Relationship between somatic mosaicism of *Pax6* mutation and variable developmental eye abnormalities—an analysis of CRISPR genome-edited mouse embryos

Akihiro Yasue^{1,*}, Hitomi Kono², Munenori Habuta², Tetsuya Bando², Keita Sato², Junji Inoue², Seiichi Oyadomari³, Sumihare Noji⁴, Eiji Tanaka¹ and Hideyo Ohuchi^{2,*}

¹Department of Orthodontics Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan. ²Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. ³Division of Molecular Biology, Institute for Advanced Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan. ⁴Tokushima University, 2-24 Shinkura-cho, Tokushima, 770-8501, Japan. *Correspondence and requests for materials should be addressed to A.Y. (yasuea@tokushima-u.ac.jp) or H.O. (hohuchi@okayama-u.ac.jp)

Supplementary Figure S1

Class 1									
T1#4(Right eye)	T1#4(Left eye)	T1#18(Right eye)	T1#18(Left eye)						
a		C	d						
	Cla	ss 2							
T1#2(Right eye)	T1#2(Left eye)	T2#10(Right eye)	T2#10(Left eye)						
е	ſ	9	h						
	\$:e	A CONTRACTOR	*						
	Cla	ss 3							
T1#7(Right eye)	T1#7(Left eye)	T2#1(Right eye)	T2#1(Left eye)						
	j	k							
T2#13(Right eye)	T2#13(Left eye)								
m	n								

Supplementary Figure S1. Lateral views of the eye in the *Pax6*-CRISPR founder mice at E16.5.

Class 1 (a-d), class 2 (e-h), and class 3 (i-n).

Supplementary Figure S2

T1 and T2 sgRNAs were *in vitro* transcribed, respectively, and tested against its target sites in the mouse *Pax6* genomic region. A 1544 base pair-fragment of the *Pax6* genome was PCR-amplified using primers (5'-TTGTGGTCTTTTCTTCCTTCCT-3' and 5'-GGGCAAGGTAGACACACGAT-3'). The 1.5 kb fragment, T1 or T2 sgRNA, and recombinant Cas9 enzyme, using Guide-it sgRNA Screening Kit (Takara Bio Inc., Shiga, Japan), were combined in an *in vitro* cleavage reaction according to the manufacturer's protocol. Agarose gel analysis indicated that 100 ng of T1 or T2 sgRNA was each sufficient for 100% cleavage of the target fragment.

Supplementary Figure S3

Supplementary Figure S3. Lateral views of the eyes.

In T1#8 embryo, both eyes exhibit class 1 phenotype. In T1#9 and T1#10 embryos, the right eyes exhibit a class 3 phenotype, while the left eyes exhibit a class 2 phenotype.

		6.5	E1	1.5	E1				
nificance	Statistical significance	T2	T1	T2	T1	Expected	Observed	Category	Severity
e 16.	Chi-square	4	13	3	7	14.7	27	1	R=L
	Degree of								
	freedom	2	0	6	3	14.7	11	2	R>L
<i>P</i> <0.0	Р	0	1	3	2	14.7	6	3	R <l< td=""></l<>
									Total
		6	14	12	12		44		(n)

Supplementary Table S1. Test for association between genome-editing of the *Pax6* gene and occurrence of eye defects

Supplementary Table S2. Test for association between the parameters (right or left side) involved in occurrence of eye defects

				E1	1.5	E1	6.5		
Severity	Category	Observed	Expected	T1	T2	T1	T2	Statistical significance	
R>L	2	11	8.5	3	6	0	2	Chi-square	1.471
								Degree of	
R <l< td=""><td>3</td><td>6</td><td>8.5</td><td>2</td><td>3</td><td>1</td><td>0</td><td>freedom</td><td>1</td></l<>	3	6	8.5	2	3	1	0	freedom	1
Total									
(n)		17		9	6	14	6	Р	<i>P</i> =0.225

Another set of experiment (T1#XH and T2#XH series) was performed to examine whether there is a trend towards more severe eye defects in right vs left eyes examined at E11.5 or E16.5 (n=44). R>L, right eyes exhibit more severe defects than left eyes; R<L, left eyes exhibit more severe defects than right eyes; R=L, similar eye defects on both sides, by macroscopic observation. Table S1 shows a highly significant deviation among frequencies of R>L, R=L, and R<L. Table S2 shows no significant deviation between frequencies of R>L and R<L in occurrence of eye defects. These results indicate that R=L defects occur at a significantly higher frequency than defects of R>L or R<L.

Supplementary Figure S4

Supplementary Figure S4. Histology of the head region from the wild-type (a, b) and *Pax6*-CRISPR embryos (c-p) shown in Fig. 3.

HE-stained coronal sections. In (l-p), from the surface ectoderm, there was an invagination (arrow) that did not make contact with the pseudo-optic cup and no lens develops. Scale bars: $500 \mu m$.

а

Supplementary Figure S5

encoding truncated Pax6 proteins

WT	ProCysAsplleSerArglleLeuGln CCGTGCGACATTTCC <mark>CCG<mark>AATTCTGCAGgtgatectec</mark>catggctgccctactcgccgctcc</mark>		Phenotype
T1#2	CCGTGCGACATTTCCCGAATTCTGCAGgtgatcctccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGAATCCTGCAGgtgatcctccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGAAT-CCTCGCAGgtgatcctcccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGAAT-CTCTCCAGgtgatcctcccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGAAT-CTCCCAtgatcctcccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGATTGCAGgtgatcctcccatggctgcctactcgccgctcc CCGTGCGACATTTCCCGAatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAT	(Total: 66) WT (x14) -1+31 (x6) +1(C) (x4) -8+7 (x2) -8 (x11) -12 (x8) -13 (x8) -24+1 (x13)	Class 2
T1#4	$\tt CCGTGCGACATTTCCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc\\ \tt CCGTGCGACATTTCCCCGAA-TCTGCAGgtgatcctcccatggctgccctactcgccgctcc\\$	(Total: 52) WT (x18) -1(T) (x34)	Class 1
T1#5H	CCGTGCGACATTTCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGACATTTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAATTTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCACTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCTGCAGgtgatcctcccatggctgccctactcgccgctcc	(Total: 79) WT (x5) -4+4 (x4) +1(T) (x13) -5+1 (x52) -22 (x5)	Class 2
T1#6	CCGTGCGACATTTCCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCCGATGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCccatggctgccctactcgccgctcc	(Total: 52) WT (x40) -3 (x11) -22 (x1)	Class 1
T1#7	CCGTGCGACATTTCCCTGCAG <u>gt</u> gatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCTGCAG <u>gt</u> gatcctcccatggctgccctactcgccgctcc	(Total: 54) -6 (x23) -19 (x31)	Class 3
T1#11	$\tt CCGTGCGACATTTCCCCGACAGGTGACATTTCTGCAGgtgatcctcccatggctgccctact\\ \tt CCGTGCGACATTTCCCGGAA-TCTGCAGgtgatcctcccatggctgccctactcgccgctcc\\$	(Total: 38) +9 (x16) -1(T) (x22)	Class 3
T1#12	CCGTGCGACATTTCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAATTTCTGCAggtgatcctcccatggctgccctactcgccgctc CCGTGCGACATTTCCCGAA-TCTGCAGgtgatcctcccatggctgccctactcgccgctcc CC	(Total: 47) WT (x21) +1(T) (x1) -1(T) (x19) -25 (x6)	Class 2
T1#18	CCGTGCGACATTTCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAATTTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAA-TCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCatggctgccctactcgccgctcc	(Total: 49) WT (x14) +1(T) (x2) -1(T) (x2) -9 (x20) -22 (x11)	Class 1
WT	ValSerAsnGlyCysValSerLysIleLeuGlyArgTyrTyrGluThrGlySer aatgc <u>ag</u> GTATCCAACGGTTGTGTGGAGTAAAATTC TGGG CAGGTATTACGAGACTGGCTCC	(7. 1. 2.0)	Class 2
T2#1	aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGTAAAATTCTGGGCAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGTAAAATT <mark>TCTGGGC</mark> AGGTATTACGAGACTGGCTCC	(Total: 30) WT (x1) +1(T) (x29)	CIASS 3
T2#1H	aatgcagGTATCCAACGGTTGTGGGAGTAAAATTTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAA-TTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAAAT-CTGGGCAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTGTGGGGCAGGTATTACGAGACTGGCTCC	(Total: 89) +1(T) (x10) -1(A) (x37) -1(T) (x38) -12 (x4)	Class 3
Т2#3	aatgcagGTATCCAACGGTTGTGGGAGTAAAATATCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAAATTTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAAC-TCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGTGAGTAAAAT-CTGGGCAGGTATTACGAGACTGGCTCC	(Total: 32) +1(A) (x3) +1(T) (x3) -2+1 (x14) -1(T) (x12)	Class 3
Т2#5Н	aatgcagGTATCCAACGGTTGTGTGAGTAAAATTTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTATTACGAGACTGGCTCC	(Total: 46) +1(T) (x3) -21 (x4) -25 (x39)	Class 3
T2#10	aatgcagGTATCCAACGGTTGTGGTGAGTAAAATTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAAACAACCGTTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGGGAGTAAAATAATCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGTGAGTAAAATAATCTGGGCAGGTATTACGAGACTGGCTCC	(Total: 40) WT (x13) -3+7 (x5) +2 (x16) -1+1 (x6)	Class 2
T2#13	aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGTAAAAC TGGGC AGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGCAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTATTACGAGACTGGCTCC	(Total: 31) -2 (x23) -12 (x3) -22 (x5)	Class 3

Supplementary Figure S5 (continued)

WT	AspIleSerArgIleLeuGln GACATTTC <mark>CCCGAATTCTGCAGgtgatcctcc</mark> cacagG	ValSerAsnGlyCysValSerLysIleLeuGlyArgTyr TATCCAAC <mark>GGTTGTGTGAGTAAAATTCT</mark> GGGCAGGTAT	
T1+T2#6	GACATTTCCCGAATTCTGCAGgtgatcctcccacagG GACATTTCCCGAATTCTGCAGgtgatcctcccacagG GACATTTCCCGAATgtgatcctcccacagG GACA	STATCCAACGGTTGTGTGAGTAAAATTCTGGGCAGGTAT STATCCAACGGTTGTGTGAGTAAAATTTCTGGGCAGGTAT ITATCCAACGGTTGTGTGAGTAAAATTTCTGGGCAGGTAT GGTAT	Class 2 (Total: 22) T1:WT,T2:WT (x2) T1:WT,T2:+1(T)(x2) T1:-7,T2:+1(T)(x4) -1064 (x13)
b ^{wr}	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC KRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSINRVLRNL EGGGENTNSISSNGEDSDEAQMRLQLKRKLQKNRTSFTQB LRNQRRQASNTPSHIPISSSFSTSVYQPIPQPTTPVSSFT SPSVNGRSYDTYTPPHMQTHMNSQPMGTSGTTSTGLISPG	DISRILQVSNGCVSKILGRYYETGSIRPRAIGGSKERVAT ASEKQQMGADGMYDKLRMLNGQTGSWGTRPGWYPGTSVPG QTEALEKEFERTHYPDVFARERLAAKIDLPEARIQVWFSN SGSMLGRTDTALTNTYSALPPMPSFTMANNLPMQPPVPSQ VSVPVQVPGSEPDMSQYWPRLQ*	TPEVVSKIAQY SQPTQDGCQQQ TRRAKWRREEK 2TSSYSCMLPT
T1 -1+31 -4+4 -1(C/T) -8+7 -3 -5+1 -6 -8 -9 -12 -12 -12 -12 -12 -12 -24 -12 -24 -25	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC	DISRITV* DISR_VTFLQVSNGCVSKILGRYYETGSIRPRAIGGSKPF DISRLSAGIQRLCE* DISRLSAGIQRLCE* DISRLTPTVUS* DISRL-MQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT DISLCRYPTVV* DISLC2YPTVV* DISSQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT DISSQVSNCCVSKILGRYYETGSIRPRAIGGSKPRVAT DISSQVSNCCVSKILGRYYETGSIRPRAIGGSKPRVAT DISSQVSNCCVSKILGRYYETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYYETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYPETSSCRPL* DISSQVSNCCVSKILGRYFETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYFETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYFETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYFETGSIRPRAIGSKPRVAT DISSQVSNCCVSKILGRYFETGSIRPRAIGSKPRVAT DISS	RVATPERLQ* "PERLQ* "PERLQ* "PERLQ* "PERLQ* "Y*
T2 -3+7 +2 +1(A/T) -1+1 -1(A) -1(T) -2+1 -2+1 -22 -12 -21 -22 -25	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC	DISRILQVSNGCVSKTTVGQVLRDWLHQTQGNRRE* DISRILQVSNGCVSKIIWAGITRLAPSDPGQSEGVSQEWF DISRILQVSNGCVSKISGQVLRDWLHQTQGNRRE* DISRILQVSNGCVSKISGQVLRDWLHQTQGNRRE* DISRILQVSNGCVSKIWAGITRLAPSDPGQSEGVSQEWRI DISRILQVSNGCVSKIWAGITRLAPSDPGQSEGVSQEWRI DISRILQVSNGCVSKIWAGITRLAPSDPGQSEGVSQEWRI DISRILQVSNGCVSKIWAGITRLAPSDPGQSEGVSQEWRI DISRILQVSNGCVSRYYETGSIRPRAIGGSKPRVAT DISRILQVSNGCITRLAPSDPGQSEGVSQEWRLQKL* DISRILQVSNGITRLAPSDPGQSEGVSQEWRLQKL*	RLQKL* PERLQ* .QKL* .QKL* .QKL* .QKL* .PERLQ*
T1+T2 T1:WT,T2:+1(T) T1:-7,T2:+1(T) -1064	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPC	DISRILQVSNGCVSKISGQVLRDWLHQTQGNRRE* DISRMYPTVV* DRYYETGSIRPRAIGGSKPRVAT	'PE .RLQ*

Sequencing primers for T1+T2 were 5'-TTGTGGTCTTTTCTTCCTTCCT-3' and 5'-GGGCAAGGTAGACACGAT-3'. T1#5H, T2#1H, and T2#5H embryos were from another set of experiments, which is different from those shown in Tables 1 and 2.

Supplementary	Table	S3 .	Summary	of	genotypes	for	the	HE-stained	embryos
(E16.5) shown in	n Fig. 3	and	Supplemen	ntar	ry Fig. S4				

Phenotype Class (Microscopic)	1	1	2	2	3	3	3
Embryo No.	T1#4	T1#18	T1#2	T2#10	T1#7	T2#1	T2#13
Pax6 Mutation: Truncation	34 (65.4%)	15(30.6%)	44 (66.7%)	21(52.5%)	31(57.4%)	29(96.7%)	28(90.3%)
Pax6 Mutation: In-frame							
(In/Del/Sub)	0	20(40.8%;3aaDel)	8(12.1%;4aaDel)	6(15%;1aaSub)	23(42.6%;2aaDel)	0	3(9.7%;4aaDel)
Wild-type (%)	18 (34.6%)	14(28.6%)	14(21.2%)	13(32.5%)	0	1(3.3%)	0
Sequencing Clone No.	52	49	66	40	54	30	31
Mosaicism	2	5	8	4	2	2	3

1aaSub:1 amino acid substitution

Supplementary Table S4. Summary of genotypes for the immunostained embryos (E16.5) shown in Fig. 4

Phenotype Class (Microscopic)	1	2	3	3
Embryo No.	T1#6 T1#12		T1#11	T2#3
Pax6 Mutation: Truncation	1(1.9%)	26 (54.3%)	22 (57.9%)	32(100%)
Pax6 Mutation: In-frame	11(21.2%;		16 (42.1%;	
(In/Del)	1aaDel)	0	3aaIn)	0
Wild-type (%)	40 (76.9%)	21 (45.7%)	0	0
Sequencing Clone No.	52	47	38	32
Mosaicism	3	4	2	4

1aaDel: 3 amino acid deletion3aaIn: 3 amino acid insertion

Eachara Na	Class	X axis	Y axis
Embryo No.	Class –	% Pax6 truncated mutations	% Pax6 (+) area
WT#4		0	59.5
WT#5		0	53.2
T1#6	1	1.9	86.4
T1+T2 #6*	2	27.3	45.3
T1#12	2	54.3	75.1
T1#11**	3	57.9	77.6
T1#5H	2	88.6	44.6
T2#5H	3	91.3	36
T2#1H	3	95.5	46.3
T2#3	3	100	16.1

Supplementary Table S5. Data for Fig. 4v

*also had an in-frame mutation of 17 amino acid deletion in the PD (59.0%) **also had an in-frame mutation of 3 amino acid insertion in the PD (42.1%)

	CI	X axis	Y axis
Embryo No.	Class –	Pax6 (+) area (μ m ²)	Tuj1 (+) area (μ m ²)
T2#3	3	6143	1578
T2#1H	3	10629	345
T2#5H	3	23409	10446
T1#11*	3	61027	24776
WT#5		115027	144856
T1#5H	2	116751	90795
T1+T2 #6**	2	142972	134391
WT#4		156576	193865
T1#6	1	219048	57744
T1#12	2	547239	231312

Supplementary Table S6. Data for Fig. 4w

*also had an in-frame mutation of 3 amino acid insertion in the PD domain (42.1%) **also had an in-frame mutation of 17 amino acid deletion in the PD domain (59.0%)

Supplementary Figure S6

encoding truncated Pax6 proteins

а	WT	ProCysAsplleSerArglleLeuGln CCGTGCGACATTTCCCC <mark>GAATTCTGCAGgtgatcctcc</mark> catggctgccctactcgccgctcc			Phenotype (R-L)
T1#2	2_e11	CCGTGCGACATTTCCCGAATTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCGAATTTTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCCGAATTTTCTGCAGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCCCCGAATGGgtgatcctcccatggctgccctactcgccgctcc CCGTGCGACATTTCTGCAGgtgatcctcccatggctgccctactcgccgctcc	(Total: WT +2 +1(T) -6+1 -8	57) (x10) (x12) (x4) (x12) (x19)	Class 2-3
T1#9	_e11	CCGTGCGACATTTCCCATgtgatcctcccatggetgecetactegeegetee CCGTGCGACATTTCccatggetgecetactegeegetee	(Total: -9 -22	28) (x8) (x20)	Class 3
	WT	ValSerAsnGlyCysValSerLysIleLeuGlyArgTyrTyrGluThrGlySer aatgc <u>ag</u> GTATCCAAC <mark>GGTTGTGGGAGTAAAATTCT</mark> GGGCAGGTATTACGAGACTGGCTCC			
T2#2	2_e11	aatgcagGTATCCAACGGTTGTGTGAGTAAAATTTCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGTTGTGTGAGTAACCTGGGCAGGTATTACGAGACTGGCTCC aatgcagGTATCCAACGGT	(Total: +1(T) -4+1 -12+1 -14 -25	56) (x5) (x13) (x15) (x8) (x15)	Class 2/3-2/3
T2#4	l-e11	$aatgcag {\tt GTATCCAACGGTTGTGTGAGTAAAATTTCTGGGCAGGTATTACGAGACTGGCTCC \\ aatgcag {\tt GTATCCAACGGTTGTGTGAGTAAAAT-CTGGGCAGGTATTACGAGACTGGCTCC \\ aatgcag {\tt GTATCCAACGGTTGTGTGTGAGTAAA-TTCTGGGCAGGTATTACGAGACTGGCTCC \\ \end{tagc} $	(Total: +1(T) -1(T) -1(A)	47) (x19) (x10) (x18)	Class 3-3
т2#7	_e11	aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGTAAAATGTCTGGGCAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTGTGAGGCAGGTATTACGAGACTGGCTCC aatgc <u>ag</u> GTATCCAACGGTTGTGTGTGGGCAGGTATTACGAGACTGGCTCC	(Total: +1(G) -11 -12	24) (x6) (x3) (x15)	Class 2/3-2
b	WT	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG KRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSINRVLRNLASEKQQMGADGMYDKLRMLNGQTG EGGGENTNSISSNGEDSDEAQWRLQLKRKLQNNRTSFTQEQIEALEKKFERTHYPDVFARERLA LNNQRRQASNTPSHIFISSFTSTVQPIPQPTFVSSFTSGSMLGRTDTALITNYSALPPMPS SPSVNGRSYDTYTPPHMQTHMNSQPMGTSGTTSTGLISPGVSVPVQVPGSEPDMSQYWPRLQ*	SIRPRAIGG SWGTRPGWY AKIDLPEAF FTMANNLPM	SKPRVAT PGTSVPG LQVWFSN QPPVPSQ	PEVVSKIAQY QPTQDGCQQQ RRAKWRREEK TSSYSCMLPT
+	T1 +2 -1(T) -6+1 -8 -9 -22	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRIFCR* MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRISAGIQRLCE* MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRGIQRLCE* MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISHVSNGCVSKILGRYYETG MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISHVSNGCVSKILGRYYETG	SIRPRAIGG HSKRPLFIS	SKPRVAT	PERLQ*
+ + - -	T2 -1 (G) -1 (T) -1 (A) -1 (T) -4+1 -11 -12+1 -12 -14	MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKMSGQVLRDW MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKISGQVLRDW MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNCCVSKIAGITRLA MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNCCVSKIAGITRLA MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVRQVLRDWLHQT MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVRQVLRDWLHQT MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVRQVLRDWLHQT MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVGRYYETG MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVGRYYETG	LHQTQGNRF LHQTQGNRF PSDPGQSEG SIRPRAIGG QGNRRE* QGNRRE* SIRPRAIGG GNRRE*	RE * RE * VSQEWRL SKPRVAT SKPRVAT	QKL* QKL* PERLQ*

- -25 MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGITRLAPSDPGQSEGVSQEWRLQKL*

Supplementary Figure S7

Supplementary Figure S7. HE-stained and immunostained head tissues from founder mice at E11.5.

Transverse sections are shown. Brown staining in (c, d, g, h, k, l, o, p, s, t) indicates localization of Pax6 proteins, wild-type and mutated. (u) Summary of genotypes for each embryo. Details are shown in Supplementary Fig. S6 and Table S5. Scale bars: 500 μ m in (a, c, e, g, i, k, m, o, q, s); 100 μ m in (b, d, f, h, j, l, n, p, r, t).

Phenotype Class (Microscopic) R/L	Class3/Class2	n.d./Class3	Class2/3	Class3	Class2/Class2/3
Embryo No.	T1#2_e11	T1#9_e11	T2#2_e11	T2#4_e11	T2#7_e11
Pax6 Mutation: Truncation	47(82.5%)	20(71.4%)	43(76.8%)	47(100%)	9(37.5%)
		8(28.6%;	13(23.2%;		
Pax6 Mutation: In-frame (In/Del)	0	3aaDel)	1aaDel)	0	15(62.5%)
Wild-type (%)	10(17.5%)	0	0	0	0
Sequencing Clone No.	57	28	56	47	24
Mosaicism	5	2	5	3	3

Supplementary Table S7. Summary of genotypes for the HE-stained embryos (E11.5) shown in Figure S6

n.d.: The optic primordium could not be determined on the sections.

Supplementary Figure S8

Supplementary Figure S8. Pax6 immunoreactivity in E11.5 *Pax6*-mosaic optic vesicle.

High magnification images of optic vesicles shown in Fig. 5a (a-c) and Fig. 5c (d, e). Scale bar: 25 μ m.