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Highlights 

 

• N-(3-Oxododecanoyl)-L-homoserine-lactone (ODHL) is a quorum sensing molecule. 

• ODHL induced hyperpolarization in rat thymic lymphocytes. 

• The hyperpolarization was inhibited by quinine, but not by other K+ channel blockers. 

• The hyperpolarization was due to an increase in membrane K+ permeability. 

• ODHL may disturb lymphocyte functions via changes in membrane potential. 
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Abstract 

 

     To study the adverse effects of N-(3-oxododecanoyl)-L-homoserine-lactone (ODHL), a 

quorum sensing molecule, on mammalian host cells, its effect on membrane potential was 

examined in rat thymic lymphocytes using flow cytometric techniques with a voltage-sensitive 

fluorescent probe. As 3–300 µM ODHL elicited hyperpolarization, it is likely that it increases 

membrane K+ permeability because hyperpolarization is directly linked to changing K+ gradient 

across membranes, but not Na+ and Cl- gradients. ODHL did not increase intracellular Ca2+ 

concentration. ODHL also produced a response in the presence of an intracellular Zn2+ chelator. 

Thus, it is unlikely that intracellular Ca2+ and Zn2+ are attributed to the response. Quinine, a non-

specific K+ channel blocker, greatly reduced hyperpolarization. However, because 

charybdotoxin, tetraethylammonium chloride, 4-aminopyridine, and glibenclamide did not 

affect it, it is pharmacologically hypothesized that Ca2+-activated K+ channels, voltage-gated K+ 

channels, and ATP-sensitive K+ channels are not involved in ODHL-induced hyperpolarization. 

Although the K+ channels responsible for ODHL-induced hyperpolarization have not been 

identified, it is suggested that ODHL can elicit hyperpolarization in mammalian host cells, 

disturbing cellular functions. 
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1. Introduction 

     Quorum sensing (QS) molecules are used as signal mediators in bacterial cell-to-cell 

communication and synchronize biological events in a group [1,2]. QS molecules affect host 

cells on which bacteria grow [3]. In the aspect of cytotoxicity of QS molecules, N-(3-

oxododecanoyl)-L-homoserine-lactone (ODHL) disrupts membrane integrity in epithelial Caco-

2 cells [4,5] and enters membranes of Jurkat T-cell lines [6]. ODHL inhibits cell differentiation 

[7] and induces apoptosis in lymphocytes [8]. Furthermore, ODHL treatment releases 

intracellular Ca2+ in mast cells [9]. Thus, it is toxicologically interesting to examine the cellular 

actions of ODHL on mammalian host cells. 

     Membrane potentials are regulated by membrane permeability and transmembrane 

gradients of respective ions, such as Na+, K+, and Cl-. An important determinant of membrane 

potential is membrane K+ permeability that is defined mainly by the opening and closing of K+ 

channels. Changes in membrane potentials are associated with cellular physiological and 

pathological events, although various exogenous substances modulate membrane potentials. 

Mitogens cause an early change in membrane potential associated with a transient increase in 

intracellular Ca2+ concentration in T lymphocytes [10]. The proliferation of T lymphocytes is 

inhibited by charybdotoxin [11], a specific blocker of Ca2+-activated K+ channels [12]. Non-

specific K+ channel blockers inhibit B lymphocyte activation, resulting in an attenuation of the 

cell cycle [13]. There are several actions on lymphocytes [14–17]. Furthermore, membrane 

potential seems to function beyond channel proteins as phosphoinositide phosphatase activity is 

regulated within the physiological membrane potential range [18]. Thus, it is likely that the 

compounds affecting membrane potentials modify some physiological functions in lymphocytes. 

     We examined the effect of ODHL on membrane potential using flow cytometric 

techniques with a voltage-sensitive fluorescent dye in rat thymocytes. One may argue that 

membrane potential is not a target for the pathological (or toxicological) actions of ODHL; 

however, in a previous study [19], we found that ODHL elevated intracellular Zn2+ levels in rat 
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thymic lymphocytes. It is known that intracellular divalent metal cations such as Ca2+, Pb2+, and 

Zn2+ activate K+ channels, resulting in hyperpolarization [20–22]. If ODHL affects membrane 

potential in lymphocytes, it would disturb physiological functions of lymphocytes. With 

concerns about the effects of bacterial bioactive substances on human health, the changes in 

membrane potential of rat thymic lymphocytes by ODHL, a bacterial QS molecule, may give 

new toxicological insights. 

 

2. Materials and methods 

2.1. Chemicals 

     N-(3-oxododecanoyl)-L-homoserine-lactone (ODHL) was purchased from Sigma-Aldrich 

Corporation (St. Louis, Missouri, USA). Fluorescent probes used to measure cellular parameters 

and specific reagents with their abbreviations are listed in Table 1. Other chemical reagents 

were obtained from Wako Pure Chemicals (Osaka, Japan).  

(Table 1 near here) 

2.2. Cell preparation 

     Experiments were performed under the approval (T29-52) of Tokushima University 

Committee for Animal Experiments. 

     The cell suspension was prepared as follows. Thymus glands were excised from 6–8-

week-old Wistar rats (Charles River Japan, Shizuoka, Japan) that were anesthetized with 

thiopental (Ravonal 50–75 mg/kg via intraperitoneal injection). Sliced glands were gently 

triturated in Tyrode's solution (2–4 °C) and the solution was filtered with a mesh (56 µm 

diameter). The solution containing thymocytes (cell suspension) was stored at 36–37 °C for 50–

60 min before experiments. 

     ODHL (3–300 mM in 2 µL DMSO) was applied to the cell suspension (1.998 mL) to 

make final concentrations (3–300 µM). The cells were incubated with ODHL at respective 

concentrations for 10–60 min. The cell suspension (100 µL) was cytometrically analyzed. Data 
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acquisition (2000 cells or 2500 cells) took approximately 8–13 sec. Sheath flow rate was 

adjusted to measure 200–250 cells/sec with an interval of 180 µsec between forward and side 

scatter measurements. 

2.3. Fluorescence measurement 

     We examined cell fluorescence using a flow cytometer equipped with a software 

(CytoACE-150; JASCO, Tokyo, Japan) [23]. Propidium iodide (PI) at 5 µM was used to 

examine cell lethality. Membrane potentials were monitored using 500 nM bis-(1,3-

dibutylbarbituric acid)trimethine oxonol (Oxonol) [20]. Decrease and increase in Oxonol 

fluorescence intensity indicate hyperpolarization and depolarization, respectively. PI and 

Oxonol fluorescence from the cells were recorded in continued presence of PI and Oxonol. 

Cells were incubated with 1 µM Fluo-3-AM for 50–60 min before the experiment to examine 

the action of ODHL on intracellular Ca2+ levels [24]. Fluo-3 fluorescence was measured from 

the cells treated with 10 µM N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a 

chelator of intracellular Zn2+, to remove the contribution of Zn2+ to Fluo-3 fluorescence. 

Decrease and increase in Fluo-3 fluorescence intensity show decrease and increase in 

intracellular Ca2+ level, respectively. Oxonol and Fluo-3 fluorescence were recorded in cells that 

did not show PI fluorescence (i.e., living cells with intact membranes). The excitation and 

emission wavelengths for fluorescent probes are listed in Table 1. 

2.4. Statistical analysis and presentation 

     Statistical analysis was carried out using Tukey's multivariate analysis. P-values < 0.05 

were considered statistically significant. Each experimental series was conducted thrice, unless 

stated otherwise.  

 

3. Results 

3.1. Effect of ODHL on Oxonol fluorescence (membrane potential) of rat thymocytes 

      ODHL at 300 µM initially shifted the histogram of Oxonol fluorescence to lower 
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intensity (hyperpolarizing direction) within 10 min after application, and then gradually moved 

the histogram to higher intensity (depolarizing direction) during the next 50 min (Figure 1A). 

Figure 2B shows the concentration-dependent change of the histogram by 10–300 µM ODHL, 

when the cells were treated with ODHL for 60 min. ODHL at 10 µM continued to shift the 

histogram to a hyperpolarizing direction. As shown in Figure 2A, the mean intensity of Oxonol 

fluorescence in the cells treated with 30 µM ODHL continued to be lower than the control level 

60 min after application. On the other hand, 100 µM ODHL reduced the mean intensity of 

Oxonol fluorescence at 10 min after application, and then gradually increased the mean intensity 

during the next 50 min (Figure 2B). Therefore, the effects of ODHL at 30 µM or less on 

membrane potential may be different from those at 100 µM or more. Concentration-dependent 

changes in the mean intensity of Oxonol fluorescence by ODHL are summarized in Figure 2C.  

(Figures 1 and 2 near here) 

     As shown in Figure 1B, there were hyperpolarizing and depolarizing peaks in the 

histogram of Oxonol fluorescence monitored from the cells treated with 30–100 µM ODHL. It 

may be inadequate to use the mean intensity to compare the effects of different concentrations 

of ODHL on membrane potential. Therefore, the changes in population of hyperpolarized and 

depolarized cells by ODHL were examined. As shown in Figure 3A, ODHL at 30 µM 

significantly increased the population of hyperpolarized cells after application. The population 

of depolarized cells time-dependently increased in the presence of 30 µM ODHL and the 

increases at 45–60 min after the application were statistically significant (Figure 3A). When the 

concentration of ODHL was 100 µM, the population of hyperpolarized cells initially increased, 

but the rate of increase significantly reduced in a time-dependent manner (Figure 3B); the 

increases at 45–60 min were also not statistically significant. In the case of depolarized cells, the 

increases at 20–60 min were statistically significant. The population of depolarized cells 

increased while the population of hyperpolarized cells decreased in the continued presence of 

ODHL. Changes in the population of hyperpolarized and depolarized cells because of ODHL at 
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concentrations ranging from 3 µM to 300 µM are shown in Figure 3C. The strong 

hyperpolarizing action of ODHL was observed when the concentration of ODHL was 10–30 

µM. 

(Figure 3 near here) 

3.2. Characteristics of ODHL-induced hyperpolarization 

     As shown in Figures 1–3, ODHL at lower concentrations reduced the intensity of Oxonol 

fluorescence (ODHL-induced hyperpolarization). Therefore, in this study, the property of 

ODHL-induced hyperpolarization was intensively examined. The cells were treated with 10 mM 

tetraethylammonium chloride (TEA), 5 mM 4-aminopyridine (4-AP), or 300 µM quinine for 30 

min before the application of 30 µM ODHL to see if the ODHL-induced hyperpolarization is 

due to the activation of membrane K+ channels; TEA did not affect the ODHL-induced 

hyperpolarization (Figure 4). ODHL-induced hyperpolarization was observed even in the 

presence of 4-AP. Quinine reduced hyperpolarization, although the treatment of quinine 

depolarized the membranes (Figure 4).  

(Figure 4 near here) 

     To see if Ca2+-activated K+ channels are involved in ODHL-induced hyperpolarization, 

the effect of 300 nM charybdotoxin, a specific blocker of Ca2+-activated K+ channels, was 

examined. Charybdotoxin did not affect ODHL-induced hyperpolarization (Figure 5A) and 

ODHL did not elevate intracellular Ca2+ levels (Figure 5B). Glibenclamide (1–10 µM), a 

blocker of ATP-sensitive K+ channels [25], did not affect the response. In a previous study [19], 

ODHL increased intracellular Zn2+ concentrations. Zn2+-activated K+ channels were reported in 

sea urchin spermatozoa [22]. To test the possibility that ODHL hyperpolarizes membranes via 

activation of Zn2+-activated K+ channels, the effect of ODHL was examined in the presence of 

TPEN. ODHL induced hyperpolarization even in the presence of 10 µM TPEN (Figure 5C).  

 (Figure 5 near here) 
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     To confirm the involvement of K+ channels, the effects of ODHL were examined under 

external ionic conditions. The addition of 50 mM KCl to the external solution depolarized the 

membranes and shifted ODHL-induced hyperpolarization, while the addition of 50 mM NaCl 

did not affect ODHL-induced hyperpolarization (Figure 5D).  

     Mitogens induce hyperpolarization by activating Ca2+-activated K+ channels in T cells 

[10]. The application of concanavalin A, a known mitogen, at 3–10 µM induced 

hyperpolarization at 10 min after application (Figure 6A), and then the membrane potential 

returned to regular levels within 60 min in the continued presence of concanavalin A (Figure 

6B). Furthermore, there was no interaction between ODHL and concanavalin A. 

(Figure 6 near here) 

 

4. Discussion 

    It is likely that ODHL increases membrane K+ permeability of rat thymic lymphocytes 

because of a variety of reasons. Changes in Na+ and Cl- gradients across the membranes did not 

affect ODHL-induced hyperpolarization, although the reduction of the K+ gradient across the 

membranes depolarized the membranes and shifted ODHL-induced hyperpolarization (Figure 

5D). Increases in external K+ and Cl- levels by adding 50 mM KCl shifted the equilibrium K+ 

and Cl- potentials to depolarizing and hyperpolarizing directions, respectively. The increase in 

external Na+ level by adding 50 mM NaCl also moved the equilibrium potential to a 

depolarizing direction. Thus, it is concluded that K+, but not Na+ and Cl-, is involved in ODHL-

induced hyperpolarization.  

     As the blockers of K+ channels such as TEA (Figure 4B), 4-AP, and charybdotoxin 

(Figure 5A) did not affect the ODHL response, voltage-dependent and Ca2+-activated K+ 

channels are irrelevant. ATP-sensitive K+ channels are ruled out because glibenclamide, a 

blocker of ATP-sensitive K+ channels [25], did not affect the ODHL response. As ODHL 

induced hyperpolarization in the presence of TPEN (Figure 5C), Zn2+-dependent K+ channels 
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[22] can be also ruled out. Only quinine greatly reduced the ODHL-induced hyperpolarization 

(Figures 4A and B). It is hard to pharmacologically identify the K+ channels involved in ODHL-

induced hyperpolarization using quinine because it inhibits many types of K+ channels. Voltage-

gated K+ channels (Kv1.1, Kv1.2, Kv1.3, and Kv1.6 channels) are sensitive to TEA and 4-AP. 

Therefore, voltage-gated K+ channels are excluded. One may argue the possibility that ODHL is 

a K+ ionophore, but not an activator of K+ channels; though, it is unlikely because quinine 

cannot antagonize the action of valinomycin, a K+ ionophore [26]. Resting membrane potential 

is regulated by membrane K+ permeability in mammalian cells. Increase and decrease in 

membrane K+ permeability by K+ ionophores [27,28] and K+ channel blockers [11,13], 

respectively, disturb cell functions in lymphocytes. Such examples were shown in other studies 

[14–17]. Changes in membrane potential due to concanavalin A were masked in the 

simultaneous presence of ODHL (Figure 6). Therefore, ODHL can modify cellular functions of 

lymphocytes.  

 

5. Conclusion 

     The threshold concentration of ODHL to hyperpolarize membranes of rat thymic 

lymphocytes was observed to be 3 µM (Figure 2C). Although the information on local 

concentrations of ODHL released from bacterial biofilms is unavailable, micromolar 

concentrations of ODHL are expected to affect the membranes of mammalian host cells.  
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Figure legends 

 

Figure 1. ODHL-induced changes in histogram of Oxonol fluorescence. Each histogram was 

constructed using 2500 living cells. (A) Time-dependent changes induced by 300 µM ODHL. 

(B) Concentration-dependent changes induced by 10–300 µM ODHL. Histogram was obtained 

at 60 min after the start of ODHL application. (C) Portions of depolarized and hyperpolarized 

cells in the histogram. 

 

Figure 2. ODHL-induced changes in Oxonol fluorescence intensity. Column and bar show the 

mean and standard deviation of 4 samples, respectively. (A) Time-dependent change induced by 

30 µM ODHL. (B) Time-dependent change induced by 100 µM ODHL. (C) Concentration-

dependent change induced by 3–300 µM ODHL. Effects of ODHL were examined at 60 min 

after the start of ODHL application. Asterisks (*, **) indicate significant difference (P < 0.05, 

0.01) between control intensity (extreme left column and dotted line) and the intensity of 

fluorescence from the cells treated with ODHL. 

 

Figure 3. ODHL-induced changes in population of hyperpolarized and depolarized cells. 

Column and bar show the mean and standard deviation of 4 samples, respectively. (A) Time-

dependent changes in the population by 30 µM ODHL. (B) Time-dependent changes in the 

population by 100 µM ODHL. (C) Concentration-dependent changes in the population by 3–

300 µM ODHL. Effects of ODHL were examined at 60 min after the start of ODHL application. 

Asterisks (*, **) indicate significant difference (P < 0.05, 0.01) between control intensity and 

the intensity of fluorescence from the cells treated with ODHL. 

 

Figure 4. Effects of TEA and quinine on the ODHL-induced attenuation of Oxonol fluorescence. 

(A) ODHL-induced changes in histogram of Oxonol fluorescence in the presence of TEA and 
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quinine. Each histogram was constructed with 2500 living cells. Effects were examined at 10 

min after the start of ODHL application. (B) ODHL-induced changes in the intensity of Oxonol 

fluorescence in the presence of TEA and quinine. Asterisk (**) indicates significant difference 

(P < 0.01) between control intensity (extreme left column and dotted line) and the intensity of 

fluorescence from the cells treated with TEA and quinine. Symbol (##) shows significant 

difference between control group and the group of cells treated with 30 µM ODHL. 

 

Figure 5. Ionic dependence of ODHL-induced attenuation of Oxonol fluorescence. Column and 

bar show the mean and standard deviation of 4 samples, respectively. (A) Effect of CTX on the 

ODHL-induced response. Asterisk (**) indicates significant difference (P < 0.01) between 

control cell group and ODHL-treated cell group. (B) Effect of ODHL on Fluo-3 fluorescence in 

the presence of TPEN. Pound (##) shows significant difference (P > 0.01) between the ODHL-

treated cell groups without and with CTX. (C) The ODHL-induced response in the presence of 

TPEN. Asterisk (**) indicates significant difference (P < 0.01) between control cell group and 

ODHL-treated cell group. (D) Effects of NaCl and KCl on the ODHL-induced response. 

Asterisk (**) indicates significant difference (P < 0.01) between control cell group and ODHL-

treated cell group. Pound (##) shows significant difference (P > 0.01) between the ODHL-

treated cell groups. 

 

Figure 6. Changes of Oxonol fluorescence intensity by ODHL, concanavalin, and their 

combination. Effects were examined at 10 min (A) and 60 min (B) after the drug application. 

Column and bar show mean and standard deviation of 4 samples, respectively. Asterisk (**) 

indicates significant difference (P < 0.01) between control intensity (leftmost column and dotted 

line) and the intensity of fluorescence from the cells treated with the agent(s). 
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Table 1. Reagents used in this study 

A. Fluorescent probes 

Excitation wavelength was 488 nm for all fluorescent probes. 

Probe [Manufacturer] Emission wavelength 

(nm) 

Propidium iodide [Molecular Probes, Inc., Eugene, OR, USA] 600 ± 20 

bis-(1,3-Dibutylbarbituric acid)trimethine oxonol (Oxonol) 

[Molecular Probes] 

530 ± 20 

Fluo-3-AM [Dojin Chemical, Kumamoto, Japan] 530 ± 20 

 

B. Specific reagents 

Reagent [Manufacturer] Purpose 

Dimethyl sulfoxide (DMSO) [Wako Pure Chemical, Osaka, Japan] Solvent 

Tetraethylammonium chloride (TEA)  

[Tokyo Chemical Industry, Tokyo, Japan] 

Blocker of voltage-

gated K+ channels 

Quinine [Tokyo Chemical Industry] K+ channel blocker 

Charybdotoxin (CTX) [Peptide Institute, Osaka, Japan] 

 

Blocker of Ca2+-

activated K+ Channels 

N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) 

[Dojin Chemical] 

Intracellular Zn2+ 

chelator 

Concanavalin A [Wako Pure Chemical] Mitogen 
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