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Abstract

This paper investigates the complex dynamics, synchronization, and control of chaos in a sys-

tem of strongly connected Wilson-Cowan neural oscillators. Some typical synchronized periodic

solutions are analyzed by using the Poincaré mapping method, for which bifurcation diagrams are

obtained. It is shown that topological change of the synchronization mode is mainly caused and

carried out by the Neimark-Sacker bifurcation. Finally, a simple feedback control method is pre-

sented for stabilizing an in-phase synchronizing periodic solution embedded in the chaotic attractor

of a higher-dimensional model of such coupled neural oscillators.

1 Introduction

Oscillatory behavior is a fundamental phenomenon in physical, chemical, electronic, and biological

systems. A complex system consisting of a set of massive and connected oscillatory cells or particles

can be considered as a large-scaled network of coupled oscillators, and they are synchronized together

under certain conditions. For instance, synchrony of a population of flashing fireflies provides a typical

and interesting example of synchronization phenomenon [Strogatz & Stewart, 1994].

The human brain activity is usually modeled by a coupling network of cells, namely, a complex

system with massive neurons. One way to understand such complicated dynamical behaviors of a

complex system is to decompose it into small oscillatory units and then perform some analysis on

their oscillatory modes at the lower-dimensional scale from a physical point of view. To that end, the

entire system can be better understood. This strategy has been applied to brain analysis, by reducing

its model dimension so that an averaged behavior in a local population of neurons can be studied.

Hoppensteadt and Izhikevich [Hoppensteadt & Izhikevich, 1997] provided some qualitative analysis

on periodic solutions and their synchronization in a special coupled neurons, called the Wilson-Cowan

model. More precisely, they studied the phase equation derived from a limit cycle of the coupled

neurons, and applied the averaging method for its analysis. Note that this can be done under an

assumption – the coupling strength is weak. However, it is more interesting to investigate what

happens if such a coupling effect is strong.

∗Department of Information Science and Intelligent Systems, Tokushima University, Tokushima, 770-8506 Japan

tetsushi@is.tokushima-u.ac.jp
†Department of Electrical and Electronic Engineering, City University of Hong Kong, Hong Kong, P. R. China

gchen@ee.cityu.edu.hk

1

Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 13, No. 1, 2003, 163-175, 
DOI: 10.1142/S0218127403006406 © World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc



It has been widely experienced that even a small-scale and simplified model can exhibit a rich

variety of complex behaviors if the coupling effect is strong. For this situation, an analytical approach

to the analysis becomes very difficult, if not impossible. This is especially true for brain neurons where

the coupling effect is strong. In this case, numerical study is virtually the only possible choice for

analysis.

In this paper, we study the complex dynamical behaviors of a coupled neural model of oscillators

with strong coupling effects. The Wilson-Cowan model is chosen as an oscillator in the network, and

we mainly focus our attention on the study of two coupled oscillators. First, we study the stability of

periodic solutions and, then, obtain their bifurcation diagram. In-phase and out-phase synchronized

solutions, as well as symmetric periodic solutions, are completely classified by the bifurcation diagram.

The parameter region where the system behaves chaotically is also clarified. Then we show that the

Neimark-Sacker bifurcation plays an important role in this coupled neuron system. we identify a

new type of intermittency response, and show that this response reflects spatio-temporal behaviors

in higher-dimensional systems. Finally, we discuss how to stabilize an unstable synchronized periodic

orbit embedded in the chaotic region, by using continuous state feedback. As an example, chaos in

six coupled oscillators is controlled to their in-phase synchronization.

2 Mathematical Model of the Wilson-Cowan Network

The dynamics of a continuous-time neural network can be described by the following system of differ-

ential equations:

ẋi = −αixi + f

(
ρi +

n∑
j=1

cijxj

)
, xi ∈ R, i, j = 1, . . . , n, (1)

where all coefficients are constants, with αi ≥ 0, and f is a sigmoid function defined by

f(x) =
1

1 + exp(−ϵx)
, ϵ > 0. (2)

In case that n is a big number, such a model has rich variety of oscillatory behaviors, various (in-phase,

out-phase, or n-phase) synchronizations, tori, bifurcations and chaos, etc.

In [Wilson & Cowan 1973], a model of neural oscillators, probably the simplest of its kind, is

developed by considering a specific case of Eq. (1), namely,

ẋ = −αx+ f(ax− by + ρx)

ẏ = −βy + f(cx− dy + ρy).
(3)

This model describes the coupling of an excitatory and an inhibitory neuron via synapses, as illustrated

by Fig. 1 (a).

System (3) has some typical bifurcation phenomena, such as the saddle-node and Hopf bifurcations

from an equilibrium, generation and saddle connection of limit cycles, and other degenerate bifurca-

tions [Hoppensteadt & Izhikevich, 1997][Borisyk, et al., 1995]. The bifurcation structure of Eq. (3) in

the ρx-ρy plane is somewhat similar to an averaged system of the van der Pol or the Duffing-Rayleigh

oscillator. Therefore, coupled neurons can be thought of as a nonlinear oscillator. However, a network

consisting of more than two such oscillators may not be assumed to be a mutually coupled system.
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This issue is different from the familiar coupled electric circuits, because the synaptic coupling here is

one-directional and the coupling term is contained inside the sigmoid function f .

In [Hoppensteadt & Izhikevich, 1997], weakly connected neural networks are studied via some

analytical (averaging) methods under the assumption that the synaptic coefficients are small. In this

paper, we instead attempt to investigate coupled neural oscillators with strong synaptic connections.

One motivation is that a strong coupling between two neurons in biophysical signaling mechanisms is

very common, at least in many artificial neural networks (i.e., perceptions, recurrent neural networks,

and cellular neural networks [Thiran, 1997]).

a

cd

b

Excitatory
Neuron

Inhibitory
Neuron

...

(a) (b)

Figure 1: (a) Coupled neurons. (b) A ring configuration.

Observe that for a coupling configuration among all oscillators, the connections “excitatory →
excitatory” and “inhibitory → inhibitory” are essential for in-phase and out-phase synchronizations

[Hoppensteadt & Izhikevich, 1997]. Therefore, we are interested in considering this kind of coupling

structure, on the change of its synchronizing modes, as the coupling coefficient is increased.

Figure 1 (b) shows a ring-configuration of such coupled neural oscillators. The corresponding

system of equations are

ẋi = −αxi + f(axi − byi + ρx + δx(xi−1 + xi+1))

ẏi = −βyi + f(cxi − dyi + ρy − δy(yi−1 + yi+1))

i = 1, 2, . . . , n (mod n),

(4)

where α > 0, β > 0, and a, b, c, d, ρx, ρy, δx, and δy are constants.

We are interested in the global behaviors of these two strongly coupled oscillators.

3 Periodic Solutions and Chaos

In this section, we investigate the characteristics of the periodic solutions in the ring-configuration of

the coupled oscillators. In each individual oscillator, described by Eq. (3), we fix the parameter values

to be

α = β = 1, ϵ = 1, a = b = 10, d = −2, ρx = 0, ρy = −6.

Based on a typical analysis about the equilibria of the above system, we can calculate the Hopf

bifurcation parameter and obtain c = 6.62. Then, we know that there are an unstable equilibrium

and a stable limit cycle in the two-dimensional system. These repeller and attractor are created right

after the Hopf bifurcation at a stable equilibrium.
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3.1 The Poincaré Map and Calculation of Bifurcation Parameters

Consider a general nonlinear autonomous system of the form

dx

dt
= f(x, λ), x ∈ Rn, λ ∈ R, (5)

where f is a C∞ function, and λ is a real parameter. Suppose that system (5) has a solution φ,

starting from an initial point, x0:

x(t) = φ(t,x0), x(0) = φ(0,x0) = x0.

Also, assume that there is a limit cycle of period τ > 0 for an appropriate parameter value:

φ(τ,x0) = φ(0,x0).

By placing the Poincaré section Π, described by a scalar function q, to the limit cycle transversely, we

obtain

Π = {x ∈ Rn | q(x) = 0 }. (6)

Thus, we can define the Poincaré map T as follows:

T : Π → Π

x 7→ φ(τ(x),x).
(7)

To reduce the dimension of this map, we introduce the local coordinates

u ∈ Σ ⊂ Rn−1,

with a projection and an embedding map:

h : Π → Σ, h−1 : Σ → Π.

Thereby we obtain the Poincaré map Tℓ on the local coordinates, such that

Tℓ : Σ → Σ

u → h ◦ T ◦ h−1 = h(φ(τ(h−1(u)), h−1(u))).
(8)

In general, a point u0 satisfying

u0 = Tℓ(u0) (9)

is called a fixed point of the map (to distinguish it from an equilibrium point of the system) in this

paper. The stability of this fixed point is determined by the multipliers (roots) of the characteristic

equation for the Jacobian of system (7) (see [Ueta et al., 1997] for more details):

χ(µ) := det(DT − µIn) = 0, (10)

where In is the n× n identity matrix.

To obtain bifurcation parameter values, we have to solve Eqs. (6), (9), and (10), for u0, λ, and τ ,

simultaneously.
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3.2 A Simple Coupled-Neuron Model

Now, we focus our attention on a simple pair of coupled neurons:

ẋ1 = −x1 + f(ax1 − by1 + ρx + δx2)

ẏ1 = −y1 + f(cx1 − dy1 + ρy − δy2)

ẋ2 = −x2 + f(ax2 − by2 + ρx + δx1)

ẏ2 = −y2 + f(cx2 − dy2 + ρy − δy1).

(11)

This model has a limit cycle, and the Neimark-Sacker (NS) bifurcation occurs under a certain condition.

After this bifurcation, the limit cycle changes its behavior to be quasi-periodic, phase-locking, and

torus breakdown, as the connection coefficient δ is increased.

Figure 2: Coupled neuron oscillators and the abbreviation.

We examine this system dynamics on the c-δ plane. First, choose the Poincare section Π =

{x |x1 − x∗1 = 0}, where x∗1 is the x-coordinate value of the fixed point x∗. Limit cycle in this system

is generated by the Hopf bifurcation of the equilibrium point x∗. Therefore, Π, which contains the

point x∗, is adequate to be used as a transversal section.

Symmetry plays an important role in this system. For instance, we can easily see that the permu-

tation

P : R4 → R4; (x1, y1, x2, y2) 7→ P (x1, y1, x2, y2) = (x2, y2, x1, y1)

is invariant for Eq. (11). A permutation P can be written as

P =

(
0 I2

I2 0

)
,

where I2 is the 2 × 2 identity matrix. Let the system (11) be written in the form of (5). If the

right-hand side of Eq. (5) has the following relationship, then the equation is said to be P -symmetric:

f(Px) = Pf(x).

Due to this symmetry of the equation, all periodic solutions of the system have symmetrical properties.

There typically exist three types of periodic solutions:

• in-phase synchronization (IN);

• almost out-phase synchronization (OUT);

• symmetric periodic solution (S).
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Table 1: Typical local bifurcations for limit cycles (k is an integer).

Bifurcation Symbol Change of fixed points

Tangent T kD + k+1D ⇐⇒ ∅
Period-doubling Pd kD ⇐⇒ k+1I + 2× kD

2

Neimark-Sacker NS kD ⇐⇒ k+2D + torus

Pitchfork-I Pf kD ⇐⇒ k+1D + 2× kD

Pitchfork-II Pf kD ⇐⇒ k−1D + 2× kD

For the IN solution, we have

φ(t,x0) = Pφ(t,x0).

In this case, we always have x1(t) = x2(t) and y1(t) = y2(t), for all t. This means that both neural

oscillators are completely synchronized without delay.

The OUT solution can be regarded as an almost out-phase synchronized solution for each oscillator,

namely, it has a half-period delay between the two oscillators. Actually, this solution satisfies

φ(τ/2,x0) = Px0,

where τ is the period.

For the solution S, there exist a pair of symmetric solutions, φ1(t) and φ2(t), satisfying

φ1(t,x0) = Pφ2(t, Px0), φ2(t,x0) = Pφ1(t, Px0). (12)

These solutions are generated by a pitchfork bifurcation of the IN solution.

Stabilities of periodic solutions are determined by the multipliers of the characteristic equation

for the fixed point. We denote these stabilities by indexes kD or kI, with D and I indicating the

orientation preserving and reversing maps on the unstable eigenspace of dimension k, respectively

[Kawakami, 1984].

Figure 3 (a) shows an example of the phase portrait (a projection of x1-x2) of the co-existing

periodic solutions. In this figure, we can see the phase differences between the two oscillators. For

instance, IN(0D) is a stable in-phase synchronized solution since the state is always located on the

diagonal x1 = x2. On the other hand, OUT(2D) indicates a two-dimensionally unstable and almost

out-phase synchronized solution, as shown in Fig. 3 (b). Moreover, S1(1D) and S2(1D) are one-

dimensionally unstable saddles, and they are symmetrical about the diagonal x1 = x2 and is affected

by the relationship (12).

For system (11), bifurcation phenomena can be classified into five types, as summarized in Table 1.

In this table, ∅ indicates the disappearance of fixed points, and index 0D
2 indicates a two-periodic

point for index 0D.

Next, we show a bifurcation diagram in the c-δ parameter plane (see Fig. 4). In Fig. 4 (b), each

segment separated by the bifurcation curve has different topological properties of the corresponding

periodic solutions. These segments are labeled by numbers (1)–(12), and their corresponding solutions
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Figure 3: Co-existence of solutions. c = 12.0, δ = 2.747. Black circles are fixed points of the Poincaré

map.
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Figure 4: Bifurcation diagram (a) and its schematic diagram (b). a = b = 10, d = −2, ρx = 0,

ρy = −6.
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are listed below:

(1) ∅
(2) IN(0D)

(3) IN(0D) + OUT(2D)

(4) OUT(0D)

(5) IN(2D) + OUT(0D)

(6) IN(0D) + OUT(2D) + 2× S(0D) + 2× S(1D)

(7) IN(0D) + OUT(2D) + 2× S(2D) + 2× S(1D)

(8) IN(1D) + OUT(2D) + 2× S(0D)

(9) IN(1D) + OUT(2D) + 2× S(2D)

(10) IN(0D) + OUT(0D)

(11) IN(1D) + OUT(0D) + 2× S(0D)

(12) IN(1D) + OUT(0D) + 2× S(2D)

In area (1), there exists only one stable equilibrium. After crossing two Hopf bifurcations (h1

and h2), the equilibrium changes to a completely (four-dimensionally) unstable one. The S-type of

solutions are created by a pitchfork bifurcation (Pf) for an IN type of solution. In area (8), only two

S-type of solutions are observed, which are stable in the large.

Next, we focus on the Neimark-Sacker (NS) bifurcations. In Fig. 4 (b), the half lines AB, AD, and

BC are NS bifurcations of the IN, OUT, and S-types of solutions, respectively. Thick arrows indicate

that tori are generated by changing parameter values along the corresponding direction. In areas

(7) and (9), many periodic solutions (without a symmetrical property) and tori co-exist, and they

eventually collapse to chaos. There is no area in which IN, OUT, S solutions co-exist as stable orbits;

IN and OUT solutions are observed to be stable only in area (10), depending on initial conditions.

From these diagrams and the above classification, the change between IN and OUT synchronizations

is clarified.

Figure 5 shows the system Lyapunov exponents for the parameter range 2.2 < δ < 2.5, with c = 11.

In the case of δ < 2.314, there is an IN(0D) solution. At δ ≈ 2.314, an NS bifurcation occurs, then

a quasi-periodic solution (torus) is generated, see Fig. 6 (a). This can be confirmed by the fact that

it has double zero Lyapunov exponents. For the parameter range 2.334 < δ < 2.336, a torus and

many periodic attractors are alternatively observed (frequency locking). When δ ≈ 2.335, the system

has a chaotic transient starting from an arbitrary initial value within this parameter range. After the

chaotic transient, the torus is broken and the orbit is absorbed by those periodic attractors. A period-8

attractor then appears, see Fig. 6 (b). By a slight increase in the value of δ, this attractor meets cascade

period-doubling bifurcations. After that, periodic and chaotic responses are observed within a very

narrow range of parameter values (with slight perturbations). When δ ≈ 2.336, a period-6 attractor

emerges. The Neimark-Sacker bifurcation for this attractor is caused at δ ≈ 2.339 and, after this

bifurcation, the generated torus is immediately absorbed into a co-existing chaotic attractor. Beyond

the range of chaos, many periodic windows are observed. We found period-doubling bifurcations

for some periodic solutions within these windows. We also observe the torus precisely with c = 13,

2.7 < δ < 2.8. Figure 7 show the Lyapunov exponents. A torus generated by the Neimark-Sacker

bifurcation is shown in Fig. 7 (a). As δ increases from 2.7, the torus is gradually distorted, see
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Figure 6: The Poincaré map in the x2-y2 plane. c = 11. (a) A torus. δ = 2.32 (b) δ = 2.339. The

torus is broken, and the orbit behaves chaotically for a while; finally, it is trapped into eight-periodic

points (marked by circles). (c) A chaotic attractor. δ = 2.34.
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Figure 8: Phase portraits according to parameter values indicated in Fig. 7. (a) torus, δ = 2.7. (b)
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period-4 solution, δ = 2.763. (e) chaos, δ = 2.79.

Fig.7 (b), and frequently trapped into periodic locking regions, see Fig. 7 (c). Such periodic solutions

become an “islet” chaotic attractor via period-doubling cascade, see Fig. 7 (d), and, sometimes, the

solution forms a folded torus, see Fig. 7 (e). From these observations, we conclude that a typical

torus-breakdown scenario [Matsumoto et al., 1993] exists in this system of coupled neurons.

3.3 Intermittency Responses

After a pitchfork bifurcation of IN(0D) (in area (6) or (7) of Fig. 4), we observe two saddle-type

periodic solutions, S(1D)s. Under certain initial conditions, we see a novel intermittency response:

the orbit stays for a while near one of the two S(1D)s (since an S(1D) has two stable manifolds

and one unstable manifold whose corresponding multiplier is slightly larger than unity). Thus, after

temporally staying at S(1D), the orbit escapes from S(1D). However, the orbit is immediately trapped

into another S(1D) after a very short chaotic transient, and behaves periodically for a while again, as

shown in Fig. 9 (a). This switching between the two S(1D)s are permanent, but each staying time

at either S(1D) cannot be estimated, perhaps due to the chaotic nature of the motion (in fact, the

maximum Lyapunov exponent of this attractor is +0.07).

This kind of intermittency is not related to tangent, period-doubling (flip), or the NS bifurcation.

Instead, it is related to pitchfork bifurcation. This phenomenon is not conformed to the types I–III
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intermittency classified in [Pomeau and Manneville, 1980]. Figure 9 shows the manifolds of an S(1D).

The Poincaré maps are slightly closer to the unstable manifold of the S(1D). Note that there also

exists an IN(0D) (stable) solution at this parameter value, but it has another basin of attraction.

Thus, this intermittency response can be everlastingly observed.

Similar phenomenon can be observed in the case of higher-dimensional ring-configuration of coupled

oscillators. Figure 10 shows some peculiar wave forms of six coupled oscillators. There are two

oscillations of different amplitudes where the switching between these oscillators is chaotic. This

phenomenon is also due to the intermittency response of S(1D)s. In this figure, we can see a temporal

in-phase synchronization between two states of the system in a short period of time.

3.4 Coalesce of Tori

As another impressive phenomenon related to the S solution, coalesce of tori (torus symmetry breaking

bifurcation) is observed from Eq. (11), see also Fig. 11. This phenomenon was also found in another

type of coupled neural oscillators [Borisyk, et al., 1995].

Two tori in Fig. 11 (a) are caused by crossing the NS bifurcation for S(0D) from area (11) to area

(12) in Fig. 4. In area (12), near the NS bifurcation curve BC, there exist an unstable saddle IN(1D),

a stable sink OUT(0D), and two S(2D)s with two stable tori. The tori approach each other as the

parameter δ decreases. In Fig. 11 (c), they are coalesced with the saddle orbit, and finally a torus

is generated and the saddle is separated from the torus as shown in Fig. 11 (d). Note that the NS

bifurcation for the IN-type solution (curve AB) does not affect this phenomenon.

In general, in nonlinear systems these tori meet with torus-breakdown and are changed to chaotic

solutions just before coalescing. To clarify this coalesce of plain tori, it is important to examine the

manifolds of the saddle IN(1D). This remains as an intensive research problem for future studies.

4 Controlling to Unstable Periodic Orbits

For some practical applications of artificial neural networks in information processing, such as solving

optimization problems and searching for associative memory, chaos seems to be effective. In many

other applications, however, chaotic system trajectories have to be stabilized, for example to an

unstable periodic orbit (UPO) embedded in the chaotic attractor [Chen, 1999, Chen & Dong 1998,

Ueta et al., 2001]. In particular, controlling UPOs is one of the many significant problems for neural

networks [Mizutani et al., 1998].

In this section, we discuss how a UPO embedded in a chaotic attractor of the coupled-neuron model

can be stabilized via feedback control. Since the mathematical model is known, we can calculate its

bifurcation parameter values or fixed/periodic points, by using the Poincaré map and related analytic

methods mentioned in Section 3.1, even though the target periodic solution is unstable.

In this attempt, the time-delayed feedback control [Pyragas, 1992] turns out to be suitable, since

we have accurate information about the target UPO, which is used as the reference signal. Differing

from [Pyragas, 1992], we feed the control input (stimuli) into the sigmoid function f based on the

additive neural dynamics (see Eq. (1) for a reason).
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condition. Small black circles are the Poincaré section points. (b) Phase portrait in the x1-y1 plane.

(c) Stable and unstable manifolds of S2(1D).
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Figure 10: A snapshot of the wave form xi in six coupled-neurons. c = 10, δ = 1.09, 1000 < t < 6000.

The average value of return time for a cycle is about 6.14 sec.
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Figure 11: Coalesce of tori. All points are projections of the Poincaré map on the x2-y2 plane. (q):

δ = 1.529. (b): δ = 1.528, (c): δ = 1.52774, (d): δ = 1.527, a = b = 10, c = 9, d = −2, ρx = 0,

ρy = −6.
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For simplicity, the control is added only to the x-components of the system. Thus, the controlled

system is

ẋi = −xi + f(axi − byi + ρx + δ(xi−1 + xi+1) +K(x∗i − xi))

ẏi = −yi + f(cxi − dyi + ρx − δ(yi−1 + yi+1)), i = 1, 2, · · · , n,

where x∗i are the corresponding x-components of the UPO andK > 0 is a control gain to be determined

(see Fig. 12).

In the previous section, we have seen the chaotic response in the case of six-oscillators, with c = 10

and δ = 1.09 (Fig. 10). At these parameter values, there is a four-dimensionally unstable in-phase

synchronized UPO (IN(4D)). The maximum multiplier of this UPO is 1.2058 (double roots), and it

is embedded within the chaotic attractor.

Figure 13 shows the time series of the controlled system response, where the control gain K = 2.0

was determined by trial-and-error. This control gain can also be determined by local stability analysis,

which however is too conservative in general. Simulations have confirmed that by using conservative

(sufficiently large) values ofK, the control performance and its robustness can be remarkably improved.

Since we can accurately calculate the UPO by solving Eq. (9), this control method might work

as well for any UPO by using a sufficient large value of K. Yet for a long-periodic UPO with high

precision, a huge memory is needed to store the UPO data. In the case of stabilizing an in-phase

synchronized oscillation in the ring-configuration of coupled oscillators, such memory is not needed in

order to stabilize the UPO. That is, we can use the following equation as the reference oscillator:

ẋ = −x+ f((a+ 2δ)x− by + ρx)

ẏ = −y + f(cx− (d+ 2δ)y + ρy).

This equation is part of Eq. (4), with xi−1 = xi = xi+1 and yi−1 = yi = yi+1 therein. Using the x-

component of the solution as the x∗ of this equation, the same control performance has been verified.

Figure 12 depicts this control scheme, and Fig. 13 shows its performance.

...

K K K

+++
−−−

...

Reference

Oscillator

Figure 12: Coupled neurons with the controller for stabilization of in-phase synchronized orbits.

5 Concluding Remarks

In this paper, we have investigated the rich dynamical behaviors and a simple yet effective feedback

chaos control method for a network of strongly connected neural oscillators. We have studied the
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Figure 13: (a) Time response. The controller is turned on at t = 250. (b) x1-y1 and (c) x1-x2 phase

portraits. Under control, the system states converge to the target orbit (thick curve).
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existence and stability of some lower-dimensional system periodic orbits, and simulated some sys-

tem bifurcation diagrams, chaotic motions, and synchronization phenomena. To this end, obtaining

dynamic diagrams of higher-dimensional systems remains a great challenge for future research.
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