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Abstract This letter presents an experimental confirmation of controlling the chaotic

behavior to a target unstable periodic orbit when the periodically switched nonlinear circuit

has a chaotic attractor. The pole assignment for the corresponding discrete system derived

from such a non-autonomous system via Poincaré mapping works effectively, and the control

unit is easily realized by the window comparator, sample-hold circuits, and so on.

Index terms: Chaos, control of chaos, periodic switch, nonlinear circuit.
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1 Introduction

Controlling chaos might be one of the effective engineering application of chaos(as surveyed

in [Chen, 2000]). In the piecewise linear systems, there have been numerous theoretical and

experimental investigations on the controlling chaos[Poddar et al., 1995.1]

[Poddar et al., 1995.2, Poddar et al., 1998, Bernardo & Chen, 2000, Bueno & Marrero, 2000,

Saito & Mitsubori, 1995, Tsubone & Mitsubori, 1998, Kousaka et al., 2001.1]. For example,

[Poddar et al., 1995.1, Poddar et al., 1995.2, Poddar et al., 1998, Bernardo & Chen, 2000]

[Bueno & Marrero, 2000] showed theoretical and experimental implementation for DC-DC

power converters. Since current or voltage controlled converters have wide industrial applica-

tions, controlling chaos for such system is important from a practical point of view. On the

other hand, a controlled circuit which has been demonstrated in [Saito & Mitsubori, 1995,

Tsubone & Mitsubori, 1998] is a 2-dimensional circuit with piecewise linear hysteresis char-

acteristics. We have lately developed a simple hybrid system exhibiting chaos and realized

its chaos control[Kousaka et al., 2001.1]. This fact directly indicates that one-dimensional

return map is derived rigorously by using the exact solution of the circuit equation. By

adding a controller manipulating the slope around an unstable periodic point, controlling

chaos is almost achieved. These methods take positive advantage of the controlling chaos

in the low dimensional piecewise linear systems. However, if the system has a nonlinear

term with non-smooth characteristics or the dynamics of the system is described by high

dimensional piecewise linear system, there are no methods for controlling chaos in such sys-

tems. In order to control these systems, we proposed a control method of the chaos in the

periodically switched nonlinear systems and controlled the unstable periodic orbit in the nu-

merical simulation[Kousaka et al., 2001.2]. This method can be used as a general technique

for controlling chaos, however, the control function was not demonstrated in the laboratory

experiments. This letter presents the first report of the experimental control of the chaotic

attractor in the periodically switched nonlinear circuit. The controller is realizable because

all information about the circuit can be obtained from the composite Poincaré map, and the

control unit is easily realized by the window comparator, sample-hold circuits, and so on.

2 Circuit dynamics and switching action

Consider the experimental control of the Rayleigh type oscillator containing a periodic switch

shown in Fig.1. We assume that the nonlinear characteristics of the resistor is a cubic function
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as G(v) = −a1v + a3v
3. Figure 2 shows the behavior of the trajectory. An external periodic

signal of the positions a and b are alternatively closed. τ is the switching period and 0 ≤ θ ≤ 1

is the duty ratio of the switching, i.e., the period while the switch is turned toward a is

expressed by θτ , and 0 ≤ θ ≤ 1, in contrast, the period while the switch is turned toward b is

expressed by (1 − θτ). Note that the unstable fixed point exists locally on both sides of the

switching manifold. This means that the system flow is continuous inside each region, but is

discontinuous on the switching manifold. We fix the parameters as,

L = 50[mH], C1 = C2 = 0.1[µF], R0 = 0[Ω], R1 = 987[Ω], R2 = 281[Ω],

r = 70.7[Ω], E1 = 1.87[V], E2 = 2.1[V], R3 = 10.0[kΩ], R4 = 8.6[kΩ],

R5a = 766[Ω], R5b = 4.5[kΩ], a1 = 2.145 × 10−3, a3 = 6.9 × 10−5.

(1)

With these parameters, the system has a chaotic attractor via period doubling cascade as

shown in Fig. 3[Kousaka et al., 2001.2]. In this letter, we choose E2 as the control parameter

and consider the circuit realization of the controlling chaos.

3 Experimental Realization of Control Algorithm

We briefly explain the control method of the nonlinear system containing a periodic switch.

By utilizing the periodicity of the switching action, we first construct the local mapping, and

the Poincaré mapping is constructed as a composite map of local mappings. The derivative

of the Poincaré map is equal to the product of the derivative of each local maps. With above

parameters, the location(i∗[mA],v∗[V]) of the unstable fixed point is (−3.57, 0.36), and its

multipliers are (−0.25,−2.42), respectively. By using the following state feedback uk:

uk = G1(ik − i∗) + G2(vk − v∗). (2)

the unstable 1-periodic orbit in the chaotic attractor can be stabilized due to the linear control

technique with stable pole assignment. We now place the poles to realized dead-beat control.

From this, we can obtain the control gain G1 = 495.2 and G2 = 2.47. Mathematically, more

detailed discussion of the control method is given in [Kousaka et al., 2001.2].

Figure 4 shows the circuit diagram of the controller. The control unit is easily realized

by the window comparator, sample-hold circuits, and so on. When the following condition is

satisfied, the control is started.

|ik − i∗| < δ1, |vk − v∗| < δ2, (3)
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where we fix the δ-neighborhood of the target fixed point, δ1 = 0.1[mA] and δ2=0.1[V]. That

is to say, when the orbit reaches δ-neighborhood, then it is stabilized by applying the control

parameter perturbation described above.

4 Experimental Results and Conclusions

Figure 5 shows the laboratory simulation of the stabilized 1-periodic orbit.The impulsive wave

in Fig. 5(a) and (b) denote the period of the switching period τ . Figure 6 shows the transition

from the chaotic attractor to the 1-periodic orbit. From the experimental results, We find

out the robust about 5 percent perturbation in the input voltageE2, too.

The method proposed by [Kousaka et al., 2001.2] is a general technique of controlling

chaos in the interrupted electric circuit with a periodic switch. In the near future, we will try

to apply the developed method to higher-dimensional circuitry and the system which has m

periodic switches in the laboratory experiments.

References

[Bernardo & Chen, 2000] Bernardo, M. di & Chen, G. [2000] “Controlling Bifurcations in

Nonsmooth Dynamical Systems,” Controlling Chaos and Bifurcations in Engineering Sys-

tems, Ed. G. Chen, (CRC Press), Chap. 18, pp. 391-416.

[Bueno & Marrero, 2000] Bueno, R.S. & Marrero, J.L.R. Marrero. [2000] “Application of the

Ogy Method to the Control of Chaotic DC-DC Converters: Theory and Experiments,” in

Proc.IEEE/ISCAS, 369–372.

[Chen, 2000] Chen, G. [2000] “Controlling Chaos and Bifurcations in Engineering Systems,”

(CRC Press).

[Kousaka et al., 2001.1] Kousaka, T. Ueta, T. & Kawakami, H. [2001] “Chaos in a simple

hybrid system and its control,” Electron. Lett., 37(1), 1–2.

[Kousaka et al., 2001.2] Kousaka, T. Ueta, T. & Kawakami, H. [2001] “Chaos and Control

of Periodically switched Nonlinear Systems,” Latin American Applied Research Journal,

31(3), 211–218.

[Poddar et al., 1995.1] Poddar, G. Chakrabarty, K. & Banerjee, S. [1995] “Control of chaos

in the boost converter,” Electron. Lett., 31(11), 841–842.



International Journal of Bifurcation and Chaos (No. 6)

[Poddar et al., 1995.2] Poddar, G. Chakrabarty, K. & Banerjee, S. [1995] “Experimental

Control of Chaotic Behavior of Buck Converter,” IEEE Trans. Circuits and Systems,

42(8), 502–504.

[Poddar et al., 1998] Poddar, G. Chakrabarty, K. & Banerjee, S. [1998] “Control of chaos

in DC-DC converters,” IEEE Trans. Circuits and Systems, 45(6), 672–676.

[Saito & Mitsubori, 1995] Saito, T. & Mitsubori, K. [1995] “Control of chaos from a piecewise

linear hysteresis circuit,” IEEE Trans. Circuits and Systems, 42(12), 168–172.

[Tsubone & Mitsubori, 1998] Tsubone, T. & Saito, T. [1998] “Stabilizing and destabilizing

control for a piecewise-linear circuit,” IEEE Trans. Circuits and Systems, 45(2), 172–177.



International Journal of Bifurcation and Chaos (No. 7)

Figure captions

Figure 1: The Raleigh type oscillator containing a periodic switch.

Figure 2: Behavior of the trajectory.

Figure 3: Chaotic attractor.

(a) Phase plane.

(b) Time evolution of i.

(c) Time evolution of v.

Figure 4: Construction of the controller.

(a)The Rayleigh type oscillator containing a periodic switch and its Poincaré map.

(b)The control vector G1 and G2.

(c)The window comparator and the state feedback.

Figure 5: Stabilized 1-periodic orbit.

(a) Phase plane.

(b) Time evolution of i.

(c) Time evolution of v.

Figure 6: The transition from the chaotic attractor to stabilized 1-periodic orbit.
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Figure 1: The Raleigh type oscillator containing a periodic switch.
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Figure 2: Behavior of the trajectory.
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Figure 3: Chaotic attractor. ((a)i: 50[mA/div], v: 2.0[V/div], (b)(c)i: 50[mA/div]), v: 5.0[V/div],

t: 0.2[mS])
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(a)The Rayleigh type oscillator containing a periodic switch and its Poincaré map.
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Figure 4: Construction of the controller.
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Figure 5: Stabilized 1-periodic orbit. ((a)i: 50[mA/div], v: 2.0[V/div], (b)(c)i: 50[mA/div]), v:

5.0[V/div], t: 0.2[mS])
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Figure 6: The transition from the chaotic attractor to stabilized 1-periodic orbit.(i: 100[mA/div]),

v: 5.0[V/div], t: 1.0[mS])


