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Abstract

A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising

machine can be used to solve combinatorial optimization problems. Both theoretical

and experimental investigations into the performance of DOPO networks have been

presented previously. However a problem remains, namely that the dynamics of the

DOPO network itself can lower the search success rates of globally optimal solutions

for Ising problems. This paper shows that the problem is caused by pitchfork bifur-

cations due to the symmetry structure of coupled DOPOs. Some two-parameter bi-

furcation diagrams of equilibrium points express the performance deterioration. It is

shown that the emergence of non-ground states regarding local minima hampers the

system from reaching the ground states corresponding to the global minimum. We

then describe a parametric strategy for leading a system to the ground state by actively

utilizing the bifurcation phenomena. By adjusting the parameters to break particular

symmetry, we find appropriate parameter sets that allow the coherent Ising machine to

obtain the globally optimal solution alone.
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1. Introduction

Recently, Yamamoto et al. have developed a practical coherent Ising machine

(CIM) by utilizing the criticality of an injection-locked laser [1, 2, 3] to find good ap-

proximate solutions of NP-hard problems [4]. A CIM can solve these problems by us-

ing the binary phase of an optical oscillator to represent the Ising spin. Such a machine

has already been realized by applying a laser network that consists of degenerate opti-

cal parametric oscillators (DOPOs) and a measurement-feedback field-programmable

gate array circuit, and its performance has been evaluated in laboratory experiments

[2, 5, 6, 7]. It has been confirmed that a lot of trials found the global-optimal solu-

tions, but some trials got stuck at local optima. Therefore, the probability of finding

the global-optimal solutions is less than 100% [5, 6, 7, 8].

Wang et al. presented a mathematical model of a CIM based on c-number Langevin

equations [8, 9]. Stability analysis of the two-coupled model proves that a bifurcation

produces the correct solutions to the Ising problem of two spins with antiferromagnetic

coupling. On the other hand, the MAX-CUT problem, which is the problem of finding

a maximum cut in a given graph, is a well-known NP-hard problem [10] that has vari-

ous applications in addition to its theoretical importance [11]. By taking Ising models

in the form of non-directional and unweighted graphs, a CIM can solve the MAX-

CUT problem under appropriate circumstances. The validity of a CIM as a MAX-CUT

problem solver has been examined both experimentally and numerically [6, 7, 12]; the

results provide empirical evidence of good approximation performance that is equiva-

lent to or better than that of simulated annealing but requiring much less computation

time. These results show that the CIMs are aptly applicable to high-speed computation

for various combinatorial optimization problems. However, CIM performance can be

disrupted by local-optimal solutions that might be due to not only the machine scheme

but also to its dynamical properties.

A study of a cubic graph with eight vertices confirmed that steady states corre-

sponding to local-optimal solutions were produced by bifurcation phenomena near but

less than the oscillation threshold of a DOPO [9]. With further increase of its pump rate,

the ground state corresponding to the global-optimal solution emerged. Ideally, we ex-
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pect that a CIM converges to ground states corresponding to global optima. However,

many local-optimal points appear via various bifurcation phenomena caused by in-

creasing the pump rate, and the global-optimal points co-exist with these local-optimal

ones in the state space. In general, we cannot expect a large domain of attraction to be

associated with the global-optimal points. Therefore, it is difficult to specify initial val-

ues from which the CIM can find steady states corresponding to global-optimal points.

Thus, the probability of success drops below unity. The aforementioned dynamical

behavior should be related to the bifurcation phenomena and multi-stability that are

typically observed in nonlinear dynamical systems [13], thus a thorough investigation

of bifurcations in CIMs may give a clue why this performance deterioration occurs.

In the present paper, we analyze bifurcation phenomena in DOPO networks. We be-

gin by describing a particular symmetry property of a transformation-invariant DOPO

model. Next, we focus on the bifurcation structures of single and coupled DOPOs with

various pump rates. By visualizing bifurcation structures, we clarify the critical pump

rate and its relationship with CIM performance. Finally, we discuss a new control

strategy to improve CIM performance.

2. Mathematical model of DOPOs

A DOPO with a measurement and feedback scheme is described by the following

c-number Langevin equations [6, 7]:

dc =
(
−1 + p − c2 − s2

)
cdt +

1
As

√
c2 + s2 +

1
2

dW1,

ds =
(
−1 − p − c2 − s2

)
sdt +

1
As

√
c2 + s2 +

1
2

dW2,

(1)

where c and s are the normalized in-phase and quadrature-phase components, re-

spectively, p is the pump rate, −1 and p − (c2 + s2) are the loss and saturated gain,

respectively, As is the saturation amplitude, and W1 and W2 are independent standard

Brownian motions. The differential equations without Brownian motions for an N × N
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sized network of DOPOs are expressed as follows [8, 9]:

d
dt

c j = f (c j, s j) +
N∑

l=1, l, j

ξ jlcl =
(
−1 + p − (c2

j + s2
j )
)

c j +

N∑
l=1, l, j

ξ jlcl,

d
dt

s j = g(c j, s j) +
N∑

l=1, l, j

ξ jlsl =
(
−1 − p − (c2

j + s2
j )
)

s j +

N∑
l=1, l, j

ξ jlsl,

(2)

where ξ jl is the coupling coefficient between nodes j and l. A detailed description of

the quantum models is shown in Refs. [14, 15].

If we define the state vectors c = (c1, c2, . . . , cN)⊤ and s = (s1, s2, . . . , sN)⊤, then

d
dt

c = f (c, s) + Ξc,

d
dt

s = g(c, s) + Ξs,

(3)

where
f (c, s) = ( f (c1, s1), f (c2, s2), . . . , f (cN , sN))⊤,

g(c, s) = (g(c1, s1), g(c2, s2), . . . , g(cN , sN))⊤.
(4)

We assume that the coupling coefficients are represented as a symmetric matrix Ξ as

follows (i.e., all connections are non-directional and mutual):

Ξ =



0 ξ12 . . . ξ1N

ξ21 0 ξ2N

...
. . .

ξN1 ξN2 0


, where ξ jl = ξl j, j = 1, 2, . . . , N. (5)

Let us consider the formulation of the Ising problem [16] from the DOPO model

given by Eq. (2). The Ising Hamiltonian is given as

H = −
∑

1≤ j<l≤N

ξ jlx jxl, (6)

where x j is the Ising spin and ξ jl is the interaction coefficient between nodes j and l.

We omit the Zeeman term for simplicity. The DOPO has a bistable oscillatory phase

corresponding to the spin mode x j = ±1 in the Ising Hamiltonian. If we define the spin

state x = (x1, x2, . . . , xN)⊤, then

x j =
c j

|c j|
. (7)
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From the above definitions, any node can be classified based on the sign of c j in the

steady state.

The Ising problem includes the MAX-CUT problem of determining the maximum

cut size in a graph [17]. The Ising Hamiltonian can be mapped to the cut size in the

MAX-CUT problem, thus the ground states of the Ising Hamiltonian correspond to

the maximum cut size. In general, these problems are known to be NP-complete. We

define the cut size cut(Ξ, x) as follows:

cut(Ξ, x) = −
N∑

j=1

N∑
l=1, l, j

J jlx jxl, x ∈ {+1, −1}, (8)

where x = (x1, x2, . . . , x j)⊤ ∈ {−1, +1}N represents the grouping expressed by cut-

ting. The term J jl is the generic element of the coupling matrix and is defined as J jl = 0

if ξ jl = 0 or J jl = 1 otherwise.

Equation (2) with negative coupling strength basically tends to keep the ground

state as the stable equilibrium point. When the DOPO network is in the ground state,

the relaxation function η(c) shown in Eq. (9) takes the smallest value.

η(c) =
N∑

j=1

(p − c2
j − 1) = −

N∑
j=1

N∑
l=1, l, j

ξ jl
cl

c j
. (9)

2.1. Symmetry of DOPO model

Let us consider a particular symmetry property of the DOPO model. An au-

tonomous system is written in the form dx/dt = f (x), where f : Rn → Rn is a

C∞-class function for x ∈ Rn. Assume that we have a transformation P such that

P : Rn → Rn,

x 7→ Px.
(10)

If the system satisfies

f (Px) = P f (x) ∀ x ∈ Rn (11)

then it is called P-invariant [18, 19].

First, we consider the single model as follows:

d
dt

z = f (z, p) =


(
−1 + p − (c2

1 + s2
1)
)

c1(
−1 − p − (c2

1 + s2
1)
)

s1

 , (12)
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where z = (c1, s1)⊤ is a state vector. Now In is an n × n identity matrix. If we define

the transformation P1 = −I2, then

f (P1 z, p) = f (−z, p) =

 −
(
−1 + p − (c2

1 + s2
1)
)

c1

−
(
−1 − p − (c2

1 + s2
1)
)

s1

 = P1 f (z, p), (13)

and thus

f (P1 z, p) = P1 f (z, p) ∀ c ∈ R2. (14)

As a result, P1 = I2 and P1 = −I2 are P-invariant for Eq. (12). In other words, there

exists a symmetry group Γ such that

Γ = {I2, −I2}. (15)

For −I2 we have the following invariant transformation:

(c1, s1) 7→ (−c1, −s1). (16)

Next, let us consider the DOPO network comprising N nodes. The state space is

defined as z = (c, s)⊤ ∈ R2N . Equation (2) is also represented as follows:

d
dt

z = F(z, p) + Ξz, (17)

where F : R2N → R2N is a C∞-class function that is defined as

F(z, p) =

 f (c, s, p) + Ξc

g(c, s, p) + Ξs

 . (18)

If we define the transformation PN = −I2N , then

F(PN z, p) =

 f (−c, −s, p) − Ξc

g(−c, −s, p) − Ξs

 . (19)

From the above results that f (−c, −s, p) = − f (c, s, p) and g(−c, −s, p) = −g(c, s, p),

clearly we have

F(PN z, p) = PN F(z, p). (20)

Consequently, PN = I2N and PN = −I2N are P-invariant for any network topology of

Eq. (2). In other words, for −I2N we have the following invariant transformation:

(c, s) 7→ (−c, −s). (21)
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This symmetry property affects the dynamical behavior directly; for instance, equilibria

may undergo pitchfork bifurcations [20]. For this symmetrical case, the bifurcations of

equilibria can be classified by group theory [21].

2.2. Bifurcations of a single DOPO

First, we investigate the single c-number Langevin equation as given by Eq. (12).

In this equation, at most three equilibrium points are possible: C0 = (0, 0), C+ =

(
√

p − 1, 0), and C− = (−
√

p − 1, 0). From Eq. (12), the Jacobian matrix is given by

D f (c1) =

 −1 + p − 3c2
1 − s2

1 −2c1s1

−2c1s1 −1 − p − c2
1 − 3s2

1

 , (22)

where c1 = (c1, s1)⊤ ∈ R2. By substituting the equilibrium points into Eq. (22), we

obtain the characteristic equations of these equilibrium points and subsequently their

eigenvalues:

µ(C0) = −1 ± p, µ(C±) = 2 − 2p, −2p. (23)

Thus, C0 is a stable equilibrium point at any p < 1, but becomes unstable at p = 1

through a supercritical pitchfork bifurcation. Thereupon, two equilibrium points C±

appear that are stable for any p > 1. The relationship between the parameter p and the

stability of the equilibrium points is given in Table 1.

Table 1: Equilibria and their stabilities for a single DOPO.
p < 1 C0: stable node
p = 1 supercritical pitchfork bifurcation of C0

p > 1 C0: saddle
C+, C−: stable nodes

2.3. Numerical bifurcation analysis of a DOPO network

When considering a network of DOPOs, detailed analysis of all equilibrium points

is not realistic because the dimension of the mathematical model of the network will

be too high. For example, in an n-node network, there are 2n + 1 equilibrium points

theoretically, namely 2n combinatorial patterns and the origin. Accordingly, we rely on

a heuristic algorithm to find the locations of the equilibrium points.
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Now, let us consider an n-dimensional continuous-time dynamical system as dc/dt =

f (c, λ), where c ∈ Rn and λ ∈ R. If c0 is an equilibrium point, then the following con-

dition is satisfied:

f (c0, λ) = 0. (24)

The stability of c0 is given by the Jacobian matrix ∂ f/∂c. If the eigenvalues of the

Jacobian matrix become zero or purely imaginary, the stability of c0 changes; there-

fore, equilibrium points can undergo bifurcations. The characteristic equation of the

equilibria is formulated as follows:

χ(µ) = det
(
∂ f
∂c0
− µIn

)
= 0, (25)

where the eigenvalue µ determines the target bifurcation type: µ = 0 for a saddle-node

or a pitchfork bifurcation and µ = e−ir for a Hopf bifurcation, where i is the imaginary

unit. The location of the equilibrium point c0 and the bifurcation parameter value λ are

obtained simultaneously for a given eigenvalue µ by solving the following equations

for c and λ:

Φ =

 f (c, λ)

χ(µ)

 = 0. (26)

This problem can be solved by using Newton’s method. Some efficient computational

schemes for Eq. (26) with relevant variational equations are given in [22, 23, 24, 25].

In the present study, we set N = 8 and assume that any node connects to three

other nodes [8, 9]. The network topology is illustrated in Fig. 1, where the node nu-

merals correspond to the index numbers of the state variables c and s. From Fig. 1, the

coupling matrix Ξ is

Ξ =



0 ξ ξ ξ 0 0 0 0

ξ 0 ξ 0 ξ 0 0 0

ξ ξ 0 0 0 ξ 0 0

ξ 0 0 0 0 0 ξ ξ

0 ξ 0 0 0 0 ξ ξ

0 0 ξ 0 0 0 ξ ξ

0 0 0 ξ ξ ξ 0 0

0 0 0 ξ ξ ξ 0 0



, (27)
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where we assume a uniform coupling strength ξ common to all edges. Note that each

node tends to take the same sign (x jxl > 0 ∀ ξ jl = ξ) when ξ > 0, whereas each node

tends to take the opposite sign to that of its connected nodes when ξ < 0. This topology

admits the following two symmetrical transformations:

(c1, c2, c3, c4, c5, c6, c7, c8, s1, s2, s3, s4, s5, s6, s7, s8) 7→

δ1(c, s) = (c2, c3, c1, c5, c6, c4, c7, c8, s2, s3, s1, s5, s6, s4, s7, s8),
(28)

(c1, c2, c3, c4, c5, c6, c7, c8, s1, s2, s3, s4, s5, s6, s7, s8) 7→

δ2(c, s) = (c1, c2, c3, c4, c5, c6, c8, c7, s1, s2, s3, s4, s5, s6, s8, s7),
(29)

where δ1 and δ2 are the transformation matrixes expressing the maps given in Eqs. (28)

and (29), respectively. Hence, we have the symmetry group

Γ = {I16, −I16, δ1, δ2}. (30)

Figure 1: Network diagram. Each circle and edge correspond to a DOPO and a mutual connection, respec-
tively.

In this network, the global-optimal and suboptimal solutions, namely the steady

states with the highest and second-highest cut size given in Eq. (8) for the MAX-CUT

problem, are listed in Table 2. These results were found by an exhaustive search.
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Table 2: Cuts with the highest and second-highest cut size for the network in Fig. 1. Each symbol for x j
corresponds to the sign of c j. In the network with eight nodes, there are 28 = 256 solution patterns including
overlapping.

Optimal solutions
No. (x1 x2 x3 x4 x5 x6 x7 x8) Cut size

i − − + + + + − − 16
ii − + − + + + − − 16
iii − + + − − − + + 16
iv + − − + + + − − 16
v + − + − − − + + 16
vi + + − − − − + + 16

Suboptimal solutions
No. (x1 x2 x3 x4 x5 x6 x7 x8) Cut size
vii − − − + + + − − 12
viii − − + − − − + + 12
ix − − + + + − − − 12
x − + − − − − + + 12
xi − + − + − + − − 12
xii − + + + − − + + 12
xiii − + + + + + − − 12
xiv + − − − − − + + 12
xv + − − − + + − − 12
xvi + − + − + − + + 12
xvii + − + + + + − − 12
xviii + + − − − + + + 12
xix + + − + + + − − 12
xx + + + − − − + + 12
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3. Bifurcation structure of network with common pump rates

Next, we study the parametric dependency of the coupled c-number Langevin equa-

tions in Eq. (2) by exploring bifurcation diagrams of the equilibrium points. In the

present study, we assume that the performance of the CIM is influenced mainly by

bifurcations of stable equilibria, and we describe the relationship between these bifur-

cation structures and the CIM performance.

Figure 2 shows the bifurcation diagram in the p-ξ plane, where the symbols pf

and G specify pitchfork and saddle-node bifurcations, respectively. The dashed lines

are bifurcation parameter sets for unstable equilibrium points. Each bifurcation set is

linear, and they are concentrated in (p, ξ) = (1, 0), which corresponds to the pitchfork

bifurcation of the single model. In region (i), there is the trivial equilibrium point

at the origin; this becomes unstable and pairs of equilibrium points emerge around it

through a supercritical pitchfork bifurcation. This scenario is caused by the state-space

symmetry shown in Section 2.1 [19, 26]. Next, twelve unstable equilibrium points

appear through two pitchfork bifurcations marked as pf+pf.

 0.6  0.8  1  1.2  1.4
-0.4

-0.3

-0.2

-0.1

 0

(i)

(ii) (iii)

Figure 2: Bifurcation diagram in the p-ξ plane (pf=pitchfork bifurcation; G=saddle-node bifurcation). The
dashed lines are bifurcation sets of unstable equilibrium points.
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-0.2

-0.15

-0.1

-0.05

 0

 0.5  0.6  0.7  0.8  0.9  1

(a) (b) (c)
(d)

(A)

(i)

(ii) (iii)

Figure 3: Enlarged part of Fig. 2.

-0.4
-0.2

 0
 0.2
 0.4

c 1

 0.7  0.8  0.9  1p 0.6 0.5

Figure 4: One-dimensional bifurcation diagram with ξ = −0.1. Solid and dashed lines represent stable and
unstable equilibrium points, respectively.

Figure 3 shows an enlarged region of Fig. 2. Along the dashed line (A), the number

of equilibrium points changes as p increases. Figure 4 shows a one-dimensional bifur-

cation diagram on line (A) in Fig. 3. This shows that stable equilibrium points appear

via the pitchfork and six saddle-node bifurcations. Figure 5 shows the locations of

equilibrium points in the c1-c2 plane for the points (a)–(d) in Fig. 3. Here, jO denotes

an equilibrium point and j indicates the number of unstable eigenvalues. At p = 0.7,

the trivial equilibrium point exists at the origin. As p is increased, many equilibrium

points emerge around the origin by bifurcations.

With further increase of p, it is hard to compute the equilibria analytically. Figure 6

shows the stable equilibrium points for various values of p as computed numerically.

We used a pseudo-random number generator [27] to create 50,000 initial points from

which to seek equilibria by Newton’s method. At p = 1.8, we found the 256 stable

equilibrium points that represent all possible solution patterns in a network with eight

nodes.
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-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5
-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

(a) p = 0.7 (b) p = 0.8

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5
-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

(c) p = 0.9 (d) p = 0.92

Figure 5: Equilibrium points for ξ = −0.1 with various values of p. Open and filled circles represent stable
and unstable equilibria, respectively.

Next, we evaluate the bifurcation structures with a view toward the MAX-CUT

problem solver. Note that the spin state x of the DOPO is presented as Eq. (7).

In Fig. 3, there is the trivial equilibrium point at the origin in region (i). In region

(ii) after the pitchfork bifurcation, the original equilibrium becomes unstable while

two stable equilibria appear around the origin. They take non-zero c j values; thus, the

DOPO network specifies two different cuts of the MAX-CUT problem. Table 3 lists the

coordinates of the equilibrium points and their cuts for the target network. In region

(ii), two equilibria are suboptimal. In region (iii), the six stable equilibrium points

listed below the dashed line in Table 3 appear via six saddle-node bifurcations. These

are the globally optimal solutions, and they co-exist with the two suboptimal points

above the dashed line. From Fig. 3, the globally optimal solution of the network with

ξ = −0.1 can be obtained with p > 0.9172.
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-1.5
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(a) p = 1, m = 8 (b) p = 1.2, m = 14 (c) p = 1.3, m = 44

-1.5

-0.5

 0.5

 1.5

c 2

-1.5 -1 -0.5  0  0.5  1  1.5
c1

-1.5

-0.5

 0.5

 1.5

c 2

-1.5 -1 -0.5  0  0.5  1  1.5
c1

-1.5

-0.5

 0.5

 1.5

c 2

-1.5 -1 -0.5  0  0.5  1  1.5
c1

(d) p = 1.4, m = 110 (e) p = 1.6, m = 112 (f) p = 1.8, m = 256

Figure 6: Locations of equilibrium points for ξ = −0.1. Here m indicates the number of stable equilibrium
points.
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The relaxation function values of equilibrium points in Eq. (9) are shown in Fig. 7.

The solid and the dashed lines represent stable and unstable equilibrium points, respec-

tively. The oscillation mode that minimizes the relaxation function corresponds to the

ground state of the Ising Hamiltonian given by Eq. (6). Line (B) that indicates η of

the equilibria no. 3–8 in Table 3 is smallest in p > 0.9172. This shows that 0O is the

ground state. Therefore, the choice of parameters affects the performance of the CIM.

-4

-3

-2

-1

 0.5  0.6  0.7  0.8  0.9  1p

(B)

Figure 7: Relaxation function values of each stable equilibrium point in Eq. (9).

4. Bifurcation structure of network with different pump rates

In Section 3, we confirmed that the DOPO network model with common pump

rates produces pitchfork bifurcations because it has particular symmetry. These bifur-

cations generate suboptimal solutions that co-exist with the globally optimal solution.

Meanwhile, symmetric pitchfork and symmetry-breaking bifurcations are encountered

widely in dynamical systems [28]. Golubitsky et al. used singularity theory to study

imperfect bifurcations in a symmetrical model [26] and clarified the bifurcation struc-

ture with theoretical approach in the presence of imperfections [18, 29]. Mann et al.

showed that a small parametric deviation from perfect symmetry replaces a pitchfork

bifurcation with a saddle-node bifurcation [30]. Therefore, in the present case, if we

were to adjust the parameters to remove the symmetry property, the resulting dynamics

might inhibit the pitchfork bifurcations and so avoid suboptimal solutions.

In this section, we focus on the symmetry of the network and reveal the bifurcation

structure when that symmetry is broken. Specifically, we investigate the bifurcation

structure when some of the pump rates are varied to break symmetry on purpose, and

discuss the potential of this approach for improving performance of the CIM. We as-
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sume that m is the index number of nodes or DOPOs in the network (see Fig. 1) and

that its pump rate is pm. The mathematical model is re-described as follows:

d
dt

c j =
(
−1 + p j − (c2

j + s2
j )
)

c j +

N∑
l=1, l, j

ξ jlcl,

d
dt

s j =
(
−1 − p j − (c2

j + s2
j )
)

s j +

N∑
l=1, l, j

ξ jlsl,

(31)

if j , m then p j = p, (32)

for some m ∈ (1, 2, . . . , 8). We have modified the DOPO network model so that the

pump rate pm of the node with index number m is now an adjustable parameter as

opposed to having a common parameter p for all nodes. Hence, the system loses the

symmetry property δ1 or δ2 in Eq. (30). Note that we consider only m = 1, 4 and 7

herein because the other cases have entirely the same bifurcation structure because of

the graph isomorphism corresponding to the network topology.

Figure 8 shows the bifurcation diagram in the p-p1 plane. In particular, the diago-

nal line corresponds to line (A) in Fig. 3. The bifurcation curves split the whole region

into subregions (iv)–(vii). In region (iv), all nodes converge to the origin. By a pitch-

fork bifurcation, two symmetrical stable equilibrium points are generated in region (v).

When the pump rate increases further, six new equilibrium points emerge in region (vi)

via saddle-node bifurcations. They co-exist with the two aforementioned equilibrium

points. Their order of appearance corresponds to that found previously [8]. From Ta-

bles 2 and 3, note that the equilibrium points that emerge in regions (v) and (vi) are the

suboptimal and globally optimal solutions, respectively.

Let us consider the case of nondiagonal parameter values, namely p , p1. Fig-

ure 8(b) shows an enlarged region of Fig. 8 (a). The suboptimal solutions change to

unstable equilibrium points in region (vii) via saddle-node or pitchfork bifurcations.

This means that a CIM can always pick up the globally optimal solution for the target

network in region (vii). Line (C) separating regions (v) and (vii) represents the param-

eter set for which the equilibrium point has a zero in-phase component, and c j takes

different signs on either side of this line. The stabilities of equilibria on both regions (v)

and (vii) are the same because no bifurcations occur, so the solution found by the CIM
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changes without any local bifurcations. Hence, the cut alters to the other cut which

corresponds to the globally optimal solution without any bifurcation phenomenon for

the network topology.
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(C
)

(b) Enlarged diagram

Figure 8: Bifurcation diagrams in the p-p1 plane (m = 1). (b) shows an enlarged region of (a). Suboptimal
solutions xx and vii exist in the regions (v) and (vi).

In Fig 8, some bifurcation parameter sets meet at the points (e), (f), and (g). In

particular, a codimension-two bifurcation [22, 31, 32] is observed at points (e) and

(f). To explain these structures, we employ an equilibrium manifold in R3. Figure 9

shows sketches of the bifurcation structure around (e) and (f), where the horizontal and

vertical axes represent p and p1, respectively.

Around cusp point (e), the manifold of the suboptimal solutions is independent of

the cusp structure of the globally optimal solutions, and thus suboptimal solutions do

not disappear around here. Hence, the suboptimal solutions co-exist with the globally

optimal solutions. The manifold of the globally optimal solutions and unstable equilib-

rium points makes a cuspidal structure with two saddle-node bifurcations. Therefore, if

the globally optimal solutions undergo a saddle-node bifurcation, it jumps catastrophi-

cally to a suboptimal solution [13, 33]. Around cusp point (f), the stable and unstable

manifolds have the hysteretic structure shown in Fig. 9(b). There are three equilibrium

points, namely the two stable ones and the unstable one between the two saddle-node

bifurcations. If they undergo bifurcation, another catastrophic jump occurs.
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Stable equilibrium points
(Suboptimal solution)

Stable equilibrium points
(Globally optimal solution)
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(Suboptimal solution)
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Parameter set with 

(b) Cusp point (f)

Figure 9: Equilibrium manifolds around cusp points (e) and (f). Three saddle-node bifurcation sets make
two cusp structures. Two bifurcation curves intersect at the cusp point, thus a codimension-two bifurcation
occurs.

Figure 10 illustrates the bifurcation structure and steady states around point (g). In

the upper part of the figure, region (vii) is enclosed by a pair of bifurcation sets, each

involving a supercritical and a subcritical pitchfork bifurcation. In this region, the sub-

optimal solutions become unstable and the globally optimal solutions appear through

the supercritical pitchfork bifurcation. The saddle-node bifurcation that generates the

globally optimal solutions approaches the pitchfork bifurcation curve at point (g). This

is a singular point that connects the supercritical and subcritical pitchfork bifurcations.

Consequently, the three bifurcation curves meet at point (g). Meanwhile, the subop-

timal solution becomes an attractor via the subcritical pitchfork bifurcation again, but

disappears via saddle-node bifurcation (D) in Fig. 9(b).

supercritical pitchfork bif. subcritical pitchfork bif.

Saddle-node bif.

Unstable equilibrium point

Stable equilibrium point
(Globally optimal solution)

Stable equilibrium point
(Suboptimal solution)(g)

(vii)
Diagonal line

Figure 10: Steady-state structure around supercritical and subcritical pitchfork bifurcations.

19



Figure 11 shows the bifurcation diagrams for (a) m = 4 and (b) m = 7. For m = 4,

region (vii) is smaller in the upper part of the diagram but broader in the lower part

compared to the case for m = 1. Thus, we recommend configuring the pump rate as

p4 < p. By contrast, there is no region (vii) for m = 7, so the network cannot but

be attracted to the suboptimal solutions. Note that in region (vi) a CIM could settle

on either type of solution depending on the initial values because the globally optimal

solutions co-exist with the suboptimal solutions.
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Figure 11: Bifurcation diagrams in the p-pm plane. In the lower part of (a) for m = 4, region (vii) is broader
than it is in Fig. 8. By contrast, there is no attraction region (vii) for m = 7 in the specified parameter range.

From these results, we have confirmed the bifurcation structures of the origin, the

globally optimal and the suboptimal solutions in Fig. 8 for m = 1, 4, and 7. The

shapes of regions (v) and (vi) depend on the index number m. In relation to improving

CIM performance, the shapes provide important information for establishing a control

strategy. If each node is pumped sufficiently, adjusting p1 is an effective way to avoid

suboptimal solutions. For m = 4, p4 should be lower than the common pump rate p.

However, the pump rate p7 has no effect on CIM performance for p < 1 and p7 < 1

because region (vii) does not exist. In summary, it is important to determine which

nodes should be adjusted in which direction, and this requires a design scheme based

on the topological characteristic of the network.
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5. Conclusions

We have used numerical analysis to investigate bifurcation phenomena in a DOPO

network intended as an Ising problem solver. We began by proving particular sym-

metry of a P-invariant DOPO model. If the network has a common pump rate, then

the system has symmetry group Γ = {I2N , −I2N , δ j}. In particular, δ j is a symmetric

transformation involving an exchange of nodes the identify of which depends on the

network topology. Next, we investigated the stability and bifurcations of the DOPO

model in conjunction with explaining the numerical analysis process for detecting the

equilibrium points and their bifurcations.

In the single model, the DOPO has only three equilibrium points, namely the origin

and origin–symmetric-pair attractors. The origin undergoes just one pitchfork bifurca-

tion at p = 1. The pair attractors that have positive and negative normalized in-phase

components are generated through this bifurcation. They signify spin modes and re-

main as stable attractors for the pump rate p > 1.

Next, we analyzed eight coupled DOPOs numerically. In the network model, pitch-

fork and saddle-node bifurcations generate various attractors denoting spin configura-

tions. In fact, for a sufficiently large pump rate, the model has 28 = 256 equilibrium

points that are all solutions of an eight-bit combinatorial problem. However, the ground

state of the target network appears at p = 0.9172, so the CIM would require the pump

rate to be set larger than an appropriate value so that the stable equilibrium point corre-

sponding to the globally optimum solution exists. This value depends on the topology

and the coupling matrix Ξ of the objective Ising problem. However, non-ground states

also appear in a DOPO network in which the pump rate is common to all nodes, in

some cases even before the emergence of the ground states. In the target network, they

co-exist with the ground state at p > 0.9127. Hence, the CIM might locate a subopti-

mal solution, meaning that we cannot avoid suboptimal solutions by using a common

pump rate. This circumstance reduces the probability of the CIM succeeding.

To find the parameter set for which the CIM locates only the ground state, we re-

moved the assumption of a common pump rate. Specifically, we made the pump rate pm

of specific node m an adjustable parameter rather than have a common parameter p for
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all nodes. By doing this, the symmetry properties disappear and symmetry-breaking

bifurcations are observed. From the bifurcation diagram in the p-pm plane, we con-

firmed that the non-ground states become unstable through pitchfork and saddle-node

bifurcations. Hence, these results imply the existence of parameter sets for which the

DOPO network always adopts the ground state. From the analysis results, we suggest

that our strategy improves the probability of locating a globally optimal solution be-

cause adjusting the pump rate of an appropriate node can avoid local-optimal solutions.

However, the efficacy of this strategy depends on which pumps are adjusted and how.

Acknowledgments

This research was funded by the ImPACT Program of the Council for Science,

Technology and Innovation (Cabinet Office, Government of Japan), JSPS KAKENHI

Grant No. 15H05707, 16K18107, and JST CREST, Grant No. JPMJCR14D2, Japan.

References

[1] A. Marandi, Z. Wang, K. Takata, R. L. Byer, Y. Yamamoto, Network of time-

multiplexed optical parametric oscillators as a coherent Ising machine, Nat Pho-

ton 8 (12) (2014) 937–942.

[2] K. Takata, S. Utsunomiya, Y. Yamamoto, Transient time of an Ising machine

based on injection-locked laser network, New Journal of Physics 14 (2012)

013052. doi:10.1088/1367-2630/14/1/013052.

[3] J. C. Gonzalez-Henao, E. Pugliese, S. Euzzor, S. F. Abdalah, R. Meucci, J. A.

Roversi, Generation of entanglement in quantum parametric oscillators using

phase control, Scientific Reports 5 (2015) 13152.

[4] F. Barahona, On the computational complexity of ising spin glass models, Journal

of Physics A: Mathematical and General 15 (10) (1982) 3241.

[5] K. Takata, A. Marandi, R. Hamerly, Y. Haribara, D. Maruo, S. Tamate, H. Sak-

aguchi, S. Utsunomiya, Y. Yamamoto, A 16-bit Coherent Ising Machine for One-

Dimensional Ring and Cubic Graph Problems, Scientific Reports 6 (2016) 34089.

22



[6] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi,

P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara,

K.-i. Kawarabayashi, K. Inoue, S. Utsunomiya, H. Takesue, A coherent Ising

machine for 2000-node optimization problems, Science 354 (6312) (2016) 603–

606. doi:10.1126/science.aah4243.

[7] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Ta-

mate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M.

Fejer, H. Mabuchi, Y. Yamamoto, A fully programmable 100-spin coherent

Ising machine with all-to-all connections, Science 354 (6312) (2016) 614–617.

doi:10.1126/science.aah5178.

[8] Z. Wang, A. Marandi, K. Wen, R. L. Byer, Y. Yamamoto, Coherent Ising machine

based on degenerate optical parametric oscillators, Physical Review A 88 (6)

(2013) 063853 (9 pages). doi:10.1103/PhysRevA.88.063853.

[9] Z. Wang, Coherent Computation in Degenerate Optical Parametric Oscillators,

Ph.D. thesis, Stanford University, Stanford University, Stanford, CA 94305 USA

(2015).

[10] R. M. Karp, Reducibility among Combinatorial Problems, in: Complexity of

Computer Computations, Springer US, Boston, MA, 1972, pp. 85–103.

[11] M. X. Goemans, D. P. Williamson, Improved Approximation Algorithms for

Maximum Cut and Satisfiability Problems Using Semidefinite Programming,

Journal of the ACM 42 (6) (1995) 1115–1145. doi:10.1145/227683.227684.

[12] Y. Haribara, S. Utsunomiya, Y. Yamamoto, A coherent ising machine for MAX-

CUT problems: Performance evaluation against semidefinite programming and

simulated annealing, in: Principles and Methods of Quantum Information Tech-

nologies, Vol. 911 of Lecture Notes in Physics, Springer, Japan, 2016, Ch. 12, pp.

251–262.

[13] Y. Kuznetsov, Two-parameter bifurcations of equilibria in continuous-time dy-

namical systems, in: Elements of Applied Bifurcation Theory, Vol. 112 of Ap-

23



plied Mathematical Sciences, Springer-Verlag New York, 2004, Ch. 8, pp. 295–

405.

[14] T. Shoji, K. Aihara, Y. Yamamoto, Quantum model for coherent ising machines:

Stochastic differential equations with replicator dynamics, Phys. Rev. A 96 (5)

(2017) 053833. doi:10.1103/PhysRevA.96.053833.

[15] A. Yamamura, K. Aihara, Y. Yamamoto, Quantum model for coherent ising ma-

chines: Discrete-time measurement feedback formulation, Phys. Rev. A 96 (5)

(2017) 053834. doi:10.1103/PhysRevA.96.053834.

[16] S. Utsunomiya, K. Takata, Y. Yamamoto, Mapping of Ising models onto

injection-locked laser systems, Optics Express 19 (19) (2011) 18091–18108.

doi:10.1364/OE.19.018091.
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