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Can a Pseudo Periodic Orbit Avoid a Catastrophic Transition?
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We propose a resilient control scheme to avoid catastrophic transitions associated with saddle-
node bifurcations of periodic solutions. The conventional feedback control schemes related to
controlling chaos can stabilize unstable periodic orbits embedded in strange attractors or sup-
press bifurcations such as period-doubling and Neimark-Sacker bifurcations whose periodic or-
bits are kept existing through bifurcation processes. However, it is impossible to apply these
methods directly to a saddle-node bifurcation since the corresponding periodic orbit disappears
after such a bifurcation. In this paper, we define a pseudo periodic orbit which can be obtained
using transient behavior right after the saddle-node bifurcation, and utilize it as reference data
to compose a control input. We consider a pseudo periodic orbit at a saddle-node bifurcation in
the Duffing equations as an example, and show its temporary attraction. Then we demonstrate
suppression control of this bifurcation, and show robustness of the control. As a laboratory ex-
periment, a saddle-node bifurcation of limit cycles in the BVP oscillator is explored. A control
input generated by a pseudo periodic obit can restore a stable limit cycle which disappeared
after the saddle-node bifurcation.

Keywords: catastrophic transition, saddle-node bifurcation, unstable periodic orbit, pseudo
periodic orbit, suppression of bifurcation

1. Introduction

Since catastrophic transitions at tipping points are widely observed in complex systems of the real world,
detection of early warning signals for such transitions has been intensively studied [Scheffer et al. , 2009;
Scheffer , 2009; Chen et al., 2012]. But what can we do beyond the tipping points? This is the problem we
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consider in this paper. In particular, we propose a resilient control scheme available beyond tipping points
especially associated with saddle-node bifurcations in order to avoid catastrophic transitions.
Suppose that a dynamical system is represented by the following differential equation:

% = f(t>ma)‘)a (1)
where & € R" is the state, t is the continuous time, and f : R" x R — R™ is a C*°-class nonlinear map.
By varying the parameters A € RF, the structure of the flow (a family of solutions) may qualitatively
changes through a bifurcation. If an equilibrium point x* satisfying f(x*) = 0 encounters a bifurcation,
basically the stability of the point changes. Roughly speaking, classic control problems almost focus on
how to change the unstable equilibrium into a stable one, or how to retain the equilibrium stable against
parameters variation, disturbances, and noise.

A nonlinear system sometimes produces periodic motion. A limit cycle of an autonomous system is
generated, for example, by a supercritical Hopf bifurcation of the equilibrium, and represents oscillatory
behavior. By changing the parameter values, the limit cycle also meets bifurcations. When a transversal
section is provided as the Poincaré section, the dynamical behavior of the limit cycle is represented by
a map 7T called the Poincaré map on the section. For periodically forced systems, the Poincaré map is
obtained by a stroboscopic map observed with a constant time interval synchronized with the forcing
period. A fixed point &* of T satisfies &* = T'(x*), and corresponds to a periodic solution @(¢). The roots
of the characteristic equation with respect to the Jacobian matrix of T at this fixed point are called the
Floquet multipliers, and they determine the stability of the periodic solution, e.g., when one of them takes
—1, the objective limit cycle becomes unstable, and a new 2-periodic solution appears around the periodic
solution through a period-doubling bifurcation. When a couple of them take complex conjugates and its
radius is unity, the objective periodic solution also becomes unstable, and a quasi-periodic solution emerges
around the unstabilized cycle through a Neimark-Sacker bifurcation. Although we describe bifurcations of
autonomous systems in the next section, similar bifurcations appear in non-autonomous systems as well.

2. Stabilizing unstable periodic orbits

Given a strange attractor, countably infinite unstable periodic orbits (UPOs) are embedded inside. For
example, a period-doubling cascade, which is known as a route to chaos, leaves a lot of 2™-periodic UPOs
at the accumulating point of the successive period-doubling bifurcations, where m = 0,1,...,00. Ott,
Grebogi and Yorke [Ott et al., 1990] proposed an epoch-making paradigm called controlling chaos, or the
OGY method; namely they demonstrated that a tiny control input can stabilize a saddle-type UPO. By
taking the Poincaré mapping, the recurrence property of chaos makes the orbit to visit a neighborhood of
an unstable periodic point (UPP) corresponding to the target UPO, and a stable manifold of that point
leads the controlled orbit to UPO effectively.

On the other hand, Pyragas proposed another important concept of controlling chaos, called the
delayed feedback control (DFC) [Pyragas , 1992] where a continuous-time control input based on difference
between the current state and the delayed state is applied. The controlled system also has the ability to
seek a UPO autonomously from an appropriate initial condition. Unlike the OGY control, while it does not
requires detailed information about the location of the target UPO beforehand, we cannot predict which
UPO will be stabilized. The DFC controller for electrical circuits [Celka , 1994] can be realized with an
analog delay element [Pyragas , 2006] although its period should be determined by a preliminary analysis
or by trial and error. Theoretical issues on stability analysis and design of a suitable gain are not simple
since the controlled system becomes an infinite-dimensional dynamical system. Chen and Dong [Chen &
Dong , 1993] proposed a similar method, but the target UPO is not embedded in a chaotic attractor. It
is theoretically illustrated that the controlled orbit is autonomously conveyed into a target UPO which is
outside the chaotic attractor. The control schemes in terms of stabilizing UPO can be recognized as a linear
control problem near the target UPP. Chen et al. also compiled works on “bifurcation control” [Chen et al.,
2003] such as changing parameter values of an exiting bifurcation point, stabilizing a bifurcated solution
or branch, and delaying the appearance of the bifurcation. The approaches introduced in the literature are
basically to change the system design.



A saddle-node (SN) bifurcation is a typical codim-1 local bifurcation, and exhibits coalesce and disap-
pearance of two equilibria. This phenomenon is frequently used for explanation on catastrophe, hysteresis,
and bistability. For periodic solutions, by taking the Poincaré mapping, a couple of node-type and saddle-
type fixed points collide and disappear. Arnold’s tongue is edged by this bifurcation that is trackable since
one of the multipliers is equal to unity. In physical systems, the SN bifurcation is sometimes recognized
as a sudden shift of the behavior arising from the parameter variation. Many catastrophe, hysteresis, and
bistable models are explained qualitatively by existence of the SN bifurcations.

Suppressing local bifurcations has been intensively discussed for a decade from viewpoints of both
control engineering applications and bifurcation control [Ogorzalek , 1993; Chen , 1999]. The former is an
extension of controlling chaos when we locate a specific UPO in the given strange attractor. For discrete-
time systems, OGY-type control input is given by

u(k) = K(z(k) — ), (2)

where k € Z is an integer, and z* is a target UPO [Romeiras et al. , 1992].
Let *(t) € R™ with time t € R be a UPO of a continuous-time system. Then the control input of the
delayed feedback control, the external force control (EFC), or the linear state feedback control is given by

u(t) = K (x(t) — 2" (1)). (3)

Note that both control inputs Egs. (2) and (3) refer to certain information «* or *(t) which really exists
in the system itself. This fact induces an accompanied problems; how to find such reference information. To
compute sufficient information about UPP or UPO, analytical methods [Diakonos et al., 1998] or numerical
methods with heuristic strategies [Ueta et al., 2000] are required. The DFC utilizes a delayed data x(t —7)
as a reference *(t), and has ability to seek a UPO autonomously. Also note that these feedback systems
can produce the periodic motion without a stationary parameter deviation as w(t) — 0 . In other words,
the system design is unchanged.

For period-doubling and Neimark-Sacker bifurcations, the objective periodic point corresponding to
the periodic solution survives through a bifurcation process although its stability is changed, i.e., the point
still exists after the bifurcation. Thereby the location or time series data of this point can be reference
information «* or «*(¢) for Eq. (2) or (3). With appropriate choice of the feedback gain, this target orbit
may be stabilized. In addition, the bifurcation can be suppressed if the reference information is given
adaptively as the parameter changes [Christini & Collins , 1996].

However, how about cases of SN bifurcations? As mentioned above, a couple of points vanish according
to a parameter variation. Therefore it is impossible to suppress SN bifurcations with the conventional
frameworks with Eqs. (2) and (3) as reference information does not exist any more after the bifurcations.
Dependable clues passed off. Note also that SN bifurcations occur not only for a stable node and a one-
dimensionally unstable saddle but also 5 and j + 1 dimensionally unstable saddles embedded in higher-
dimensional dynamical systems, where j is any positive integer; in a strange attractor, some of saddles
could be vanished by SN bifurcations with a parameter perturbation.

3. Local attraction after SN bifurcation

Before introducing an idea to suppress an SN bifurcation, let us consider an example of such a bifurcation
in the Duffing equations [Guckenheimer & Holmes , 1983; Thompson & Stewart , 1986] as follows:

Ccll—f:y, %:ky—x?’—i-Bg—i-Bcost, (4)
where k, By and B are the parameters. We set k£ = 0.2, By = 0.27 and B = 0.28 nominally, then there
exist three periodic solutions (see Fig. 1) [Kawakami , 1984]. The large and small periodic orbits are
stable, and middle one is one-dimensionally unstable. Represent the solution as x(t) = ¢(t, xp), where
z(0) = ¢(0,x0) = xo. By taking the Poincaré map T x(t) — x(t+27) = ¢ (t+ 27, x(), a periodic solution
with period 27 is converted into a fixed point; S7 and So are stable fixed points, and D is a saddle-type
fixed point. They are connected through an unstable manifold W* of D (see the red line in Fig. 1). The
stable manifold W# of D splits the state space into basins of attraction for S; and Sy (the blue line in



Fig. 1. Phase portrait of Egs. (4) with k£ = 0.2, Bp = 0.27 and B = 0.28.

Fig.1); the shaded region As is the basin of attraction for Sy. The process of an SN bifurcation is shown in
Fig. 2. As we increase the parameter By, the inner two fixed points S5 and D gradually approach each other
and eventually vanish at an SN bifurcation point with By = B ~ 0.27853, and =*(0) = (—0.425,0.413).
Accordingly, the basin of attraction As is cleared away, and the whole state space belongs to the basin of
A (see Fig. 2(c)).
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Fig. 2. Phase portraits before and after an SN bifurcation (kK = 0.2 and B = 0.28).

Right after the SN bifurcation, even though a couple of periodic orbits have disappeared, a certain
trajectory stays comparatively longer around the point corresponding to the coalescence of D and So
which existed before the SN bifurcation. For example, Fig. 3 shows that a trajectory starting from an
appropriate initial point takes many turns around the periodic orbit corresponding to Se which existed
before the bifurcation, then it finally converges to a periodic orbit corresponding to S;. Hereafter, we call
this solution an attractor ruin [Kaneko & Tsuda , 2003], that might be related to a slow perpetual point
[Prasad , 2015].

Figure 4 depicts the transient time of each initial point x( in the state space with By = 0.28. The gray
scale expresses how long the orbit spends before converging into S7. We notice that the darker area looks
like the basin of attraction shown in Fig. 2 (b). Though all orbits go S asymptotically, the distribution of
the transient time is uneven in the state space, i.e., orbits starting from the darker area spend more time
before the convergence.

Let P be a point which location is where S and D coalesced together at By = Bj. Consider the orbit
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Fig. 3. Trajectory after the SN bifurcation, where k = 0.2, By = B = 0.28, and «(0) = (—0.3,0.3).
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Fig. 4. Transient time before converging to S1, starting from different initial conditions in the state space.
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Fig. 5. Minimum distance between mapped points of T and P, that characterizes temporary attraction for the attractor ruin
P, after the SN bifurcation with £ = 0.2, and By = B = 0.28.

starting from P for one cycle 27 of the force B cost in Egs. (4); (t) = ¢(t, P), 0 < t < 27. It does not form
a periodic orbit, but ¢ (27, P) is close to ¢(0, P). We define a pseudo periodic orbit (PPO) &(t) according
to the attractor ruin by bridging the gap with a tiny impulse g such that ¢(27 40, P) = (27— 0, P) + g,
where g = (0, P) — ¢(2m — 0, P). The fixed point of the PPO &(t) is P.

Figure 5 visualizes min ||P — ¢ (27k, xo)|| subject to k = 0,1,...,200, for each initial state xy in the



state space. The orbit starting from the blue area visits &(t) closely for some time during 0 < ¢ < 400,
and this area entirely covers the darker area in Fig. 4. From Figs. 3, 4, and 5, it is approximately ensured
that the orbit starting from the darker area in Fig. 4 stays near &(t) for a comparatively long time. In other
words, there exists a certain temporary basin of attraction for PPO &(t) even after the SN bifurcation.

4. Catastrophe suppression control

Since not a few orbits autonomously visit areas near the PPO (¢) without any control input, this property
can be used for preventing catastrophic transitions after SN bifurcations. Moreover, since such orbits
approaches &(t) transiently, there is a possibility that a small control input might stabilize &(t). Thus, a
controller utilizing both of the features above should be able to suppress the catastrophic transition just
after an SN bifurcation by using only a small amount of control energy.

The conventional methods of suppressing bifurcations are applicable to period-doubling bifurcations
[Fang , 1993; Romeiras et al. , 1992] and Neimark-Sacker bifurcations [Ueta & Kawakami , 1995] since
existence of UPOs are guaranteed after these bifurcations. The conventional methods rely entirely on this
existence of the fixed points according to the UPO.

Now let us show how an SN bifurcation is virtually suppressed. If mapped points by T approach closely
enough to P, i.e.,

|1P — (27, zo)|| <, (5)
is satisfied for some j and € with 0 < € < 1, the control input
u(t) = K(x(t) — (1)) (6)

is applied to the system such that da/dt = f(t, )+ u(t). The checking mechanism for the inequality (5) is
referred as a watcher. Through this control, the periodic orbit corresponding to P, which had disappeared
once by the SN bifurcation, is restored and stabilized with suitable choice of K. Note that this control
scheme does not affect other coexisting attractors.
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Fig. 6. Suppression of the SN bifurcation with € = 0.1. For the trajectory starting from x;, the control is not applied until
arriving at xc.

Figure 6 shows the control response. We choose K = kI, where k = 0.3, and [ is the 2 x 2 identity
matrix. In Fig. 6, an initial point x, is out of the temporary basin of attraction for P, and the orbit
monotonously converges to S; without control. On the other hand, another orbit starting from x; is in
the temporary basin of attraction for P. Even without the control, the orbit gradually and autonomously
approaches x. near P. In fact, at ., the inequality (5) is satisfied, then the watcher starts the control. The
orbit immediately converges to &(t) corresponding to P with a small-amplitude control input. No effect



occurs for the large periodic orbit with S'. Figure 7 shows the time response of the control input for the
orbit starting from x; in Fig. 6. At ¢ ~ 24, the orbit reaches x. and the control gets started. Although
periodic ripples remain in the control input because &(t) does not actually exist, they are negligibly small.
This method is an extension of EFC. Instead of the UPO x*(¢), we use the PPO &(¢).
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Fig. 7. Time response of the suppression control for the trajectory starting from .
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Fig. 8. Amplitudes of the control inputs. (a) Change of By with K = I and x = 0.3. (b) Change of the control gain with
By = 0.28.

To show the robustness of this method, we will confirm the dependency on the parameters and the
control gain. Figure 8(a) shows the variation in the control amplitude for By when we use the same PPO.
Although the amplitude of ripples in w(t) grow linearly as By increases from the bifurcation point, the
PPO is well stabilized and the ripples are kept small. When we decrease By from the bifurcation point in
Fig. 8(b), the original stable periodic orbit corresponding to Se changes to the stable PPO with a small
periodic contorol input. Figure 8(b) plots the amplitude of the control input as x changes for By = 0.28.
Both u, and u, are restricted to be small with an appropriate choice of x € [0.2,0.4].



To illustrate the noise margin of the control, we add a white noise to the state when the control input
is evaluated so that w(t) = K(x(t) + Ln(t) —x(t)), where n(t) = (n1(t), n2(t)) is a noise vector, n; € [0, 1],
j = 1,2 is a uniform random number, and L is a parameter that shows the noise strength. Assume that n(t)
is updated every tick of the numerical integration. We use the Runge-Kutta method with a tick At = 0.01.
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Fig. 9. Phase portraits and time responses for noisy control inputs with (z(0),4(0)) = (—=1.0, —1.0). (a): L = 1072, and (b):
L=10""

Figure 9 shows time responses of control inputs with noisy state signals. The setup of the parameters
and controller are the same as Fig. 6. We apply the control input from the initial point continuously. The
figures show that the controlled state converges to &(¢) even when the control input w(¢) contains small
ripples.

Because the control input Eq. (6) is proportional to the difference between the current state and PPO,
a large-amplitude control input might be generated if the controller is always switched on. Figure 10 shows
full-time controlled trajectories starting from different initial points. These quick responses and global
stability can be achieved if one admits such big-amplitude control inputs.
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Fig. 10. Trajectories starting from different initial points. The control (6) is always activated with x = 0.3.

5. Restoration of a limit cycle after an SN bifurcation

Our method is also applicable for autonomous systems. Here we demonstrate bifurcation suppressing
control of a limit cycle in the Bonhéffer-van der Pol (BVP) oscillator [FitzHugh , 1961; Nagumo et al.



, 1962] both numerically and experimentally. With appropriate setting for the BVP oscillator, we have
normalized equations as follows [Ueta et al. , 2004]:

dx dy
@ _ h Y _ g0y
7 y + tanh vz, it T — oy (7)

Assume that v =~ 1.665. Around o = 0.828, there are stable and unstable limit cycles, and they approach
each other and meet at an SN bifurcation as ¢ increases further. Figure 11 shows the phase portrait just

before the SN bifurcation. Note that the correspoinding parameters are L = 50[mH]|, C' = 0.1 [uF], R = 4.7
(k€.
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Fig. 11. Limit cycles just before their saddle-node bifurcation in the BVP oscillator.
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Fig. 12. A restoration control of the limit cycle with v = 0.8286 in the laboratory experiment. The horizontal and vertical

axes: 1 [V/div]. (a) Just after the SN bifurcation of limit cycles, we have a stable equilibrium point. (b) The controller (6)
restores the limit cycle.

At 0 = 0.8286, no limit cycle survives, and the orbits starting from almost all the initial points will be
eventually absorbed into one of sink equilibria. However, orbits starting from large initial values wander
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Fig. 13. Time responses of the control. The horizontal axis: 2 [msec/DIV]. Upper: Capacitor voltage corresponding to z in
Egs. (7) with the vertical axis: 2[V/div]. Lower: Injection current corresponding to the control input with the vertical axis:
0.2 [mA/div].

around the attractor ruin of limit cycles many times like Fig.3. Although the PPO can be applied as in
the previous section, here we try to define another type of a simpler PPO for this problem as a variation
more appropriate for laboratory experiments. We recorded one-cycle time series of x(t) of the stable limit
cycle at o = 0.8285 (before the bifurcation) as a PPO. If we apply Eq. (6) with this PPO to the system
at o = 0.8286 (after the bifurcation), it is expected that the limit cycle can be restored by a small control
input. We provide a control gain in Eq. (6) as

o Ii110
= (00),

that is, the control input reffers only the state z with x € R.

In the laboratory experiment, we used the controller by a LPC4088 (NXP semiconductors) to compute
the difference between the voltage measured in real-time and the time series of the PPO stored in the
memory, where the sampling rate is 50 [kHz]. We chose a control gain x1; = 0.071 corresponding to a
10 [k resistor, and control input is realized as a current-injection source. Figure 12(b) shows a restored
limit cycle with physical parameters according to ¢ = 0.8286 where there is no limit cycle without any
control. Figure 13 shows time series data of the restored limit cycle and the control input. Thereby we have
demonstrated that a tiny periodic input restores a limit cycle at the parameter value where the system
does not possess any limit cycle. In this experiment, we did not care about the watcher which should be
used to detect sufficient approach of the trajectory to the target PPO because there is no another stable
attractor in the controlled system.

6. Conclusion

We have proposed a resilient control scheme to suppress SN bifurcations. If the PPO information is provided
adequately, a periodic orbit remains almost the same with a tiny control input even if the system meets an
SN bifurcation. Both numerical and experimental results demonstrated robustness of the method. Since
SN bifurcations are deeply related to the intermittent chaos, suppression of the chaotic bursting behavior
by this method is a possible application.
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