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PARP9 and PARP14 cross-regulate macrophage
activation via STAT1 ADP-ribosylation
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Despite the global impact of macrophage activation in vascular disease, the underlying

mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage

cell lines treated with either IFNg or IL-4, that PARP9 and PARP14 regulate macrophage

activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage

activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in

M(IFNg) cells, whereas it suppresses anti-inflammatory gene expression and STAT6

phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and

STAT1 phosphorylation in M(IFNg) cells. PARP14 induces ADP-ribosylation of STAT1, which is

suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased

phosphorylation. Network analysis links PARP9–PARP14 with human coronary artery disease.

PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory

burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and

PARP14 cross-regulate macrophage activation.
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D
espite medical advances, the global burden of ischaemic
heart disease is increasing1,2. Pro-inflammatory
macrophage activation plays key roles in the patho-

genesis of many disorders, including arterial disease3–10. Some
pathways associated with macrophage activation may contribute
to the shared mechanisms of inflammatory diseases, as
demonstrated previously11,12. Despite potent therapies such as
cholesterol-lowering by statins, substantial residual cardiovascular
risk remains7,13,14, which drives the active search for novel
solutions against pro-inflammatory macrophage activation.
Dissecting complex and intertwined mechanisms for macro-
phage activation requires well-defined mechanistic models. The
evidence suggests that distinct types of macrophage activation are
functionally different in disease pathogenesis, a classification that
has helped to assess the heterogeneity of macrophages15–22. For
instance, pro-inflammatory and anti-inflammatory phenotypes
can oppose one another, develop in response to distinct cytokines,
differ in the activating stimuli and produce different cytokines.
A recently proposed nomenclature suggests that each macro-
phage subpopulation can be called based on a specific stimulator,
for example, M(IFNg), M(LPS), M(IL-4), M(IL-10)21. This
established paradigm demonstrates clear relationships between
classical stimuli and their respective responses—interferon
gamma (IFNg) for pro-inflammatory activation in settings such
as atherosclerotic vascular disease and interleukin (IL)-4 for
activation that can counter that of M(IFNg) or M(LPS)
macrophages. Hence, we used this paradigm as a starting point
to explore novel regulators through global proteomics.

Proteomics screening and bioinformatics in mouse and human
data sets found that poly ADP-ribose polymerase 14 (PARP14),
also known as ADP-ribosyltransferase diphtheria toxin-like 8
(ARTD8), and PARP9/ARTD9 both increased in M(IFNg) and
decreased in M(IL-4) cells. The network analysis associated these
PARP family members with human arterial disease. Sequence
similarity to the PARP catalytic domain, which transfers
ADP-ribose moieties from NAD to protein acceptors, characterizes
the PARP family proteins23. The best-characterized member,
PARP1/ARTD1, represents poly-ADP-ribosylation enzymes,
which processively catalyse long and branching polymers of
ADP-ribose additions starting from an initial post-translational
modification, commonly of glutamate. Recent evidence also
validates proteins that execute mono-ADP-ribosylation as having
various functions24. PARP14/ARTD8 is an intracellular mono-
ADP-ribosyltransferase. Previous reports indicated that PARP14
enhances IL-4-induced gene expression by interacting with the
cytokine-induced signal transducer and activator of transcription 6
(STAT6) in B and T cells, thereby functioning as a transcriptional
co-activator25,26 that may mediate this effect. A recent study
reported that PARP14 regulates the stability of tissue factor mRNA
in M(LPS) in mouse27. Less information exists regarding the
molecular function of PARP9/ARTD9. Although PARP9 appears
to lack catalytic activity28, it increases IFNg-STAT1 signalling in
B-cell lymphoma29.

This study employed a multidisciplinary approach, including
proteomics, systems biology and cell and molecular biology to
explore new mechanisms for modulating the functional profile
elicited after macrophage activation. Mouse and human cell lines
as well as primary macrophages were used for complementary
analyses of PARP14-deficient mouse and human tissues.
Ultimately, the analyses led to evidence that expression of
PARP14 in haematopoietic cells restrains vascular inflammation
in mouse models, which are not solely regulated by either IFNg or
IL-4. Our findings suggest a novel mechanism for regulating the
balance of macrophage phenotypes in vascular disease, and
potentially other disorders in which macrophage activation has
an impact on outcomes.

Results
Proteomics screening for regulators of macrophage activation.
We used the tandem mass tagging (TMT) quantitative proteomics
to identify regulators of pro-inflammatory and non/anti-inflam-
matory activation in mouse RAW264.7 and human THP-1 macro-
phage cell lines (Supplementary Fig. 1a–c). In this paradigm of
macrophage heterogeneity, IFNg and IL-4 promote distinctive
subpopulations15–22. A pilot TMT proteomic study (Supple-
mentary Figs 1d and 2) analysed the changes in the proteomes
at 0, 12 and 24 h, and observed the expected increase and decrease
in STAT1 in M(IFNg) and M(IL-4) cells, respectively, as
determined by hierarchical cluster analysis (Supplementary
Fig. 2). Within this pilot study, we first noted that PARP14
co-clustered with STAT1 in the M(IFNg) and M(IL-4) data
(Supplementary Fig. 2). To ascertain whether any changes in the
M(IFNg) and M(IL-4) proteomes were not because of cell culture
conditions, we performed a second, more in-depth study that
included an unstimulated macrophage control for both RAW264.7
and THP-1 experiments, and extended the stimulation period to
up to 72 h, sampling six time points for a more detailed time-
resolved proteomic study (Supplementary Fig. 1d).

In this latter proteomic study, we quantified 5,137 and 5,635
proteins in RAW264.7 and THP-1 cells, respectively, across the
three conditions: unstimulated control, IFNg-stimulated macro-
phages and IL-4-stimulated macrophages—M(-), M(IFNg) and
M(IL-4), respectively (Fig. 1a and Supplementary Table 1). An
overview of the protein intensities across the three conditions
revealed that the magnitude of protein abundance levels for each
of the IFNg and IL-4-stimulated RAW264.7 and THP-1 cells
were generally higher than those of unstimulated cells (Fig. 1b),
indicating that each stimulation promoted changes in protein
abundance beyond those due to cell culture conditions alone.

To pursue one class of potential upstream regulators based on
protein abundances, we used the following criteria: proteins
exhibited (1) an early increase in M(IFNg) (within 24 h) followed
by sustained levels until the later time points (up to 72 h), (2) a
decrease in abundance in M(IL-4) and (3) no significant change
in M(-). We employed two distinct informatics methods to
explore proteins with such behaviours: data filtering (Method 1)
and model-based clustering (Method 2; Supplementary Fig. 3). In
Method 1, the M(-) data set permitted a subtraction of the
background signal at all time points and thus facilitated data
filtering (Fig. 1b upper panels and Supplementary Fig. 3b). Three
proteins in the data set from mouse RAW264.7 cells and 12
proteins in human THP-1 cells (Fig. 1b lower panels) met the
three criteria above. PARP14 emerged from both data sets, and
PARP9 appeared in the THP-1 data set (Fig. 1b lower panels). In
parallel, Method 2 (Supplementary Fig. 3c) produced 15 and 20
clusters for the RAW264.7 and THP-1 data sets, respectively
(Supplementary Fig. 4a). Clusters mined for proteins whose
abundances increased in M(IFNg) but decreased in M(IL-4) with
respect to M(-) revealed 490 proteins in the RAW264.7 data set
and 414 proteins in THP-1 fulfilling these criteria (Supple-
mentary Fig. 4b and Supplementary Tables 2 and 3). The proteins
were short-listed to those with similar time-resolved changes in
both in human and mouse data sets, resulting in 38 candidate
proteins (Fig. 1c). Both RAW264.7 and THP-1 data sets identified
PARP9 and PARP14 (Supplementary Fig. 4a). Collectively, while
Method 2 identified PARP9 and PARP14 in RAW264.7 and
THP-1 cells, PARP14 was the only common protein that both
Methods 1 and 2 identified among over 5,000 proteins in mouse
and human data sets.

The PARP9 and PARP14 network and coronary artery disease.
To understand the influence of PARP9 and PARP14 in a global
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interaction network (‘interactome’) and predict their potential
clinical impact in disease mechanisms, we applied a network-
based analysis (Supplementary Fig. 5a). Increasing evidence
suggests that disease genes are not distributed randomly on the
interactome but work together in similar biological modules or
pathways30,31. Moreover, gene products (for example, proteins)
linked to the same phenotype likely interact with each other and
cluster in the same network neighbourhood31. We thus
postulated that, if PARP9 or PARP14 influences the network

neighbourhood of a disease, its immediate neighbours should be
close to a disease module compared with random expec-
tation30,31. Using the random-walk method, we defined a set of
genes as a human disease module for each of the cardiovascular
and metabolic diseases, and IFNg-related diseases (see Methods).
We then measured the average shortest distance of the immediate
neighbours of the PARP9–PARP14 network to each disease
module. An interactome mainly describes a set of physical or
functional associations between proteins and does not provide

RAW264.7 cells
M(IL-4)

a

b

c

RAW264.7 cells

RAW264.7 cells
Gene ID Gene ID

Hspd1 LRRC8D
DDX58
NFX1
MARK2
PNPT1
HSPD1
HIRA
NUDCD1
WDR75
NR3C1
HS2ST1

PELO
ANKLE2
CCDC50
NMI
MAP3K2
NUP188
CRNKL1
NUP155
TRRAP
SP110
OAS2
LCP2
ENSA
MRPL30
FCF1
MCM5
DNAJC9
FAM105A
PARP9
IFIH1
PARP14
RPL24
JUNB
IL1RN
HIST1H1C
STAT1

ABL2

Ankle2
Nmi
Mrpl30
Nfx1
Pnpt1
Hs2st1
Map3k2
Pelo
Abl2
Mark2
Ensa
Nudcd1
II1rn
Ddx58
Parp9
Nup155
Nup188
Crnkl1
Trrap
Hira
Fam105a
Nr3c1
Lrrc8d
Oas2

Mcm5
Ifih1
Parp14
Fcf1
Lcp2
Junb
Rpl24
Hist1h1c
Ccdc50
Dnajc9
Stat1
Sp110
(h) (h)0 8 12 24 48 72 0 8 12 24 48 72 0 8 12 24 48 72

Wdr75

37 Proteins Three proteins 55 Proteins 12 Proteins

M(–)

M(–)

M(–)

1.0

0.5

0.0

1.2

0.8

0.4

0.0

0 8 12 24 48 72

R
el

at
iv

e
ab

un
da

nc
e 

(lo
g1

0)
R

el
at

iv
e

ab
un

da
nc

e 
(lo

g1
0)

–0.5

–1.0

0 8 12 24 48 72
(h)

(h)

PARP14, IFIH, ICAM1 STAT1, DTX3L, PARP14,
SAMD9L, PARP9, IFIT3,
CUTA, PEBP1, C12orf35,
FBXO30, CCDC149, OAS1

0 8 12 24 48 72
(h)

0 8 12 24 48 72
(h)

0 8 12 24 48 72
(h)

1.0

0.5

0.0

0.75

0.50

0.25

0.00

–0.25

–0.50

0.75

0.50

0.25

0.00

–0.25

–0.50
0 8 12 24 48 72

(h)
0 8 12 24 48 72

(h)

–0.5

–1.0

1.0

0.5

0.0

1.2

0.8

0.4

0.0

0 8 12 24 48 72
(h)

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0

M(–)M(IFNγ)

M(IFNγ) M(IL–4)
0 8 12 24 48 72 0 8 12 24 48 72 0 8 12 24 48 72 –3–2–1 0

RAW Z-score

1 2 3

M(–) M(IFNγ) M(IL–4)

M(IFNγ)

M(IFNγ)
M(IL-4)

THP-1 cells
M(IL-4)

THP-1 cells

THP-1 cells

260

52

2,688

966

977
177

220 211

3,991

244325

467

155
39

Figure 1 | Bioinformatics to identify candidate regulators of macrophage activation. (a) Venn diagrams showing the distribution of quantified proteins

from mouse RAW264.7 and human THP-1 cells in unstimulated control, IFNg-stimulated and IL-4-stimulated macrophages: M(-), M(IFNg) and M(IL-4),

respectively. (b) Data set-filtering strategy. Upper panels: superimposition of the 0-h-normalized protein abundance profiles for M(-) (grey traces) versus

M(IFNg) (red traces) or M(IL-4) (blue traces) data sets in RAW264.7 and THP-1 cells. Lower panels: extracted protein profiles of interest generated by

data filtering. Red traces only graphs: extracted profiles of proteins whose abundances exceed the M(IFNg) threshold (þ0.13, maximum protein

abundance in unstimulated control at 8 h, dashed line). From these M(IFNg)-filtered traces, those that decreased in IL-4 stimulation when compared with

their unstimulated control are plotted to the right for RAW264.7 and THP-1 cells, respectively. (c) Hierarchical clustering of 38 proteins from that were

identified in both RAW264.7 and THP-1 data sets. Each row corresponds to a protein gene ID.
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cell or tissue specificity. In our study, we thus examined the genes
of immediate neighbours reported in macrophages in the public
databases.

We included IFNg-related autoimmune diseases as positive
controls, as we used this cytokine to promote pro-inflammatory
macrophage activation. The PARP9–PARP14 network is signi-
ficantly close to systemic lupus erythematosus, dermatomyositis
and polymyositis, as expected (Fig. 2). The PARP9–PARP14
network had significantly greater proximity to the human
coronary artery disease gene module compared with other
cardiovascular and metabolic diseases (Fig. 2 and Supple-
mentary Fig. 5b). The analysis also linked PARP9–PARP14 with
osteoporosis. Moreover, we quantified the closeness of PARP9–
PARP14 to autoimmune diseases, coronary artery disease and
other diseases in the form of the distribution of shortest distances

(Supplementary Fig. 5c) and demonstrated a clear separation
between the distribution of diseases inside and outside the circle
(Fig. 2), indicating an enrichment of shorter distances (d¼ 1
and 2) for IFNg-related autoimmune diseases (yellow) and
coronary artery disease and osteoporosis (blue), compared with
other cardiovascular and metabolic diseases (red; Supplementary
Fig. 5c). These results may indicate the potential impact of
PARP9 and/or PARP14 on the pathogenesis of arterial disease or
the onset of its clinical complications.

In vitro validation in cultured macrophages. qPCR and western
blot analysis validated the proteomic screening data on PARP9
and PARP14. Consistent with the proteomics data (Fig. 3a and
Supplementary Fig. 4a), mRNA and protein levels of PARP9 and
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PARP14 increased with IFNg and decreased by IL-4 (Fig. 3b and
Supplementary Fig. 6). At protein levels, PARP14 increased
before PARP9 in response to IFNg (Fig. 3c).

PARP9 and PARP14 expression in plaque macrophages.
According to the network analysis that linked PARP9 and
PARP14 with arterial disease, we performed immunohis-
tochemistry in arterial lesions. Mouse (Fig. 3d, left) and
human (Fig. 3d, right) atherosclerotic lesions exhibited PARP9

and PARP14 proteins, while they were less abundant in
human carotid arteries with no apparent atherosclerotic
changes (Supplementary Fig. 7a). Immunohistochemistry loca-
lized PARP9 and PARP14 expression in the majority of mac-
rophages (CD68) of human atherosclerotic plaques, while
few if any smooth muscle cells (SMa-actin) and endothelial cells
(CD31) stained positively for these PARPs (Supplementary
Fig. 7b). These results suggest that macrophages are
a major source of PARP9 and PARP14 in human atherosclerotic
lesions.
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Figure 3 | PARP9 and PARP14 expression in vitro and in vivo. (a) TMT-derived 0-h-normalized protein abundance profiles for PARP9 and PARP14 from

mouse RAW264.7 and human THP-1 M(IFNg) and M(IL-4) data sets. (b) PARP9 and PARP14 gene expression at 24 h after stimulation (n¼ 3). (c) PARP9

and PARP14 protein expression visualized by western blot. The time course in the relative protein abundances of PARP9 and PARP14 normalized to b-actin

were quantified (graph, n¼ 3). *Po0.05 and **Po0.01, respectively, by Student’s t-test. Error bars indicate s.d. (d) Representative images of PARP9 and

PARP14 expression in atherosclerotic plaques from the aorta of an Apoe� /� mouse (n¼ 3) fed a high-fat diet and from the carotid artery of a human

(n¼ 5). Scale bars, 100mm.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12849 ARTICLE

NATURE COMMUNICATIONS | 7:12849 | DOI: 10.1038/ncomms12849 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


Pro-inflammatory PARP9 and anti-inflammatory PARP14.
A series of subsequent experiments examined whether PARP9
or PARP14 plays a causal role in macrophage activation.
Expression levels of gene products typical of the M(IFNg)
phenotype (for example, IL-1b) and in the M(IL-4) phenotype
(for example, MRC1) gauged the downstream effects of PARP
silencing using small interfering RNA (siRNA) first in macro-
phage-like cell lines RAW264.7 and THP-1 since the original
screening was performed in these cells, and then in human and
mouse primary macrophages.

In mouse RAW264.7 cells, PARP14 silencing enhanced the
induction of tumour necrosis factor alpha (TNFa) and inducible
nitric oxide synthase (iNOS) by IFNg, and suppressed the
response of MRC1 to IL-4 (Supplementary Fig. 8a). In human
THP-1 cells, PARP14 silencing also increased TNFa and IL-1b
mRNA induction in response to IFNg and decreased MRC1
induction by IL-4 (Supplementary Fig. 8b). Increased levels of
TNFa and IL-1b proteins in the supernatant of IFNg-treated
THP-1 cells with PARP14 silencing (Supplementary Fig. 8c)
supported these data. Silencing of PARP9 suppressed the
induction of TNFa, IL-1b and CCL2/MCP-1 mRNA under IFNg
stimulation in THP-1 cells, while MRC1 showed no significant
change in IL-4 (Supplementary Fig. 8d).

To obtain unambiguous evidence for the role of PARP9 and
PARP14 in macrophage activation, we extended the in vitro
validation studies to mouse and human primary macrophages. In
human primary macrophages derived from CD14þ peripheral
blood mononuclear cells (PBMCs), PARP9 silencing suppressed
the expression of TNFa, IL-1b and CCL2/MCP-1 in IFNg-treated
macrophages, but exerted no significant effects on MRC1
induction by IL-4 (Fig. 4a). In contrast, PARP14 silencing
accelerated the induction of TNFa, IL-1b and CCL2/MCP-1 by
IFNg, and suppressed MRC1 in IL-4-treated macrophages
(Fig. 4a). In mouse bone marrow-derived macrophages
(BMDMs), silencing PARP9 and PARP14 exerted the effects
similar to those in human primary macrophages (Fig. 4b).
Overall, siRNA experiments provided consistent results in
macrophage-like cell lines and primary macrophages. Neither
PARP14 nor PARP9 showed significant effects on viability,
proliferation or apoptosis of mouse primary macrophages
(Supplementary Fig. 8e). In addition, enforced expression of
PARP14 in THP-1 cells suppressed the induction of TNFa, iNOS,
TLR2 and TLR4 in M(IFNg) (Supplementary Fig. 8f,g). Collec-
tively, these findings indicate that PARP14 suppresses IFNg-
induced responses and augments IL-4-responses in macrophages.
In contrast, PARP9 promotes responses to IFNg.

PARP9 and PARP14 regulate STAT1 and STAT6 activation.
Although expression patterns of PARP14 and PARP9 in M(IFNg)
and M(IL-4) were comparable, their respective siRNA experi-
ments yielded opposing results, suggesting the involvement of
distinct signalling mechanisms. IFNg signalling involves activa-
tion (phosphorylation) of pro-inflammatory STAT1, while the
IL-4 pathway uses anti-inflammatory STAT6 phospho-
rylation32,33. Immunofluorescence staining demonstrated
enhanced intracellular colocalization of PARP14 and STAT1 in
IFNg-treated THP-1 cells compared with unstimulated cells
(Supplementary Fig. 9). Moreover, in human primary macro-
phages derived from CD14þ PBMCs, PARP14 silencing
accelerated IFNg-induced STAT1 phosphorylation and suppre-
ssed IL-4-promoted STAT6 phosphorylation (Fig. 4c).
PARP14 may suppress pro-inflammatory macrophage activation
by modulating the IFNg–STAT1 axis, and promote the anti-
inflammatory IL-4-STAT6 pathway. In contrast, PARP9 silencing
decreased STAT1 phosphorylation in IFNg-treated human

macrophages (Fig. 4c), indicating that PARP9 may activate
IFNg–STAT1 signalling and induce pro-inflammatory activation.
In addition, siRNA experiments in THP-1 cells that we used for
proteomic screening produced similar results on the role of
PARP9 and PARP14 on the STAT1 and STAT6 pathways
(Supplementary Fig 10a–c). Evidence suggests the participation of
STAT3 in immune responses in various contexts34. Neither
PARP14 nor PARP9 silencing, however, exerted significant effects
on STAT3 phosphorylation (Supplementary Fig. 10d,e).

PARP9 and PARP14 interact with each other. The results
demonstrated above engendered the hypothesis of regulatory
interplay between PARP9 and PARP14. Indeed, PARP14 silen-
cing increased PARP9 mRNA expression in IFNg-treated human
primary macrophages (Fig. 4a) and THP-1 cells (Fig. 5a), while
PARP9 silencing increased PARP14 mRNA in these cell types
(Figs 4a and 5a). In contrast, enforced expression of PARP14
decreased PARP9 mRNA expression in IFNg-treated THP-1 cells
(Fig. 5a). Previous reports showed that, in B lymphocytes, IL-4
promotes catalytic activity of PARP14, leading to ADP-ribosyla-
tion of HDAC2, HDAC3 and p100 (a precursor of p52 that
encodes the NF-kB2 protein), and activation of STAT6, thereby
inducing its binding to IL-4-responsive gene promoters25,26,35,36.
Co-immunoprecipitation (IP) revealed a PARP9/PARP14
complex (Fig. 5b) and immunofluorescence demonstrated the
enhanced colocalization of PARP9 and PARP14 in THP-1 cells
by IFNg stimulation (Fig. 5c), suggesting that these two molecules
interact in macrophages. Recombinant PARP14 protein induced
ADP-ribosylation of PARP14 itself, PARP9, STAT1a and STAT6
(Fig. 5d). PARP9 did not promote ADP-ribosylation of either
STAT1a or STAT6, which supports a previous report showing
that PARP9 lacks catalytic activity28. Interestingly, PARP9
suppressed PARP14-induced ADP-ribosylation of STAT1a and
STAT6 (Fig. 5d). While the majority of other PARP family
members such as PARP1 are poly-ADP-ribosylation enzymes,
PARP14 is a mono-ADP-ribosyltransferase24. Mass spectrometric
analysis determined that Glu657 and Glu705 of STAT1a
were mono-ADP-ribosylated by PARP14 (Fig. 6a,b). Glu657
and Glu705 neighbour Tyr701, a functionally critical phos-
phorylation site of STAT1a (Fig. 6a). Although we could not
verify the precise ADP-ribosylation site in the STAT6 peptide, the
conserved Glu makes it a plausible candidate (Supplementary
Fig. 11). Mass spectrometry further revealed that recombinant
PARP9 inhibited PARP14-induced mono-ADP-ribosylation at
Glu657 and Glu705 of STAT1a (Fig. 6b, right panels).

The introduction of mutations at Glu657 and Glu705 to
prevent ADP-ribosylation helped to investigate the functional
relevance of these two sites within STAT1a. Overexpression
experiments in mouse BMDMs revealed that mutations at Glu657
and Glu705 enhanced Tyr701 phosphorylation of STAT1a in
IFNg-treated cells as compared with wild-type STAT1a (Fig. 6c).
Using the same mutant STAT1a, we have observed a similar
response of STAT1a phosphorylation in HEK293 cells
(Supplementary Fig. 12a,b). As a functional consequence,
mutant STAT1a in mouse BMDMs increased expression of
pro-inflammatory iNOS, IL-1b and CCL2/MCP-1 (Fig. 6c).
Collectively, these data indicate that PARP14-mediated
ADP-ribosylation of Glu657 and Glu705 may control Try701
phosphorylation of STAT1a, a potential mechanism for the
interplay between ADP-ribosylation and phosphorylation in
macrophage activation.

PARP14 deletion enhances acute arterial lesion development.
To provide in vivo evidence that PARP14 participates in arterial
lesion formation and macrophage activation, we further used
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PARP14� /� mice. Peritoneal macrophages from PARP14� /�

or PARP14þ /þ mice enabled the examination of the macrophage
phenotype. PARP14� /� macrophages expressed higher mRNA
and protein levels of iNOS and TNFa under IFNg stimulation

and lower levels of MRC1 and Arg1 mRNAs under IL-4 stimu-
lation compared with PARP14þ /þ cells (Fig. 7a,b). PARP14
deficiency also enhanced phosphorylation of STAT1 induced by
IFNg and decreased STAT6 phosphorylation in IL-4-treated
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peritoneal macrophages (Fig. 7c). BMDMs of PARP14þ /þ and
PARP14� /� mice supported our results (Supplementary
Fig. 13a). These results in PARP14� /� macrophages are consi-
stent with those of in vitro siRNA experiments.

Our network analysis closely linked the PARP9–PARP14
module with coronary artery disease (Fig. 2). To first examine
whether PARP14 indeed plays a role in arterial diseases, we used
two different models: (1) acute mechanical injury in femoral
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Figure 7 | Role of haematopoietic PARP14 in acute arterial lesion formation in mice. (a–c) Cultured peritoneal macrophages derived from PARP14� /�

and PARP14þ /þ mice. (a) IFNg and IL-4 pathway gene expression profiles (n¼ 3). (b) Secretion of inflammatory factors into culture media (n¼ 3).

(c) Western blot and corresponding densitometry quantification of phosphorylated STAT1 and STAT6. Each data point is the average of triplicate samples

per donor (n¼ 3). (d) Left: representative images of haematoxylin and eosin (H&E; top) and Mac3 (bottom) staining. Scale bars, 100mm. Right:

quantification of lesion formation in mechanically injured femoral arteries of PARP14� /� and PARPþ/þ mice. Mac3 staining represents macrophage

accumulation (n¼4–5). (e) LCM of the neointima followed by gene expression analysis (n¼4). (f) Flow cytometry analysis of splenic CD11bþ Ly6G�
monocytes after induction of mechanically injured femoral arteries of PARP14þ /þ and PARP14� /� mice (n¼ 3). (g) Representative H&E staining images

and quantification of neointima formation in mechanically injured femoral arteries after bone marrow transplantation (BMT) PARP14þ /þ-þ /þ and

PARP14� /�-þ /þ mice (n¼6). Scale bars, 100mm. * Po0.05 and **Po0.01, respectively, by Student’s t-test. Error bars indicate s.d.
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arteries of PARP14� /� mice and (2) acute injury in mice that
underwent bone marrow transplantation from PARP14� /�

mice. In a model of acute arterial responses due to wire-mediated
mechanical injury, PARP14 deficiency enhanced neointima
formation (Fig. 7d, top panels) and increased macrophage
accumulation (Fig. 7d, bottom panels). Laser capture micro-
dissection (LCM) of the intima of injured femoral arteries
followed by real-time PCR demonstrated that PARP14 deficiency
increased the levels of TNFa and iNOS mRNA and decreased
Arg1 mRNA (Fig. 7e). The spleen is a reservoir of monocytes/
macrophages that releases these cells in response to an event
in remote organs37. Flow cytometry of splenic cells revealed that,
in CD11bþ Ly6G� monocytes/macrophages (Supplementary
Fig. 13b), acute arterial injury increased the Ly6Chigh population
in PARP14þ /þ mice, which was further expanded by PARP14
deficiency (Fig. 7f and Supplementary Fig. 13c).

To examine the relative contribution of PARP14 in the
haematopoietic lineage to the lesion development after acute
mechanical injury, we performed bone marrow transplantation
from PARP14þ /þ and PARP14� /� mice. In lethally irradiated
PARP14þ /þ mice whose bone marrow was reconstituted by
PARP14� /� bone marrow (BMTPARP14� /�-þ /þ mice),
neointima formation after injury was accelerated, as compared
with control PARP14þ /þ mice whose bone marrow was
reconstituted by PARP14þ /þ cells (BMTPARP14þ /þ-þ /þ

mice; Fig. 7g). These results indicate that PARP14 derived from
the haematopoietic cell lineage, the majority of which are
macrophages in the neointima, plays an important role in the
development of arterial disease.

Haematopoietic PARP14 deficiency enhances atherogenesis. To
further examine the role of PARP14 in chronic arterial diseases,
we used high-fat/high-cholesterol-fed low-density lipoprotein
receptor-deficient (LDLR� /� ) mice, an established model
of atherosclerosis. Lethally irradiated LDLR� /� mice
whose bone marrow was reconstituted with PARP14� /�

cells (BMTPARP14� /�-LDLR� /� ) or PARP14þ /þ cells
(BMTPARP14þ /þ-LDLR� /� ) underwent high-fat/high-
cholesterol feeding to develop chronic atherosclerotic plaques.
Sixteen weeks after the initiation of an atherogenic diet,
BMTPARP14� /�-LDLR� /� mice exhibited more plaque forma-
tion and macrophage accumulation in the aortic root
compared with BMTPARP14þ /þ-LDLR� /� mice (Fig. 8a).
The aorta of BMTPARP14� /�-LDLR� /� contained higher
expression levels of the pro-inflammatory TNFa and CCL2/
MCP-1, while MRC1 expression tended to be lower (Fig. 8b). BMT
from PARP14� /� mice also increased PARP9 expression in the
aorta (Fig. 8b). These results are consistent with other in vitro and
in vivo data that we have reported in the present study. Taken
together, these findings indicate that PARP14 derived from the
haematopoietic lineage, the majority of which are macrophages in
arterial lesions, plays a protective role against the development of
arterial diseases, which verifies our prediction by network analysis.

Macrophage-rich human atheroma and PARP9. Seeking addi-
tional in vivo evidence for the potential role of PARP9 and
PARP14 in arterial disease involved immunohistochemical
analysis of human carotid atherosclerotic plaques surgically
removed by endarterectomy. PARP9 and PARP14 signals were
predominantly localized in plaque macrophages, as indicated by
the overlapping CD68-positive signal (Fig. 8c and Supplementary
Fig. 14). Quantitative analysis demonstrated that more macro-
phages were immunoreactive for PARP9 in macrophage-rich
plaques than in macrophage-poor plaques, while there was no
significant difference in PARP14-positive macrophages (Fig. 8c).

While some macrophages in the human plaques coexpressed
PARP9 and PARP14, other cells stained positively for either
PARP9 or PARP14 alone (Supplementary Fig. 14). These lines of
in vivo evidence indicate that macrophages in arterial lesions are
heterogeneous, which may reflect diverse levels of pro-inflam-
matory activation in individual cells.

Single-cell analysis of primary human macrophages. The
diversity in expression patterns of PARP9 and PARP14 in human
plaques necessitated the additional assessment of macrophage
subpopulations using single-cell gene expression profiling38 of
PBMC-derived human CD14-positive macrophages. Examined cell
numbers were 86 in M(-) and 84 in M(IFNg) of Donor 1, 93 in
M(-) and 86 in M(IFNg) of Donor 2 and 90 in M(-) and 81 in
M(IFNg) of Donor3, respectively. Our examination investigated
whether responses of human primary macrophages towards IFNg
stimulation are heterogeneous. Comparing average levels of
readouts (for example, inflammation-related factors) in the entire
group of cells by qPCR cannot address this question. A workflow
of single-cell gene profiling is shown in Supplementary Fig. 15a.

The expression patterns of 91 target genes (Supplementary
Table 4) in M(-) (n¼ 268) and M(IFNg) (n¼ 252; n¼ 520 in
total) derived from the three different donors. All cells were
evaluated against each other based on their gene expression
dissimilarity (Manhattan distance, http://www.nist.gov/dads/).
We present the distance matrix as a distance-based graph. By
combining the two conditions—M(-) and M(IFNg)—across three
donors (six conditions in total), M(-) cells (green) and M(IFNg)
(red) are clearly segregated, forming distinct clusters (Fig. 9a).
However, there are ‘trails’ of M(IFNg) that appear in the M(-)
cluster, suggesting potential heterogeneity. Although this may be
attributable to donor-to-donor variations, similar patterns were
observed within individual donors as well (Supplementary
Fig. 15b). As we are particularly interested in the expression
profiles of PARP9 and PARP14, we examined variations/
correlations in their expression levels in M(-) and M(IFNg)
human primary macrophages. In both phenotypes, PARP9 and
PARP14 were correlated. However, M(-) cells showed lower levels
of variation for PARP9 and PARP14 mRNA expression than did
M(IFNg) (Supplementary Fig. 15c). These findings suggest that
the ‘IFNg-polarized’ human primary macrophages are
heterogeneous.

It is possible to subdivide the cells into subpopulations based
on expression profile similarity (Fig. 9b). Using Ward’s linkage,
we observed the following three subpopulations: M(IFNg)
(Cluster 1), M(-) (Cluster 2) and Mixed (Cluster 3). It is
important to note that these populations are not homogeneous
and can be further divided into at least two subgroups (Groups 1
and 2, Fig. 9b) in human primary M(IFNg) (Cluster 1). Both
PARP9 and PARP14 were significantly higher in Group 2 than in
Group1. Considering the possible importance of PARP9 and
PARP14 in the macrophage phenotype, we subsequently
examined the genes related to macrophage functions in these
two Groups 1 and 2. The potent matrix-degrading enzyme MMP-
9 and the pattern recognition receptors CD36, TLR2 and TLR4
were higher in Group2, indicating that this subpopulation, which
is associated with increased PARP9 and PARP14 expression, may
possess a more pro-inflammatory phenotype (Fig. 9c). In our
in vitro and in vivo experiments, RNA silencing or genetic
deletion of PARP14 enhanced pro-inflammatory responses in
IFNg-stimulated macrophages. In the single-cell analysis, average
levels of MMP-9 and TLR4 mRNA expression were also higher in
IFNg-stimulated macrophages treated with PARP14 siRNA
(Supplementary Fig. 15d). However, their responses to PARP14
were heterogeneous.
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Figure 8 | Haematopoietic PARP14 in mouse atheromata and PARP9–PARP14 expression in human plaques. (a) Representative image and

quantification of aortic root lesion formation and CD68þ macrophage accumulation (green, Alexa 488) in high-fat and high-cholesterol diet-fed LDLR� /�

mice whose bone marrow was reconstituted by PARP14� /� mice (BMTPARP14� /�-LDLR� /� mice, n¼ 5), compared with LDLR� /� mice with

PARP14þ /þ bone marrow (BMTPARP14þ /þ-LDLR� /� mice, n¼6–7). Scale bars, 100mm. (b) mRNA expression of the aorta from a. n¼6–8.

(c) Immunofluorescence staining of PARP14 and PARP9 proteins (green, Alexa 488) in human carotid plaques. CD68 (red, Alexa 594). Nuclei

(blue, 4,6-diamidino-2-phenylindole, DAPI). Scale bars, 100 mm; insets, 10mm (n¼ 5). Prevalence of PARP14þ or PARP9þ macrophages in macrophage-

poor versus macrophage-rich plaques. *Po0.05 and **Po0.01, respectively, by Student’s t-test. Error bars indicate s.d.
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The gene expression correlation matrix of genes across all cells
(Fig. 9d) demonstrates that both PARP9 and PARP14 are closely
associated with genes known to participate in IFNg signalling (for
example, JAK1, JAK2, STAT1, STAT6, IRF1 and IRF5). This
correlation is highly specific to these genes, and does not extend
to other genes that we tested in this assay. Genes that are not
correlated with PARP9 and PARP14, among all 91 genes tested,
include JAK3, a mediator of IL-4 signalling (Fig. 9e). Of interest,
these correlations are further enhanced in M(IFNg) compared
with M(-) (Supplementary Fig. 15e).

Discussion
The present study provides new evidence that PARP9 and
PARP14 regulate macrophage activation. The specific novel
findings demonstrated in this report include the following:
(1) PARP9 promotes IFNg-induced responses in mouse and
human macrophages; (2) PARP14 suppresses IFNg responses in
mouse and human macrophages; (3) PARP14 induces IL-4-
triggered responses in mouse and human macrophages;
(4) PARP9 and PARP14 appear to have physical and functional
interactions; (5) PARP9 and PARP14 closely interact with
components of IFNg signalling in macrophages; (6) PARP14-
induced mono-ADP-ribosylation of STAT1 inhibits its phos-
phorylation; (7) the PARP9 and PARP14 interactomes have
significant proximity to the coronary artery disease module;
(8) PARP14 deficiency indeed accelerates macrophage activation
and lesion development in mouse models of acute and chronic
arterial diseases; (9) PARP14 in the haematopoietic lineage exerts
protective effects against arterial diseases; and (10) single-cell
analysis revealed that IFNg-stimulated human primary macro-
phages derived from CD14þ PBMC contain subpopulations, in
which PARP9 and PARP14 are closely associated with genes of
IFNg signalling. Our findings provide insight into new mechan-
isms for macrophage activation that play a critical role in the
pathogenesis of inflammatory arterial diseases, a global health
burden.

We aimed to establish the unambiguous evidence for the role
of PARP9 and PARP14 in macrophage activation using in vitro
and in vivo studies. In this study, M(IFN) and M(IL-4) as two
multidimensional models of macrophage heterogeneity were used
in an unbiased proteomics approach. We then validated our key
results on the functionality of PARP9 and PARP14 in mouse and
human primary macrophages. Bioinformatic analysis of single-
cell gene profiling in human primary macrophages revealed close
links among PARP9, PARP14 and IFNg pathway-related
molecules (for example, JAK1, JAK2, STAT1 and STAT6),
suggesting that these PARP family members contribute critically
to the process of M(IFNg) activation.

We took advantage of the availability of a well-characterized
paradigm of macrophage heterogeneity. The balance of diverse
macrophage phenotypes (for example, pro-inflammatory versus
anti-inflammatory subsets) may regulate normal homeostasis and
disease mechanisms. Effective and safe anti-inflammatory
therapies may require the fine-tuning of the imbalance of diverse
macrophage phenotypes (for example, suppressing excessively
activated pro-inflammatory macrophages without compromising
protective functions or with enhancing anti-inflammatory
activation). Our major goal was to identify molecules or pathways
that may regulate the delicate balance of macrophage hetero-
geneity using global proteomics of M(IFNg) and M(IL-4).
We thus used stringent criteria to choose proteins that increased
during M(IFNg) activation and decreased in M(IL-4). Our
in vitro experiments indicate that the interplay between PARP9
and PARP14 may indeed regulate the M(IFNg)/M(IL-4) balance.
We further validated the in vitro results in human arterial lesions

and mouse models of arterial disorders, neither of which is solely
regulated by IFNg or IL-4, to provide clinically translatable
evidence. Human and mouse atherosclerotic plaque macrophages
express PARP9 and PARP14. We identified four macrophage
subpopulations in human lesions: PARP9þ /PARP14þ ;
PARP9þ /PARP14� ; PARP9-/PARP14þ ; and PARP9� /
PARP14� . Single-cell gene expression analysis further revealed
that IFNg-stimulated human primary macrophages—M(IFNg)—
are heterogeneous, which may support an emerging concept of
the multidimensional model of macrophage activation21. In
addition, subpopulations within these IFNg-stimulated cells may
have different functions, as shown by associations with MMP-9,
CD36, TLR2 and TLR4. Future studies addressing the functional
significance of the heterogeneity in human primary macrophages
may lead to the development of personalized medical solutions.

To explore the evidence for the anti-atherogenic role of
PARP14 beyond in vitro assays, we used PARP14� /� mice.
Genetic deletion of PARP14 indeed promoted macrophage
activation and accumulation in the intima of mechanically
injured arteries, offering in vivo proof of concept. Moreover,
significant acceleration of acute arterial lesion formation and
chronic atherosclerosis was observed in the mice reconstituted
with PARP14� /� bone marrow. These findings suggest that
haematopoietic PARP14 plays a central role in arterial disease.

Our study further revealed the new biology for understudied
members of the PARP family—PARP9 and PARP14.
ADP-ribosylation assays demonstrated that PARP14 has the
ability to mono-ADP-ribosylate STAT1 and mass spectrometric
analysis identified two ADP-ribosylation sites proximal to its key
phosphorylation site. Interestingly, PARP9 suppresses PARP14-
dependent mono-ADP-ribosylation of STAT1. Furthermore,
mutations of STAT1a ribosylation sites for PARP14 enhanced
its phosphorylation and pro-inflammatory gene expression in
macrophages. The interplay of PARP9 and PARP14 in STAT1a
ADP-ribosylation and phosphorylation may in part explain why
PARP9 and PARP14 exert opposing effects on IFNg- and
IL-4-induced macrophage activation. Supplementary Fig. 16
demonstrates an overview of regulatory mechanisms for the
IFNg-STAT1 and IL-4-STAT6 pathways by PARP9 and PARP14.

In this study, unbiased global proteomics and bioinformatics of
IFNg- and IL-4-treated macrophages implicated PARP9 and
PARP14 in novel mechanisms of macrophage activation. The
subsequent network-based prediction of the close relationship
between the macrophage PARP14–PARP9 module and human
coronary artery disease genes supported the premise that our
proteomics screen would effectively identify regulators of
macrophage activation in the context of cardiovascular diseases.
The approach was then followed by a series of in vitro and in vivo
analyses on mouse and human cells/tissues that demonstrated the
novel concept that PARP9 promotes and PARP14 suppresses
IFNg-induced activation of macrophages (Supplementary
Fig. 16). The present study also represents our strategy of target
discovery research assisted by global proteomics screening and
subsequent validation studies (Supplementary Fig. 17). Collec-
tively, our discoveries indicate that inhibition of PARP9 and/or
activation of PARP14 may attenuate macrophage-mediated
vascular diseases, and also provide new insight into the develop-
ment of effective therapies for other inflammatory disorders.

Methods
Cell stimuli for cell culture and TMT sample preparation. In this study, we used
mouse and human IFNg 10 ng ml� l and IL-4 10 ng ml� 1 (R&D systems) as
stimuli for macrophage activation, respectively. The murine monocyte/macrophage
cell line RAW264.7 was obtained from American Type Culture Collection
(ATCC, TIB-71, Rockville, MD) and maintained in 10% fetal bovine serum
(FBS, Life Technologies) containing DMEM (Sigma) supplemented with penicillin
and streptomycin (Corning) at 37 �C in humidified 5% CO2. Before stimuli
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(IFNg 10 ng ml� 1 and IL-4 10 ng ml� 1), cells were starved for 24 h with 0.1%
FBS-containing media. THP-1 was also purchased from ATCC (TIB-202) and
maintained in RPMI 1640 medium in 10% FBS with penicillin and streptomycin at
37 �C in humidified 5% CO2. The macrophage-like state was obtained by treating
the THP-1 monocytes for 48 h with PMA (200 ng ml� 1, Sigma). Mycoplasma
contamination test was routinely performed (once a month).

Each cell culture experiment, unstimulated, INFg and IL-4, was prepared for
isobaric labelling using the 6-plex TMT strategy (Pierce). For sample preparation
the cells were lysed and proteolysed (Lys-C, Wako Chemicals) using the in-solution
ureaþ RapiGest (Waters) strategy detailed previously (Supplementary Fig. 1a)39.
Tryptic peptides were labelled with TMT 6-plex reagent (Pierce), combined and
desalted using Oasis Hlb 1cc (10 mg) columns (Waters). The peptides were then
fractionated into 24 fractions based on their isoelectric focusing point (pH range of
3–10) using the OFF-gel system (Agilent; Supplementary Fig. 1b). The fractions
were dried using a tabletop speed vacuum (Fisher Scientific), cleaned with the Oasis
columns and resuspended in 40 ml of 5% acetonitrile (Fisher Scientific) and 5%
formic acid (Sigma-Aldrich) for subsequent analysis by liquid chromatography/
mass spectrometry (LC/MS).

Liquid chromatography tandem mass spectrometry. The high-resolution/
accuracy LTQ-Orbitrap Elite (Thermo Scientific) analysed TMT peptide samples,
and the Q Exactive (Thermo Scientific) and Elite analysed in vitro ribosylated
peptides. Both mass spectrometers are fronted with a Nanospray FLEX ion source,
and coupled to an Easy-nLC1000 HPLC pump (Thermo Scientific). The peptides
were subjected to a dual column set-up: an Acclaim PepMap RSLC C18 trap
column, 75mm� 20 cm (50 mm� 15 cm on the Q Exactive), and an Acclaim
PepMap RSLC C18 analytical column 75 mm� 250 mm (Thermo Scientific).
For TMT analysis the analytical gradient was run at 250 nl min� 1 from 10 to 30%
Solvent B (acetonitrile/0.1% formic acid) for 90 min, followed by 5 min of 95%
Solvent B. Solvent A was 0.1% formic acid. For ribosylated peptides the gradient
was run at 250 nl min� 1 from 5 to 28% Solvent B for 10 or 30 min, followed
by 5 min of 95% Solvent B. All reagents were HPLC-grade. For TMT analysis,
LTQ-Orbitrap was set to 120 K resolution and the top 20 precursor ions (within a
scan range of 380–2,000 m/z) were subjected to higher-energy collision-induced
dissociation (HCD, collision energy 40%, isolation width 3 m/z, dynamic exclusion-
enabled, starting m/z fixed at 120 m/z and resolution set to 30 K) for peptide
sequencing (MS/MS). The Q Exactive was set to 140 K resolution with a top
10 precursor selection method (scan range of 380–1,500 m/z). HCD was set to a
stepped normalized collision energy of 25±10%, isolation width of 1.6 m/z,
dynamic exclusion-enabled and resolution set to 17.5 K for MS/MS. Ribosylated
peptide candidates were screened in the MS/MS scan by the m6 peak of 348.1
(refs 40,41). Unmodified forms were calculated by subtracting the mass of the
ADP-ribose (541.06 Da) from the observed precursor. Modified and unmodified
m/z values and corresponding retention time windows were submitted to an
inclusion list and analysed in using the data-independent acquisition module of the
Q Exactive (R¼ 35 K).

The MS/MS data were queried against the mouse or human UniProt database
(downloaded on 27 March 2012) using the SEQUEST search algorithm via the
Proteome Discoverer (PD) Package (version 1.3, Thermo Scientific)42, using a
10 p.p.m. tolerance window in the MS1 search space and a 0.02 Da fragment
tolerance window for HCD. Methionine oxidation was set as a variable
modification, and carbamidomethylation of cysteine residues and 6-plex TMT tags
(Thermo Scientific) were set as fixed modifications. The peptide false discovery rate
(FDR) was calculated using Percolator provided by PD: the FDR was determined
based on the number of MS/MS spectral hits when searched against the reverse,
decoy mouse or human database43,44. Peptides were filtered based on a 1% FDR.
Peptides assigned to a given protein group, and not present in any other protein
group, were considered as unique. Consequently, each protein group is represented
by a single master protein (PD Grouping feature). Master proteins with two or
more unique peptides were used for TMT reporter ratio quantification
(Supplementary Table 2 contains a summary of peptides and peptide-spectrum
matches (PSMs) for PARP9 and PARP14). Ribosylation spectra were manually
annotated40,41.

Proteomics normalization and filtering strategy. For each PSM the TMT ion
channel intensities were normalized to the time-zero channel (reference normal-
ization, for example, Ri ¼ xi

x1
; where i¼ 1, 2, y, 6 and x1 is the time-zero abun-

dance). The protein’s abundance was then calculated by taking the median of its
corresponding PSM ratios45. To extract the proteins that increase in IFNg-
stimulated (M(IFNg)) but decrease in IL-4-stimulated condition (M(IL-4)), we
applied a simple filtering logic that exploited the available unstimulated control
data set. In this study, unstimulated control, M(-), serves as a control for the
biological signal owing to the cell culture condition; that is, protein traces M(IFNg)
and M(IL-4) that exceed the edges of the baseline are more likely to be bona fide
IFNg- and IL-4-specific responses (Supplementary Fig. 3b). Protein profiles whose
abundances surpassed the baseline, which was defined as maximum relative
abundance at 8 h of M(-) (þ 0.13, log10 of relative abundance), after supplement of
INFg established the general threshold for the entire time M(IFNg) data set. This
cutoff value was the same that was used for both RAW264.7 and THP-1 M(IFNg)
data sets. Moreover, the proteins extracted from the IFNg-stimulated filtering step

were cross-referenced not only to M(-) but also to M(IL-4) data sets where proteins
were expected to possess opposite profiles with respect to M(IFNg) (Supplementary
Fig. 3b). Therefore, the final list of candidate proteins (Fig. 1b)
had profiles whose abundances increased in M(IFNg) and decreased in M(IL-4),
respectively, beyond their baseline controls.

Proteomics data clustering. Clustering was performed using the model-based
algorithm46 in R, which is based on finite mixture models; as such, it can successfully
be applied to time series data analyses44 such as those acquired for M(IFNg) and
M(IL-4)47 (Supplementary Fig. 3c). In this approach, each time series (protein
profile) yi, i¼ 1, 2, y, N (where N is the number of TMT channels) is considered to
be a single entity connected by a line. Clustering is achieved for a traditional finite
mixture model by assigning each time series, yi, to a cluster. The non-supervised
model-based clustering uses the Expectation Maximization algorithm to assign the
profile to a specific cluster. MCLUST has the advantage of using the Bayesian
Information Criteria to determine the number of clusters that best partition the
data set by maximizing the intradata set variability. Finally, stronger covariance
(and thus also dependencies) between sets of two time points is enabled by sum
normalization48. After clustering was performed (Supplementary Fig. 4a) we focused
on proteins shared in all three data sets (unstimulated control, IFNg-stimulated and
IL-4-stimulated) for both RAW264.7 and THP-1 cells, with the purpose of
identifying proteins whose profiles increased in IFNg-stimulated condition and
decreased in IL-4-stimulated, but maintained at basal levels in unstimulated control
condition. We inspected all clusters looking for an increase in the relative abundance
of proteins with respect to time zero at any time point in IFNg-stimulated, and
subsequently cross-referenced the IL-4-stimulated and unstimulated control clusters
for proteins whose profiles decreased and remained within the baseline, respectively.
The proteins that fulfilled these three criteria are shown in the heat maps for
RAW264.7 and THP-1 cell data sets (Supplementary Fig. 4b). Finally, to further
narrow the list of proteins of interest, we prioritized those that were common to both
species (Fig. 1c), as determined by identical Uniprot protein IDs. Heat maps were
used only with the aim of ordering the protein expression levels according to the row
obtained Z-score (that is, z¼ (x-mean)/s.d.). The proteins were clustered in the
horizontal direction hierarchically using Euclidean distance and average linkage
methods (Fig. 1c and Supplementary Fig. 4b). In these data matrices, each column
represents the TMT time point analysis 0, 8, 12, 24, 48 and 72 h, and each row
corresponds to a protein gene ID.

PARP14–PARP9 network analysis. As a parallel approach to further investigate
the candidacy of PARP9 and PARP14 as cardiovascular and metabolic diseases, we
turned to in silico or network-based prediction methods under the premise that a
potential PARP14–PARP9 interactome would be close in vicinity to its pertinent
vascular disease network/module.

To evaluate the impact of PARP14–PARP9 neighbours, we used the HumanNet
interaction database49. We then used the random-walk methodology50 to
construct the disease modules from the functional database using gene–disease
associations extracted from genome-wide association studies and from
the OMIM (http://www.ncbi.nlm.nih.gov/omim) and the MalaCards
(http://www.malacards.org) databases for: Cardiomyopathy, Coronary Heart
disease, Heart Failure, Hypercholestermia, Hypertension, Metabolic Traits,
Osteoporosis, Cardiovascular Risk Factors, Sudden Cardiac Arrest, Systemic
lupus erythematosus, Sjögren’s syndrome, polymyositis and dermatomyositis. The
PARP9–PARP14 module was determined by first neighbours in the functional
database. Further, we restricted the first neighbours to those that are expressed in
macrophages based on gene expression. The motivation of this network analysis is
based on two recent studies of ours that investigated the localization of disease in
the network51 and measure the separation of disease modules in the network52,
both of which have proved instrumental in identifying disease modules. These
network topology-based methods have been rigorously validated in both of these
peer-reviewed publications by means of biological enrichment as well as compared
with other network-based methodologies. On the basis of this selection, we
considered 55 first neighbours for PARP9 and 149 for PARP14 that we annotated
collectively as the PARP9–PARP14 module. Further, we measured the closeness of
the first neighbours using the shortest-path topology measure with the disease
modules above. For each disease module, we calculated the shortest-path distances
to the PARP9–PARP14 module and compared these distances to the random
distance distribution with the same module size (Wilcoxon test and Benjamini–
Hochberg correction for multiple testing). Finally, we verified that the module size
does not affect the significance of the P values for the Coronary Heart Disease and
Osteoporosis modules by recalculating the random distances by reducing the
module size to the top 35 genes from random walk.

Mouse peritoneal macrophages. Four days after intraperitoneal injection of
2.5–3 ml of 4% thioglycollate (Fisher Scientific), peritoneal macrophages were
obtained by injecting 5 ml of ice-cold PBS into the peritoneal cavity using 25 G
needle, followed by collection of the fluid using 23 G needle. In all, 5� 105 cells
were cultured on 24-well plates (Corning) with RPMI containing 10% FBS.
Nonadherent cells were discarded after 16 h. After washing with PBS, cells were
incubated with IFNg 10 ng ml� 1 and IL-4 10 ng ml� 1 for 24 h until harvesting.
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Primary mouse macrophages derived from BMCs. BMDMs were isolated and
differentiated as described previously53. Briefly, whole-BMCs were harvested from
femurs of 10–12-week-old male PARP14� /� or PARP14þ /þ mice (C57BL/6
mice, Jackson Laboratory) under aseptic conditions and cultured in RPMI 1640
(Lonza) supplemented with 10% FBS, penicillin and streptomycin (Corning)
in presence of macrophage colony-stimulating factor (M-CSF; 50 ng ml� 1;
Peprotech) at 37 �C in humidified 5% CO2. After 7-day culture, cells were
incubated with IFNg 10 ng ml� 1 and IL-4 10 ng ml� 1 for 24 h until harvesting.
After 7 days of culture, cells were incubated with IFNg 10 ng ml� 1 and IL-4
10 ng ml� 1 for 24 h. Whole-BMCs were cultured in M-CSF (50 ng ml� 1) for
7 days and analysed. FACS analysis showed that most of cells (480%) were
positive for CD11b, CD115 and weakly positive for F4/80 and negative for CD11c
and Ly6G, indicating the differentiation of BMCs into macrophages. FACS was
performed on the FACSAria2 (BD Bioscience), and data were analysed using the
Flowjo software (Tree Star).

Isolation of CD14þ human PBMCs. PBMCs were isolated from buffy coat using
lymphocyte separation medium (MP Biomedicals). After isolation of PBMCs,
CD14þ cells were isolated by Dynabeads in combination with anti-CD14 antibody
(Dynabeads FlowComp human CD14, Invitrogen), according to the manu-
facturer’s instruction. Briefly, CD14þ dynabead-bound cells (CD14þ cells) were
isolated using a magnet. After releasing Dynabeads from cells, bead-free CD14þ

PBMCs (5� 105 cells) were cultured in 24-well dish plates with 0.5 ml of RPMI
supplemented with 10% FBS at 37 �C in 5% CO2.

Immunohistochemistry and immunofluorescence. Samples were cut into 7 mm
thin slices, and cryo-sections were fixed in acetone. After blocking in 4% appro-
priate serum, sections were incubated with primary antibodies (Mac3 (1:200,
M3/84, BD Pharmingen), PARP14 (1:50, HPA01206, Sigma-Aldrich), PARP9
(1:100, ab53796, Abcam) and human CD68 (1:200, M0876, Dako), followed by
biotin-labelled secondary antibody (1:250, Vector Laboratories, Burlingame, CA,
USA) and streptavidin-coupled Alexa Fluor 488 antibody (Life Technologies).
For immunofluorescence double labelling, after avidin/biotin blocking (Vector
Laboratories), the second primary antibody was applied overnight at 4 �C, followed
by biotin-labelled secondary antibody and streptavidin-coupled Alexa Fluor 594
antibody (1:250, Life Technologies). Sections were washed in PBS and embedded in
mounting medium containing 4,6-diamidino-2-phenylindole (Vector Labora-
tories). For bright-field immunohistochemistry on tissue sections, following the
first biotin-labelled secondary antibody incubation, sections were incubated with
streptavidin-labelled horseradish peroxidase (HRP) solution (Dako), followed by
3-amino-9-ethylcarbazole (AEC) solution. Slides were examined using the Eclipse
80i microscope (Nikon, Melville, NY, USA) or the confocal microscope A1
(Nikon). All images were processed with the Elements 3.20 software (Nikon).

Human tissue and counting PARP14–PARP9-positive macrophages. Athero-
sclerotic carotid arteries (n¼ 10) were collected from patients undergoing endar-
terectomy procedures at Brigham and Women’s Hospital according to IRB
protocol # 1999P001348 (PL). Informed consent was not necessary because all
samples are considered as ‘discarded material.’ Samples have two groups, such as
macrophage-rich (n¼ 5) and no macrophage-rich (n¼ 5) plaques, respectively.
Samples were embedded in optimal cutting temperature (OCT) compound and
stored at � 80 �C until use. In three different fields of each sample (n¼ 5), 200 cells
(nuclei) with CD68-positive cells were evaluated whether they express PARP14
and/or PARP9 (600 cells per sample). The quantification of immunofluorescence
was performed by examiners who were blinded to group allocation (macrophage-
rich versus no plaque).

Animal ethics. All animal experiments used in this study were approved by and
performed in compliance with Beth Israel Deaconess Medical Center’s Institutional
Animal Care and Use Committee (Protocol 024-2014).

PARP14-deficient mice. PARP14� /� mice were backcrossed into the C57BL/6
genetic background over 10 generations25,54. Male PARP14� /� mice and age-
matched PARP14þ /þ mice were used for a vascular injury model or as donors
for BMT.

Wire-induced acute vascular injury. Transluminal arterial injury was induced for
10-week-old mice by inserting spring wire (0.38 mm in diameter, C-SF-15-15,
Cook) into the femoral artery under microscopic observation (leica M80)55. Right
common femoral artery, superficial femoral artery and deep femoral artery (DFA)
were first exposed. After looping SFA with 9-0 nylon suture, a small hole in the
DFA was made and a wire was inserted through the hole and advanced to the iliac
artery (10 mm). DFA was ligated with 9-0 nylon suture when the wire was removed
at the closer point to DFA and common femoral artery bifurcation than the hole.

Bone marrow reconstitution. Bone marrow was reconstituted as described
previously56 with minor modifications. Briefly, recipient mice were lethally

irradiated with a total dose of 1,000 rads. The next day, unfractionated bone
marrow cells (BMCs, 1� 106) that had been harvested from donor mice
and suspended in 0.3 ml of phosphate-buffered saline were administered
to each recipient mouse via the tail vein. We confirmed bone marrow reconsti-
tution by examining gene expression of PARP14 in the bone marrow of
BMTPARP14þ /þ-þ /þ and BMTPARP14� /�-þ /þ mice (93.3% reduction of the
PARP14 gene in BMTPARP14� /�-þ /þ compared with BMTPARP14þ /þ-þ /þ

mice). Four weeks after bone marrow reconstitution, wire-mediated femoral artery
injury was performed. Two weeks after injury, to collect arterial samples, mice were
killed by intraperitoneal administration of an overdose of Pentobarbital and then
perfused with 0.9% NaCl solution at a constant pressure via the left ventricle57.

High-fat diet-induced chronic atherosclerosis. First, we examined PARP9 and
PARP14 expression in Apolipoprotein E-deficient (ApoE� /� ) mice, which were
backcrossed with C57BL6 mice over 10 generations and then fed by high-fat and
high-cholesterol diet for 20 weeks. As a chronic atherosclerosis model, we used
low-density lipoprotein receptor (LDLR)-deficient mice (LDLR� /� ) fed a high-
fat and high-cholesterol diet for 16 weeks. Bone marrow of PARP14� /� or
sex and age-matched PARP14þ /þ mice was transplanted to lethally irradiated
LDLR� /� mice, as described above (BMTPARP14þ /þ-LDLR� /� and
BMTPARP14� /�-LDLR� /� mice). These mice were fed a high-fat and high-
cholesterol diet for 16 weeks after bone marrow reconstitution, and tissues were
harvested for histological and molecular analyses.

Evaluation of arterial lesions. The collected tissue was embedded in OCT
compound (Tissue-Tek) and then frozen in liquid nitrogen and stored at � 80 �C
until further use. Intima and media area and their ratio in injured femoral arteries
were measured by manual tracing in at least three sections of three different
levels with 100 mm interval in each animal (n¼ 5), using the Elements 3.20 s
oftware (Nikon). The quantification of histology and immunohistochemistry was
performed by examiners who were blinded to group allocation (PARP14þ /þ
versus PARP14� /� and BMTPARP14þ /þ-þ /þ versus BMTPARP14� /�-þ /þ

and BMTPARP14þ /þ-LDLR� /� versus BMTPARP14� /�-LDLR� /� mice).
No randomization method was used.

RNA interference. RNA silencing was performed as described previously58.
Briefly, 20 nmol l� 1 siRNA against PARP14 (L-023583 for human cells and
L-160447 for mouse cells) and PARP9 (L-014734 for human cells and L-05024901
for mouse cells; all ONTARGETplus SMART-pool, Thermo Scientific) or non-
targeting siRNA (scramble control siRNA, ON-TARGET Non-Targeting Pool,
Thermo Scientific) was transferred into macrophages using SilenceMag (BOCA
Scientific, Boca Raton, FL), according to the manufacturer’s instruction. Target
sequences of siRNA pool were follows:

Human PARP14: 50-UAAUCAAAGGUCUCUUAUG, UAAUGCUUAAGGU
CCUCAU, UCAUUAUACUGCCAUUCUA-30 and 50-GAACUCUUGACAUC
AUUUC-30 ,

Human PARP9: 50-AAUUACAUCUGCCGUCUGC-30 , 50-UUUGUGGCAA
GAAAUUCCG-30 , 50-UUAAUCAACAGGGCUGCCA-30 and 50-UACAGCCAA
ACUUAUUCUG-30

Mouse PARP14: 50-CUUGAAAGCUUUACGUAUA-30 , 50-CAGCAAUAGGA
ACGGGAAA-30 , 50-CCAAAGAACUUGAUCAACA-30 and 50-CGUAGUAGCAA
AAGCGAUA-30 ,

Mouse PARP9: 50-ACACAAUGUCUUCGAAAUU-30 , 50-CCAGACAGCUAU
CGAAUUA-30 , 50-CCAAAUAUGAUCUACGCAU-30 and 50-CGUACACAUUU
CAACGAUA-30 .

Control scramble: 50-UGGUUUACAUGUCGACUAA-30 , 50-UGGUUUACAU
GUUGUGUGA-30, 50-UGGUUUACAUGUUUUCUGA-30 and 50-UGGUUUACA
UGUUUUCCUA-30 .

Cell growth and cell viability. Cell proliferation, viability and apoptosis were
assessed using the CellTiter 96 AQueous Nonradioactive Cell Proliferation Assay
Kit (MTS), Cell Titer Blue assay and Apo-ONE Homogeneous Caspase-3/7 Assay
Kit, respectively (Promega), according to the manufacturer’s instructions.

RNA preparation and real-time PCR. Total RNA from the cell culture was
isolated using TriZol (Life Technologies), and reverse transcription was performed
using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany).
The mRNA expression was determined by TaqMan-based real-time PCR reactions
(Life Technologies). The following TaqMan probes were used: Hs99999902_m1
(human RPLP0), Mm00725448_s1 (mouse RPLP0), Hs00981511_m1 (human
PARP14), Mm00520984_m1 (mouse PARP14), Hs00967084_m1 (human PARP9),
Mm00518778_m1 (mouse PARP9), Hs00174128_m1 (human TNF),
Mm00443258_m1 (mouse TNF), Hs00174097_m1 (human IL-1b),
Mm01336189_m1 (mouse 1L1b), Mm00475988_m1 (mouse ARG1),
Hs00267207_m1 (human MRC1), Mm00485148_m1 (mouse MRC1),
Mm00440502_m1 (mouse NOS2) and Hs00234140_m1 (human CCL2). The
expression levels were normalized to RPLP0. Results were calculated using the
Delta-Delta Ct method, and presented as arbitrary unit.
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LCM and RNA amplification. LCM was performed on the Leica LMD6500
Microdissection System. Neointima were cut using the following LCM parameters:
power, 50 mW; pulse duration, 2 ms; and spot size, 20 Hm. RNA was isolated using
the PicoPure RNA Isoaltion Kit, followed by RNA amplification using the
RiboAmp HS Plus RNA Amplification Kit (both Arcturus, Mountain View, CA,
USA), according to the manufacturer’s protocol. PCR array was performed using
the Fluidigm PCR system.

Western blot analysis. Cells were lysed with RIPA buffer containing protease
inhibitor (Roche). Protein concentration was measured using the bicinchoninic
acid method (Thermo Scientific). Total protein was separated by 8–10%
SDS–PAGE and transferred using the iBlot western blotting system (Life
Technologies). Primary antibodies against human and mouse PARP14 (1:250,
HPA01206 Sigma-Aldrich), human and mouse PARP9 (1:250, ab53796, Abcam),
human and mouse STAT1 (1:1,000, #9172, Cell Signaling), phosphorylated STAT1
(1:1,000, #9167, Cell Signaling), human and mouse STAT6 (1:2,000, #9362, Cell
Signaling), mouse (1:1,000, ab54461, Abcam) and human (1:2,000, #9361, Cell
Signaling) phosphorylated STAT6 and human and mouse b-actin (1:5,000; Novus)
were used. For secondary antibodies, we used anti-mouse (1:1,000–5,000, A4416,
Sigma) and rabbit (1:1,000–5,000, NA934-1ML, GE Healthcare Life Sciences)
IgG antibodies. Protein expression was detected using Pierce ECL Western
Blotting substrate reagent (Thermo Scientific) and ImageQuant LAS 4000
(GE Healthcare). Uncropped images of western blots are demonstrated in
Supplementary Figs 18–20.

ELISA. The amounts of TNFa and IL-1b released into the culture media after
stimulation were measured using an ELISA kit following the manufacturer’s
instructions (Duoset Kit, R&D). The culture medium of unstimulated macrophage
was used as the negative control. Standard, control or sample solution was added to
the ELISA-well plate, which had been pre-coated with specific monoclonal capture
antibody. After being shaken gently for 3 h at room temperature, the polyclonal
anti-TNFa antibody, conjugated with horseradish peroxidase, was added to the
solution and incubated for 1 h at room temperature. A substrate solution
containing hydrogen peroxidase and chromogen was added and allowed to react
for 20 min. The levels of cytokines were assessed by a plate reader at 450 nm
and normalized with the abundance of standard solution.

Nitrate quantification. To quantify nitric oxide in cell culture media of
macrophages, mimicking iNOS concentration, the Griess Reagent Kit (G-7921, Life
Technologies) was used.

Co-IP. Cells were lysed in IP lysis buffer (Thermo Scientific). A volume of 100mg
of protein was incubated with PARP14 antibody (5 mg, Invitrogen) and Dynabeads
streptavidin (Life Technologies) by rotation overnight at 4 �C, followed by washing
three times with PBS/Tween 20 (0.02%), using a magnet to collect the beads after
each wash. Five per cent of the precipitated protein sample was subjected to SDS–
PAGE. Protein expression was detected using Pierce ECL western blotting substrate
Reagent and ImageQuant LAS 4000.

ADP-ribosylation assays. Recombinant human PARP14 and PARP9
(BPS Bioscience Inc.) proteins and BSA (Sigma-Aldrich) were incubated with
recombinant human STAT1a (OriGene Technologies Inc.) or STAT6 protein
(Sino Biological Inc.) at a final concentration of 5 ng ml� 1 in the presence of
100mM b-nicotinamide adenine dinucleotide hydrate (NAD; Sigma-Aldrich)
or 6-biotin-17-NAD (Trevigen Inc.) in 50 mM Tris-HCl buffer (pH 7.4) for 1 h at
room temperature. Ribosylation of STAT1a and STAT6 was detected by liquid
chromatography tandem mass spectrometry (LC-MS/MS) after trypsin digestion
(using the biotin-free NAD reaction) or by western blotting using Streptavidin-
HRP (Abcam) after SDS–PAGE. Quantification of the relative abundances of
ribosylated STAT1a peptides was completed by calculating the area under the
curve (AUC) of the extracted ion chromatograms of the monoisotopic peaks
of the modified versus unmodified peptides. The ratios were reported as AUC
mod./(AUC mod. þ AUC unmod).

Construction and enforced expression of mutant STAT1. Human pcDNA-GFP-
STAT1 was purchased from Addgene (Cambridge, MA, USA). Step-wise mutations
(glutamic acid, E, to glutamine, Q) was introduced at the two ribosylation sites
flanking the phosphorylation at Tyr701—E657 and E705—by recombinant PCR
mutagenesis. Mutated constructs were verified by DNA sequencing. Mouse bone
marrow macrophages were differentiated from bone marrow stromal cells using
10 ng ml� 1 M-CSF for 12 days. pcDNA-GFP-STAT1 (WT) and the mutant
pcDNA-GFP-STAT1 E657Q, E705Q, were transferred by Magnetofection
(OzBioscience, San Diego, CA, USA). HEK293 cells were transfected using
Lipofectamine LTX (Invitrogen, USA). Twenty-four hours after transfection, cells
were serum-starved (0.1% FBS) for 2 h and stimulated with IFNg for 1 h (phospho-
STAT1) or 24 h (mRNA expression of pro-inflammatory factors). The over-
expressed STAT1 was immunoprecipitated using anti-GFP antibody, clone 9F9.F9

(1:1,000, ab1218, Abcam). STAT1 phosphorylation at Tyr 701 was detected by anti-
phospho-STAT1 (Tyr701; 1:1,000, mAb #7649, Cell Signaling). Antibodies against
STAT1 (ab3987, Abcam) and GFP (ab290, Abcam) served as loading controls.
Transfection into THP-1 cells was performed using the magnetofection method
described above.

Flow cytometry. The spleen was removed and homogenized to isolate splenocytes.
Splenocytes were incubated in red-blood-cell lysis buffer (ACK lysing buffer,
Gibco) to remove erythrocytes. After incubation with anti-mouse CD16/CD32
mAb (BioLegend, 0.5 mg per million cells) to block the Fc receptor, cells were then
stained with antigen-presenting cell-conjugated CD11b, fluorescein isothiocyanate-
conjugated Ly6c and phycoerythrin-conjugated Ly6G (BioLegend) in autoMACS
running buffer containing bovine serum albumin, EDTA, PBS and 0.09% azide
(Miltenyl Biotec) for 30 min. After washing cells with autoMACS running buffer,
stained cells were analysed by FACSAria2 (BD Bioscience) and Flowjo software
(Tree Star). Ly6c expression was evaluated in CD11bþ Ly6G� splenic monocytes
(apparent b).

Single-cell gene expression analysis. For single-cell analysis of CD14þ PBMCs
derived from three donors, cell capture and target pre-amplication steps were
performed using the C1 system (Fluidigm) according to the manufacturer’s
instructions. Quantitative real-time PCR was performed using the BioMark 96.96
Dynamic Array platform (Fluidgm)38. After isolation of CD14þ PBMCs from
buffy coat, cells were cultured for 10 days. Cells in unstimulated control condition
were harvested on day10 and IFNg-stimulated cells were harvested on day 11 after
24 h incubation with IFNg 10 ng ml� 1. The cell capture rate by the C1 chip was
89.6% (86/96) in unstimulated control and 83.3% (84/96) in IFNg-stimulated of
donor 1, 96.9% (93/96) in unstimulated control and 89.6% (86/96) in IFNg-
stimulated of donor 2, and 92.7% (89/96) in unstimulated control and 85.4%
(82/96) in IFNg-stimulated of donor3.

The raw real-time PCR reads for each array were transformed into n�m
matrices using Python’s Pandas libraries (http://pandas.pydata.org/; where n¼ cell
index and m¼ gene). Each data matrix was then processed and analysed using an
in-house developed platform.

We first run a check for each column (genes) to see whether there are undetected
values (CT¼ 999) interspersed among positive reads (CTo25). If less than 10% of
the reads are positive, we substitute those values with 999, and consider the entire
gene undetectable for this array. On the other hand, if more than 10% of the genes
are positive, their corresponding reads with undetected values are substituted with
the average value of the positive reads. Granted, more sophisticated missing-value
imputation (MVI) techniques exist59; however, we may not have enough features (96
features) to fully benefit from MVI nor is it clear whether this necessarily leads to
improvement in signal. Moreover, genes requiring missing-value estimation tend to
fall near the limit of detection, and are unlikely to benefit fully from MVI. For the
purpose of having a fully populated matrix with no missing values, the averaged
value therefore should suffice. The final missing-value adjusted reads are converted
into log2exp via the following equation (equation 1), where LOD stands for the limit
of detection and set at recommended default value of 24.

log2exp ¼ LOD� CT ð1Þ

Although we do not normalize using housekeeping genes (see below for
normalization method), they can be good indicators of the overall read quality for a
given cell. Cells without the housekeeping gene expression (that is, GAPDH) were
removed from analysis. Next, we calculate the mean expression value of the GAPDH
gene (average log2exp of all cells for GAPDH). Cells with outlier GAPDH expression
(more than 3 s.d.’s from the mean) were also excluded from the analysis.

Individual cells may exhibit extreme reads because of transcriptional burst, or
because of high-instrument sensitivity [5]. Such extreme values need to be
contained. Trimming methods (removal of extreme outliers based on the 5%
quantile on either side of the read distribution) are unsuitable, as they would alter
the dimensions of the matrix as well as lead to the loss of data. For example, given
100 genes with 100 observations each. If there is a 5% chance for every gene that at
least one observation would contain an extreme outlier, then via the process of
trimming, only 95 of the observations could be used for analysis since the outliers,
and hence the entire column (containing useful information as well) would be
discarded. To circumvent this, and maintain the overall integrity of the matrix, we
performed Winsorization60, where we set boundaries of the extreme values to the
values of the 5 and 95%th quartiles, respectively.

To compare the chips, individual genes are converted into z-scores by
subtracting the mean from the log2exp, and division by the s.d.

Arrays are compared on a per-donor basis (Donor_i unstimulated control,
IFNg-stimulated, where i¼ 1,2,3). For each pair, the arrays are merged into a
combined matrix. We calculate the Manhattan distance61 between all cells based on
their gene parameters, and represent the clustering using the minimum spanning
tree62.

Statistical analysis. Data are given as mean ±s.d. Moreover, ‘n’ indicates the
number of independent experiments or number of animals/samples. Tests with a P
value less than 0.05 were considered statistically significant. Pairwise group
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comparisons were performed using a Student’s t-test (GraphPad prism 5, Prism
Software Inc. (La Jolla, CA)). If F test showed the variance was significantly
different, unpaired t-test with Welch’s correction was performed. Exclusion criteria
were set by Grubbs’ test. The experiments were not randomized. No statistical
method was used to predetermine sample size. The experiments were not
randomized.

Data availability. The data that support the findings of this study are available
within the article and its Supplementary Information Files.
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