

flow cytometric techniques with appropriate fluorescent dyes in rat thymocytes. Thymus is most 
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active during neonatal and pre-adolescent periods and this organ begins to atrophy by early 

teens. Since many people are concerned about the adverse effects of chemical compounds on 

the health of their children, the results obtained from thymocytes scientifically draw interest of 

people. Furthermore, in technical aspects, the cells with intact membranes could be obtained 

because no enzymatic treatment was required to isolate individual cells. Several types of 

chemical and biological substances cause cell death in thymocytes (Corsini et al., 2013; Kuchler 

et al., 2014; Solti et al., 2015) and the process of cell death (apoptosis, necrosis, and autophagy) 

has been well studied (Klein et al., 2014; Poon et al., 2014; Shimizu et al, 2014). 

 

Materials and methods 

 

Chemical 

 

HHQ (99.9 % purity) used in this study was purchased from Tokyo Chemical Industry Co., Ltd. 

(Tokyo, Japan). Zn2+ chelators for extracellular and intracellular Zn2+ (Tab. 1) were supplied by 

Dojin Chemical Laboratory (Kumamoto, Japan). Fluorescent probes for examining membrane 

and cellular parameters (Tab. 1) were obtained from Invitrogen (Eugene, OR, USA). Other 

chemicals were obtained from Wako Pure Chemicals (Osaka, Japan) unless mentioned. 

(Table 1 near here) 

 

Animals and cell preparation 

 

This study (Registered No. 05279 and T29-52) was approved by the Tokushima University 

Committee for Animal Experiments (Tokushima, Japan). The cell suspension was prepared as 

previously reported (Matsui et al., 2010). In brief, thymus glands were obtained from rats that 

were anesthetized with ether. Slices of glandular tissue were gently triturated in cold Tyrode's 
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solution (2–4 °C, 150 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM glucose, pH 7.4 

adjusted by 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and an appropriate 

amount of NaOH) to dissociate single thymocytes. The solution containing dissociated cells was 

then passed through a mesh (56 µm in diameter) to prepare a cell suspension. It was noted that 

the cell suspension contained 216.9 ± 14.4 nM zinc that was derived from the cell preparation 

process (Sakanashi et al., 2009). The cell suspension was incubated at 36–37 °C for 1 h before 

any experimentation. 

 

Drug application 

 

Various concentrations of HHQ (0.3–100 mM in dimethyl sulfoxide) were added to the cell 

suspension (2 mL per test tube) for achieving final concentrations of 0.3-100 µM and thereafter 

the cells were incubated with HHQ at 36–37 °C for 1–3 h. The incubation time varied according 

to the experimental purpose. A sample from each cell suspension (100 µL) was analyzed by 

flow cytometry to estimate the HHQ-induced changes in cellular and membrane parameters. It 

took 10–15 s to acquire data from 2500 cells. Cell viability estimated from 2500 cells was quite 

similar to that estimated from 10000 cells. Therefore, 2500 cells were enough to examine 

cellular actions of HHQ. 

 

Fluorescence measurements 

 

Cellular and membrane parameters were measured using a flow cytometer equipped with an 

argon laser (CytoACE-150; JASCO, Tokyo, Japan) and fluorescent probes, as previously 

described (Matsui et al., 2008). The fluorescence was analyzed by JASCO operating system 

software (Version 3.06; JASCO, Tokyo, Japan). Under experimental conditions, no 

fluorescence from the reagents used was observed, except for the fluorescent probes. The 
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excitation wavelength for all fluorescent probes used in this study was 488 nm, while emissions 

wavelengths were 530 ± 20 nm for FluoZin-3 and 5-CMF, and 600 ± 20 nm for PI. To assess 

cell lethality, PI was added to the cell suspensions to a final concentration of 5 µM. Because PI 

stains dead cells, the measurement of PI fluorescence provides information on cell lethality. 

Fluorescence was measured using a flow cytometer 2 min after adding PI. FluoZin-3-AM was 

used to monitor changes in the intracellular Zn2+ levels ([Zn2+]i) (Gee et al., 2002). The cells 

were treated with 1 µM FluoZin-3-AM for 60 min prior to any fluorescence measurements. 

FluoZin-3 fluorescence was monitored from the cells without PI fluorescence. 5-CMF-DA was 

used to estimate the cellular content of glutathione ([GSH]i) in rat thymocytes (Chikahisa et al., 

1996). The 5-CMF fluorescence was measured 30 min after adding 1 µM 5-CMF-DA because it 

attains peak intensity within 30 min after application. Living cells that were not stained with PI 

were examined for 5-CMF fluorescence. Zn2+-free condition was prepared by adding Zn2+ 

chelator (DTPA or TPEN) to the cell suspension 10 min at least before the experiments. 

Because DTPA is not membrane-permeable, DTPA chelates extracellular Zn2+. Membrane-

permeable TPEN can chelate intracellular Zn2+. 

 

Statistical analysis and presentation 

 

Statistical analyses were done using ANOVA, with post-hoc Tukey's multivariate analysis. P-

values of 0.05 or less were considered statistically significant. In describing the results, values 

(columns and bars in figures) were expressed as the mean and the standard deviation (SD) of 4–

8 samples. Each experiment was repeated three times unless noted otherwise. 

 

Results 

 

HHQ-induced increase in [Zn2+]i 
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The treatment of cells with 10 µM and 30 µM HHQ for 1 h shifted FluoZin-3 fluorescence 

histogram in the direction of higher intensity (Fig. 1A). Thus, all cells responded to HHQ, 

resulting in augmented FluoZin-3 fluorescence. Dose-dependent increases in mean intensity of 

FluoZin-3 fluorescence were observed in the cells treated with 3–50 µM HHQ for 1 h (Fig. 1B). 

Augmentation of FluoZin-3 fluorescence by HHQ at 10 µM or more (up to 50 µM) was 

statistically significant. Thus, HHQ at 10 µM or more was found to significantly increase [Zn2+]i. 

 (Figure 1 near here) 

 

HHQ-induced release of intracellular Zn2+ 

 

Zn2+ chelators were used to investigate potential sources of Zn2+ for the HHQ-induced increase 

in [Zn2+]i. HHQ at 30 µM significantly augmented FluoZin-3 fluorescence even in the presence 

of 10 µM DTPA, that chelates extracellular Zn2+ (Fig. 2). Thus, it is likely that HHQ increased 

[Zn2+]i upon removal of external Zn2+. The increase in FluoZin-3 fluorescence in the presence of 

DTPA was approximately similar to that in its absence (Fig. 2), indicating little contribution by 

external Zn2+. The HHQ-induced increase in FluoZin-3 fluorescence was eliminated when 

intracellular Zn2+ was chelated with 10 µM TPEN (Fig. 2). Therefore, we hypothesize that HHQ 

increased [Zn2+]i independent of external Zn2+. Release of Zn2+ from cellular stores may be 

responsible for the HHQ-induced increase in [Zn2+]i. 

 (Figure 2 near here) 

 

HHQ-induced change in [GSH]i 

 

Decreased cellular nonprotein thiol content, primarily GSH, is one of indicators of oxidative 

stress. Furthermore, intracellular Zn2+ forms a complex with cellular thiols, and thiols convert 
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disulfide under oxidative stress, resulting in intracellular Zn2+ release. To study the effects of 

HHQ on [GSH]i, 5-CMF fluorescence was recorded from the cells treated with 10–50 µM HHQ. 

The treatment with 10 µM HHQ for 1 h augmented mean 5-CMF fluorescence intensity, while 

significant fluorescence attenuation was observed in the cases of 30–50 µM HHQ (Fig. 3). 

     The effect of HHQ was also tested in the presence of TPEN, a chelator of intracellular 

Zn2+, to determine whether Zn2+ was involved in 5-CMF fluorescence augmentation. In the 

presence of TPEN, the treatment with 10 µM HHQ did not increase 5-CMF fluorescence, while 

the same reduction in fluorescence intensity was detected in the cases of 30–50 µM HHQ (Fig. 

3). We propose that intracellular Zn2+ is responsible for the elevation of [GSH]i by 10 µM HHQ.  

 (Figure 3 near here) 

 

Effects of HHQ on cells simultaneously treated with H2O2 

 

The increase in [Zn2+]i by HHQ has contrasting effects, dependent on cellular redox status. Thus, 

it is difficult to predict HHQ effects on cells under oxidative stress. Therefore, the effects of 

0.3–30 µM HHQ on cells treated with 100 µM H2O2 were examined. The cells were co-treated 

with H2O2 and HHQ for 3 h. Thereafter, cell lethality was examined with PI staining. Treatment 

of cells with 100 µM H2O2 for 3 h significantly increased cell lethality from 5.4 ± 0.8 % to 19.3 

± 1.5 % (Fig. 4). Simultaneous application of HHQ at concentrations ranging from 0.3 µM to 30 

µM significantly attenuated H2O2-induced increases in cell lethality in dose-dependent manner 

(Fig. 4). The inhibitory action of HHQ was maximized at concentrations of 10–30 µM. Further 

increases in HHQ concentration to 100 µM did not produce further inhibition. Thus, HHQ 

appears to protect cells against oxidative stress elicited by H2O2.  

(Figure 4 near here) 

 

HHQ-induced inhibition of death of living cells with exposed PS 
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Both HHQ and H2O2 are assumed to initiate the process of cell death. However, as described 

above, co-treatment with HHQ and H2O2 did not result in additive or synergistic actions. As 

shown in Fig. 5A, HHQ (100 µM) and H2O2 (100 µM) greatly increased the proportions of cells 

with FITC fluorescence and without PI fluorescence, respectively. In the case of H2O2, cells 

with PI fluorescence were also significantly more abundant. However, in cells co-treated with 

HHQ and H2O2, the proportions of cells exhibiting PI fluorescence, and those with FITC but 

without PI fluorescence were slightly, but significantly, less increased in comparison with cells 

treated with H2O2 alone (Fig. 5B). It is inferred that HHQ delays the process of cell death 

induced by H2O2. 

 (Figure 5 near here) 

 

Effect of ZnCl2 on cells treated with sublethal levels of HHQ 

 

HHQ at 30 µM decreased [GSH]i (Fig. 3), suggesting a reduction in nonprotein thiols which 

maintain cellular Zn2+ homeostasis. Since HHQ at 10–30 µM itself increased [Zn2+]i (Fig. 2), an 

excessive increase in [Zn2+]i by HHQ was expected. Cells were co-treated with HHQ (10 or 30 

µM) and ZnCl2 (3 or 10 µM) for 3 h. The cell lethality of the control group was 7.1 ± 1.0 %, 

while it was less than 10 % for any combination of HHQ and ZnCl2. Therefore, it is unlikely 

that ZnCl2 greatly augments the action of HHQ. 

 

Effect of HHQ on cells treated with A23187 

Cells were treated with 100 nM A23187 for 3 h, resulting in a Ca2+-dependent increase in cell 

lethality (Fig. 6). The co-treatment of cells with A23187 and 10–30 µM HHQ further increased 

cell lethality (Fig. 6). Thus, it appears that HHQ at 10–30 µM HHQ significantly augments 

Ca2+-dependent cell death.  
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 (Figure 6 near here) 

 

 

Discussion 

 

Zinc-dependent and independent cellular actions of HHQ 

 

It is likely that HHQ at concentrations of 10 µM or more increases [Zn2+]i in all cells because 

HHQ shifted the histogram of FluoZin-3 fluorescence in the direction of higher intensity (Fig. 

1). The increase in [Zn2+]i by HHQ is assumed to largely result from Zn2+ release from 

intracellular stores because DTPA, a chelator of external Zn2+, only slightly attenuated the 

HHQ-induced augmentation of FluoZin-3 fluorescence (Fig. 2). Intracellular Zn2+ release could 

be caused by zinc-thiol/disulfide interchange, because Zn2+ binds to sulfhydryl groups and Zn2+ 

bound to thiols is released by oxidative stress (Maret, 2009). HHQ at 30–50 µM significantly 

reduced the intensity of 5-CMF fluorescence (Fig. 3), indicating a reduction of [GSH]i. There 

was a discrepant observation in the case of 10 µM HHQ (Figs. 1 and 3). HHQ at 10 µM 

augmented both FluoZin-3 fluorescence and 5-CMF fluorescence, indicating that HHQ induced 

increases in both [Zn2+]i and [GSH]i. The augmentation of 5-CMF fluorescence by HHQ was 

not observed in the presence of TPEN, a chelator of intracellular Zn2+. The elevation of [GSH]i 

could be caused by the increase in [Zn2+]i in this preparation (Kinazaki et al., 2011). In the case 

of 10 µM HHQ, it is hypothesized that HHQ induces weak oxidative stress that converts thiols 

to disulfides, resulting in the release of small amount of Zn2+, thus increasing cellular thiol 

content. The decrease in [GSH]i and increase in [Zn2+]i by 3050 µM HHQ were presumed to 

increase cell vulnerability to oxidative stress induced by H2O2. However, HHQ at 

concentrations of 0.3–100 µM attenuated the H2O2-induced increase in cell lethality (Fig. 4). 

The addition of 3–10 µM ZnCl2 did not augment the cytotoxicity of 10–30 µM HHQ. 
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Furthermore, HHQ seemed to delay the process of cell death induced by H2O2 (Fig. 5). 

Therefore, it is unlikely that Zn2+ is involved in HHQ-induced cytotoxicity, although HHQ 

increases [Zn2+]i. In a previous study (Kamae et al., 2017), HHQ at concentrations of 10 µM or 

more increased [Ca2+]i. HHQ at 10–30 µM significantly promoted the A23187-induced increase 

in cell lethality (Fig. 6). Therefore, Ca2+, rather than Zn2+, appears to be involved in the 

cytotoxicity of HHQ. HHQ exhibits opposing actions on cell death caused by oxidative stress 

and Ca2+ overload. 

 

Toxicological implications of HHQ-induced increase in [Zn2+]i 

 

HHQ is supposed to increase [Zn2+]i in lymphocytes. Zn2+ is an intracellular messenger in 

lymphocytes (Haase and Rink, 2014). Although it is well known that zinc deficiency impairs 

immune functions (Shankar and Prasad, 1998; Haase and Rink, 2014), the influence of 

sustained increases in [Zn2+]i on the immune system has not been elucidated. In the nervous 

system, however, dyshomeostasis of cellular Zn2+ (excessive increase or decrease in [Zn2+]i) is 

implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer disease, 

Parkinson's disease, and schizophrenia (Szewczyk, 2013; Li and Wang, 2016). Thus, zinc 

homeostasis is critical in maintaining physiological neuronal functions. Since coffee (0.1–1.7 

mg of HHQ per a cup) is consumed worldwide, large amounts of HHQ are ingested daily. HHQ 

at 1.26 mg/L (10 µM) can elevate [Zn2+]i of rat thymocytes as shown in Fig. 1.  

     Quinones exert various simple and complex actions on cells, inducing cytoprotective and 

cytotoxic actions (Bolton and Dunlap, 2017). Therefore, it is not surprising that micromolar 

concentrations of HHQ seem to exert both beneficial and adverse actions on rat thymocytes. 

HHQ at 3–30 µM almost completely inhibited the H2O2-induced increase in cell lethality (Fig. 

4), although at 30 µM, it significantly decreased [GSH]i (Fig. 3). One may argue the possibility 

that HHQ decomposes H2O2, resulting in reduced oxidative stress. However, this is unlikely 
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because of the following reasons. H2O2 also exerts high nucleophilicity, and can attack olefins 

to produce oxidation products. Although this reaction requires conjugated electron-withdrawing 

groups, HHQ has no electron-withdrawing group in its structure. Therefore, the possibility of 

direct reaction between H2O2 and HHQ is very low. 

 

Conclusion 

 

Micromolar concentrations of HHQ, known as a by-product of coffee bean roasting, exert 

diverse actions on rat thymic lymphocytes under present in vitro conditions. Although HHQ can 

significantly elevate [Zn2+]i some actions are Zn2+-independent. In addition, HHQ possesses 

contrasting effects on cell death caused by oxidative stress and Ca2+ overload. The 

pharmacokinetics of HHQ after the ingestion of coffee is not elucidated at present. However, 

HHQ-reduced coffee may be preferable to avoid possible adverse effects of HHQ. 

 

 

Conflict of interest 

 

All authors affirm that there are no conflicts of interest to declare. 

 

Acknowledgements 

 

This study was supported by Grants-in-Aid for Scientific Research (C26340039 and 

B15H02892) from the Japan Society for the Promotion of Science.  



 

–14– 

References 

 

Bolton, J. L., Dunlap, T. (2016). Formation and biological targets of quinones: cytotoxic versus 

cytoprotective effects. Chem. Res. Toxicol. 30: 13−37. 

Chikahisa. L., Oyama, Y., Okazaki, E., et al. (1996). Fluorescent estimation of H2O2-induced 

changes in cell viability and cellular nonprotein thiol level of dissociated rat thymocytes. Jpn 

J. Pharmacol. 71: 299–305. 

Corsini, E., Sokooti, M., Galli, C. L., et al. (2013). Pesticide induced immunotoxicity in 

humans: a comprehensive review of the existing evidence. Toxicology 307: 123–135. 

Fukunaga, E., Oyama, T. M., Oyama, Y. (2015). Elevation of the intracellular Zn2+ level by 2-n-

octyl-4-isothiazolin-3-one in rat thymocytes: an involvement of a temperature-sensitive Zn2+ 

pathway. Toxicol. Res. 4: 65–70. 

Gee, K. R., Zhou, Z. L., Qian, W. J., et al. (2002). Detection and imaging of zinc secretion from 

pancreatic beta-cells using a new fluorescent zinc indicator. J. Amer. Chem. Soc. 124: 776–

778. 

Haase, H., Rink, L. (2014). Zinc signals and immune function. Biofactors 40: 27–40. 

Hojyo, S., Fukada, T. (2016). Roles of zinc signaling in the immune system. J. Immunol. Res. 

2016: 6762343. 

Kamae, R., Nojima, S., Akiyoshi, K., et al. (2017). Hydroxyhydroquinone, a by-product of 

coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes. 

Food Chem. Toxicol. 102: 39–45. 

Kinazaki, A., Chen, H., Koizumi, K., et al. (2011). Putative role of intracellular Zn2+ release 

during oxidative stress: a trigger to restore cellular thiol content that is decreased by 

oxidative stress. J. Physiol. Sci. 61: 403–409. 

Klein, L., Kyewski, B., Allen, P. M., et al. (2014). Positive and negative selection of the T cell 

repertoire: what thymocytes see (and don't see). Nature Rev. Immunol. 14: 377–391. 



 

–15– 

Kuchler, L., Sha, L. K., Giegerich, A. K., et al. (2014). Sphingosine-1 phosphate promotes 

thymic atrophy during sepsis progression. Crit. Care, 18: P51. 

Li, L. B. Wang, Z. Y. (2016). Disruption of brain zinc homeostasis promotes the 

pathophysiological progress of Alzheimer's disease. Histol. Histopathol. 31: 623–627. 

Maret, W. (2009). Molecular aspects of human cellular zinc homeostasis: redox control of zinc 

potentials and zinc signals. Biometals 22:149–157. 

Matsui, H., Oyama, T.M., Okano, Y., et al. (2010). Low micromolar zinc exerts cytotoxic action 

under H2O2-induced oxidative stress: Excessive increase in intracellular Zn2+ concentration. 

Toxicology 276: 27–32. 

Matsui, H., Sakanashi, Y., Oyama, T. M., et al. (2008). Imidazole antifungals, but not triazole 

antifungals, increase membrane Zn2+ permeability in rat thymocytes: Possible contribution to 

their cytotoxicity. Toxicology 248: 142–150. 

Müller, C., Hemmersbach, S., van't Slo, G., et al. (2006). Synthesis and structure determination 

of covalent conjugates formed from the sulfury-roasty-smelling 2-furfurylthiol and di- or 

trihydroxybenzenes and their identification in coffee brew. J. Agric. Food Chem. 54: 10076–

10085. 

Ochiai, R., Nagao, T., Katsuragi, Y., et al. (2008). Effects of hydroxyhydroquinone-reduced 

coffee in patients with essential hypertension. J. Health Sci.54: 302–309. 

Park, J. S., Koentjoro, B., Veivers, D., et al. (2014). Parkinson's disease-associated human 

ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. 

Hum. Molec. Genet. 23: 2802–2815. 

Poon, I. K., Lucas, C. D., Rossi, A. G., et al. (2014). Apoptotic cell clearance: basic biology and 

therapeutic potential. Nature Rev. Immunol. 14: 166–180. 

Saitoh, S., Fukunaga, E., Ohtani, H., et al. (2015). Zn2+-dependence of the synergistic increase 

in rat thymocyte cell lethality caused by simultaneous application of 4, 5-dichloro-2-octyl-4-

isothiazolin-3-one (DCOIT) and H2O2. Chemosphere 135: 447–452. 



 

–16– 

Sakanashi, Y., Oyama, T.M., Matsuo, Y., et al. (2009). Zn2+, derived from cell preparation, 

partly attenuates Ca2+-dependent cell death induced by A23187, calcium ionophore, in rat 

thymocytes. Toxicol. In Vitro, 23: 338–345. 

Shankar, A.H., Prasad, A.S. (1998). Zinc and immune function: the biological basis of altered 

resistance to infection. Ameri. J. Clin. Nutri. 68: 447S–463S. 

Shimizu, S., Yoshida, T., Tsujioka, M., et al. (2014). Autophagic cell death and cancer. Intl. J. 

Molec. Sci. 15: 3145–3153. 

Solti, I., Kvell, K., Talaber, G., et al. (2015). Thymic atrophy and apoptosis of CD4+ CD8+ 

thymocytes in the cuprizone model of multiple sclerosis. Plos One, 10: e0129217. 

Szewczyk, B. (2013). Zinc homeostasis and neurodegenerative disorders. Frontiers in Aging 

Neurosci. 5: 33. 

Yoo, M.H., Kim, T.Y., Yoon, Y.H., et al. (2016). Autism phenotypes in ZnT3 null mice: 

involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Sci. Rep. 

6: 28548. 

 

  



 

–17– 

Figure legends 

 

Figure 1. HHQ-induced augmentation of FluoZin-3 fluorescence in rat thymocytes. (A) Shift of 

FluoZin-3 fluorescence histogram 1 h after HHQ application. Each histogram was constructed 

with 2500 cells. (B) Dose-response relationship between HHQ and mean intensity of FluoZin-3 

fluorescence. Column and bar were mean and SD, respectively, of four samples. Asterisks (**) 

show significant augmentation (P < 0.01) of FluoZin-3 fluorescence after HHQ application. 

 

Figure 2. Modification of HHQ-elicited changes in FluoZin-3 fluorescence by Zn2+ chelators, 

DTPA for external Zn2+, and TPEN for intracellular Zn2+. Column and bar show mean and SD 

of four samples, respectively. Asterisks (**) show significant difference (P < 0.01) between the 

responses in absence and presence of respective Zn2+ chelator. 

 

Figure 3. HHQ-induced changes in mean intensity of 5-CMF fluorescence in absence and 

presence of TPEN. Column and bar indicate mean and SD of four samples, respectively. 

Asterisks (**) show significant augmentation or attenuation (P < 0.01) of 5-CMF fluorescence 

after HHQ application. Symbols (##) show significant differences between responses in the 

absence and presence of TPEN. 

 

Figure 4. Dose-responsive HHQ-induced protection of cells against oxidative stress elicited by 

H2O2. Column and bar indicate mean lethality and SD of four samples, respectively. Asterisks 

(**) show significant increase (P < 0.01) in cell lethality. Symbols (##) indicate significant 

attenuation of H2O2-induced increase in cell lethality. 

 

Figure 5. Changes in cell population, classified with PI and annexin V-FITC, by treatment with 

H2O2, HHQ, and both. (A) Cytograms obtained from the cells treated with H2O2, HHQ, and both 
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for 2.5 h. Each cytogram was constructed with 2500 cells. Areas of N, A, P, and AP show the 

population of intact living cells, annexin V-positive living cells, dead cells, and annexin V-

positive dead cells, respectively. (B) Percentage population (N, A, and P + AP) of cells treated 

with H2O2, HHQ, and both for 2.5 h. Column and bar indicate mean and SD of four samples, 

respectively. Asterisks (**) show significant increase or decrease (P < 0.01) by incubation with 

H2O2, HHQ, and both. Symbols (##) show significant differences between the cells treated with 

H2O2 alone and those co-treated with H2O2 and HHQ. 

 

Figure 6. Effect of HHQ on cells simultaneously treated with 100 nM A23187. The cell 

lethality was estimated at 3 h after the start of application of A23187, HHQ, and both. Column 

and bar indicate mean and SD of four samples, respectively. Asterisks (**) show significant 

increase in cell lethality (P < 0.01) by incubation with H2O2, HHQ, and both. Symbols (##) 

show significant differences between the groups of cells treated with A23187 alone and cells co-

treated with A23187 and HHQ. 
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Figure 5 
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Figure 6 
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Table 1. Reagents used in this study 
 

 
 
 

 


