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Abstract

In the previous study, a method to control chaos for switched dynamical systems with
constant threshold value has been proposed. In this paper, we extend this method to
the systems including a periodically moving threshold. The main control scheme is
based on the pole placement, then a small control perturbation added to the moving
threshold value can stabilize an unstable periodic orbit embedded within a chaotic
attractor. For an arbitrary periodic function of the threshold movement, we math-
ematically derive the variational equations, the state feedback parameters, and a
control gain by composing a suitable Poincaré map. As examples, we illustrate con-
trol implementations for systems with thresholds whose movement waveforms are
sinusoidal and sawtooth-shape, and unstable one and two periodic orbits in each cir-
cuit are stabilized in numerical and circuit experiments. In these experiments, we
confirm enough convergence of the control input.
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1 INTRODUCTION

Chaos is the disorderly states appeared in deterministic dynamical systems modeled in various scientific fields such as chem-
istry, ecology, medicine, economy and so on. Following three properties are the essential characteristics of chaos: sensitivity to
initial conditions, topological mixing, dense unstable periodic orbits (UPOs)1. In these days, chaos has been focused on with
the interests of practical applications. In the field of communications technology, the methods to generate a secret key or a
quasirandom number using chaos is developed2,3. In biology, Aihara has proposed the model of a neuron with chaotic dynam-
ics4. The model composes the chaotic neural network used for the optimization of some objective functions. In environmental
engineering, Huang has developed chaos prediction using the Lyapunov exponent and its application in water quality forecast5.
On the other hand, from a long time ago, many researchers in engineering have studied how to avoid chaos since such ran-
dom, noisy, unpredictable responses are treated as repulsive behavior. As the method to solve this problem, stabilization of the
UPOs embedded in chaos by applying a small control input has been well studied from the theoretical and experimental stand-
points. The method is reasonable because the control input finally vanishes. For example, Ott et al. proposed a method targeting
discrete-time dynamical systems6, and Pyragas proposed the delayed feedback control dealing with continuous-time dynamical
systems7. Other than them, there are various controlling methods: impulsive control8, sliding mode control9, linear feedback
control10 and so on11,12,13,14.
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We discussed a switched dynamical system described by an evolution equation including conditions depending on the states
or the past time15. In these systems, there exist various bifurcation phenomena or chaos as the parameters vary. Banerjee has
well studied these systems and has indicated that there exist some conspicuous phenomena in the systems16. On the other hand,
Kousaka has analyzed the stability of the periodic solutions of the switched dynamical systems and has obtained bifurcation
sets in the parameter plane17. In power electronics, power converters, such as a DC-DC converter, belong to these systems,
and some researchers have presented chaos under the influence of its switching16,18. Since these circuits have been well used
in practical industrial purpose, developing the method to control chaos in the systems is important and, indeed, several control-
ling methods have been experimentally studied19,20,21,22. In these days, Ito23 has developed a new method to control chaos in
switched dynamical systems with perturbing the threshold value. However, this study assumed that the reference threshold value
is fixed; and the method simply perturbs the threshold value slightly by following linear control theory. In practice, the threshold
might take various periodical waveforms, e.g., sine waves, sawtooth waves. A bouncing-ball system discussed in mechanics is
a example including the moving threshold24. The model simulates the movement of a particle over a periodically moving table.
The sinusoidal pulse width modulation25 also includes the sinusoidal reference voltage. This scheme realizes an inverter, which
produces an AC output from a DC input.

In this study, we develop a general method to control the chaos in the switched dynamical systems based on the method in
Ref.23. We construct a method that can deal with any kind of the threshold value with periodic movement. Firstly, assuming
that the target system is an 𝑛-dimensional switched dynamical system, we mathematically derive the variational equations, the
state feedback parameters, and a control gain with a suitable Poincaré map. From the variation equation of the fixed point, we
derive a control vector to stabilize the unstable periodic point. The main control scheme is based on the pole placement26 and a
small control perturbation added on the moving threshold value stabilizes an unstable periodic orbit embedded within a chaotic
attractor. Next, we implement the method with the mathematical models including two typical thresholds: a sine wave threshold
and a sawtooth wave threshold. We concretely obtain the value of the control vector, and apply the method to the systems.
Finally, we illustrate circuit laboratory experiments and confirm the validity of the method.

2 SYSTEM DESCRIPTION

Let us consider an 𝑛-dimensional switched dynamical system composed of two autonomous dynamical systems as follows:

system 𝛼 ∶ 𝑑𝒙
𝑑𝑡

= 𝒇𝛼(𝒙,𝝀,𝝀𝛼),

system 𝛽 ∶ 𝑑𝒙
𝑑𝑡

= 𝒇𝛽(𝒙,𝝀,𝝀𝛽),
(1)

where 𝑡 ∈ 𝑹 is the time, 𝒙 ∈ 𝑹𝑛 is a state vector, and 𝝀 ∈ 𝑹𝑟 is the vector containing the parameters shared by 𝒇𝛼 and 𝒇𝛽 .
The parameter vectors 𝝀𝛼 and 𝝀𝛽 ∈ 𝑹𝑠 are the vectors containing the parameters depending on 𝒇𝛼 and 𝒇𝛽 , respectively. Assume
that 𝒇𝛼 and 𝒇𝛽 are 𝐶∞ functions with respect to any states and parameters. The solutions to 𝒇𝛼 and 𝒇𝛽 together with an initial
condition 𝒙0 are given as follows:

system 𝛼 ∶ 𝒙(𝑡) = 𝝋𝛼(𝑡,𝒙0,𝝀,𝝀𝛼),

system 𝛽 ∶ 𝒙(𝑡) = 𝝋𝛽(𝑡,𝒙0,𝝀,𝝀𝛽).
(2)

For implementation of a switching rule between the systems 𝛼 and 𝛽, let us define a switching section Σ, which is the threshold
switching the system from 𝛼 to 𝛽:

Σ =
{
𝒙 ∈ 𝑹𝑛 | 𝑞(𝑡,𝒙,𝝀𝑟) = 0

}
, (3)

where 𝑞 ∶ 𝑹𝑛 → 𝑹 is a scalar function determining the structure of the threshold. Assume that 𝑞 is a periodic function with
period 𝑇 :

𝑞(𝑡 + 𝑇 ,𝒙,𝝀𝑟) = 𝑞(𝑡,𝒙,𝝀𝑟), (4)
where 𝝀𝑟 is a parameter vector. Notice that any parameter in 𝝀𝑟 is not included in 𝒇𝛼 and 𝒇𝛽 . The rules for the switching of the
systems are as follows:

1. the system is obeyed by the system 𝛼 when the clock signal, which is externally applied with the period 𝑇 ,

2. the system changes from 𝛼 to 𝛽 when the state arrives at Σ.
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FIGURE 1 Schematic illustration of the solution to a 𝑛-dimensional switched dynamical system.

Figure 1 shows the example of the solution and switching with an initial condition 𝒙𝑘 = 𝒙(𝑘𝑇 ). In the figure, 𝒙𝑞 is the state
arriving at Σ, 𝑡𝛼 is the interval from 𝒙𝑘 to 𝒙𝑞 , and 𝑡𝛽 is the interval from 𝒙𝑞 to 𝒙𝑘+1.

When a solution to the system (1) satisfies
𝒙(𝑡 + 𝑇 ) = 𝒙(𝑡), (5)

the solution is called a periodic orbit. Similarly, when a solution satisfies

𝒙(𝑡 + 𝑚𝑇 ) = 𝒙(𝑡), (6)

the solution is called an 𝑚-periodic orbit. Let 𝑀 be the Poincaré map of the periodic solution of the system (1) together with
𝒙𝑘 as

𝑀 ∶ 𝑹𝑛 → 𝑹𝑛; 𝒙𝑘 → 𝒙𝑘+1. (7)
The state 𝒙∗ is called an 𝑚-periodic point of 𝑀 if 𝒙∗ = 𝑀𝑚(𝒙∗). 𝑚-periodic points are on a periodic orbit or an 𝑚-periodic
orbit. A 1-periodic point is also called a fixed point.

3 THE METHOD TO STABILIZE UNSTABLE PERIODIC ORBITS

In this section, we propose a method to stabilize an unstable 𝑚-periodic orbit which is based on the method of Ito23. We choose
a control parameter 𝜆𝑑 ∈ 𝝀𝑟, which is the parameter of the function 𝑞.

Our method is based on the variational equation of the system along its unstable 𝑚-periodic orbit. To derive the variational
equation, we introduce the local map from 𝒙𝑘 to 𝒙𝑘+1, and its derivative with respect to the initial conditions and the control
parameter.

In the case of 𝑡𝛼 ≥ 𝑇 , that is, the solution together with 𝒙𝑘 does not arrive at Σ within the period 𝑇 , the Poincaré map from
𝒙𝑘 to 𝒙𝑘+1 is given by

𝑀 [1]
𝑘 ∶ 𝑹𝑛 → 𝑹𝑛; 𝒙𝑘 → 𝒙𝑘+1 = 𝝋𝛼(𝑇 ,𝒙𝑘,𝝀,𝝀𝛼). (8)

With defining the variation 𝝃 along an 𝑚-periodic point 𝒙∗ and the control input 𝑢 for 𝜆𝑑 :

𝒙(𝑘) = 𝒙∗ + 𝝃(𝑘), 𝜆𝑑(𝑘) = 𝜆∗𝑑 + 𝒖(𝑘), (9)

the variational equation of 𝑀 [1] along 𝒙∗ is written by

𝝃(𝑘 + 1) = 𝑨[1]
𝑘 𝝃(𝑘) + 𝑩[1]

𝑘 𝑢(𝑘), (10)

where

𝑨[1]
𝑘 =

𝜕𝑀 [1]
𝑘

𝜕𝒙𝑘
, 𝑩[1]

𝑘 =
𝜕𝑀 [1]

𝑘

𝜕𝜆𝑑
= 𝟎. (11)
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The variation of 𝜆𝑑 cannot affect the value of 𝑀 [1]
𝑘 because the solution does not arrive at Σ. Therefore, the second equation of

Eq. (11) becomes 𝟎.
In the case of 𝑡𝛼 < 𝑇 , that is, in the case that the solution together with 𝒙𝑘 arrives at Σ within the period 𝑇 , the Poincaré map

from 𝒙𝑘 to 𝒙𝑘+1 is given by the composition of local maps 𝑀𝛼 and 𝑀𝛽 as follows:

𝑀𝛼 ∶ 𝑹𝑛 → Σ;
𝒙𝑘 → 𝒙𝑞 = 𝝋𝛼(𝑡𝛼(𝒙𝑘, 𝜆𝑑),𝒙𝑘, 𝜆, 𝜆𝛼),

𝑀𝛽 ∶ Σ → 𝑹𝑛;
𝒙𝑞 → 𝒙𝑘+1 = 𝝋𝛽(𝑇 − 𝑡𝛼(𝒙𝑘, 𝜆𝑑),𝒙𝑞 , 𝜆, 𝜆𝛽),

𝑀 [2]
𝑘 ∶ 𝑹𝑛 → 𝑹𝑛;

𝒙𝑘 → 𝒙𝑘+1 = 𝑀𝛽◦𝑀𝛼 .

(12)

At this time, the variational equation of 𝑀 [2] along 𝒙∗ is written by

𝝃(𝑘 + 1) = 𝑨[2]
𝑘 𝝃(𝑘) + 𝑩[2]

𝑘 𝑢(𝑘), (13)

where

𝑨[2]
𝑘 =

𝜕𝑀 [2]
𝑘

𝜕𝒙𝑘
=

𝜕𝑀𝛽

𝜕𝒙𝑞

𝜕𝑀𝛼

𝜕𝒙𝑘
+

𝜕𝑀𝛽

𝜕𝒙𝑘

=
𝜕𝝋𝛽

𝜕𝒙𝑞

(
𝜕𝝋𝛼

𝜕𝒙𝑘
+

𝜕𝝋𝛼

𝜕𝑡
||||𝑡=𝑡𝛼 𝜕𝑡𝛼

𝜕𝒙𝑘

)
+

𝜕𝝋𝛽

𝜕𝑡

|||||𝑡=𝑇−𝑡𝛼
(
−
𝜕𝑡𝛼
𝜕𝒙𝑘

)
,

(14)

𝑩[2]
𝑘 =

𝜕𝑀 [2]
𝑘

𝜕𝜆𝑑
=

𝜕𝑀𝛽

𝜕𝒙𝑞

𝜕𝑀𝛼

𝜕𝜆𝑑
+

𝜕𝑀𝛽

𝜕𝜆𝑑

=
𝜕𝝋𝛽

𝜕𝒙𝑞

(
𝜕𝝋𝛼

𝜕𝑡
||||𝑡=𝑡𝛼 𝜕𝑡𝛼

𝜕𝜆𝑑

)
+

𝜕𝝋𝛽

𝜕𝑡

|||||𝑡=𝑇−𝑡𝛼
(
−
𝜕𝑡𝛼
𝜕𝜆𝑑

)
.

(15)

The derivatives of 𝑡𝛼 with respect to 𝒙𝑘 and 𝜆𝑑 are derived from the derivatives of the function 𝑞 with respect to 𝒙𝑘 and 𝜆𝑑 .
Finally, the derivatives of 𝑡𝛼 are given as follows:

𝜕𝑡𝛼
𝜕𝒙𝑘

= −

𝜕𝑞
𝜕𝒙

𝜕𝝋𝛼

𝜕𝒙𝑘
𝜕𝑞
𝜕𝒙

𝜕𝝋𝛼

𝜕𝑡
||||𝑡=𝑡𝛼 + 𝜕𝑞

𝜕𝑡
||||𝑡=𝑡𝛼

,

𝜕𝑡𝛼
𝜕𝜆𝑑

= −

𝜕𝑞
𝜕𝜆𝑑

𝜕𝑞
𝜕𝒙

𝜕𝝋𝛼

𝜕𝑡
||||𝑡=𝑡𝛼 + 𝜕𝑞

𝜕𝑡
||||𝑡=𝑡𝛼

.

(16)

𝜕𝑞∕𝜕𝑡|𝑡=𝑡𝛼 = 0 if the function 𝑞 is a constant value; and then, the variational equation (13) is exactly the same as the corresponding
equation in Ref.23. Hence, our method is applicable to both systems: the system with a periodically moving threshold and the
system with a constant threshold.

By combining Eq. (10) and Eq. (13), the composed Poincaré map 𝑀𝑚 of an 𝑚-periodic orbit is given by

𝑀𝑚 ∶ 𝑹𝑛 → 𝑹𝑛;
𝒙𝑘 → 𝒙𝑘+1 = 𝑀 [𝑙]

𝑘+𝑚−1◦⋯𝑀 [𝑙]
𝑘+1◦𝑀

[𝑙]
𝑘 ,

(17)

where 𝑙 ∈ {1, 2}. The variational equation along the corresponding 𝑚-periodic point is

𝝃(𝑘 + 𝑚) = 𝑨𝝃(𝑘) + 𝑩𝒖(𝑘), (18)

where

𝑨 = 𝑨[𝑙]
𝑘+𝑚−1 ⋯𝑨[𝑙]

𝑘+1𝑨
[𝑙]
𝑘 = 𝜕𝑀

𝜕𝒙𝑘
=

𝑚∏
𝑝=1

𝜕𝑀 [𝑙]
𝑘+𝑚−𝑝

𝜕𝒙𝑘+𝑚−𝑝
, (19)

𝑩 = 𝑩[𝑙]
𝑘+𝑚−1 ⋯𝑩[𝑙]

𝑘+1𝑩
[𝑙]
𝑘 = 𝜕𝑀

𝜕𝒙𝑘
. (20)

Generally, we can obtain the matrices 𝐴 and 𝐵 by using the numerical integration such that Runge-Kutta method.
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FIGURE 2 The circuit constructed of two linear dynamical systems.

If 𝑚 = 1,
𝜕𝑀
𝜕𝒙𝑘

=
𝜕𝑀 [2]

𝑘

𝜕𝒙𝑘
, (21)

and otherwise,
𝜕𝑀
𝜕𝒙𝑘

=
𝑚−2∑
𝑗=0

{(𝑚−(𝑗+1)∏
𝑝=1

𝜕𝑀 [𝑙]
𝑘+𝑚−𝑝

𝜕𝒙𝑘+𝑚−𝑝

)
𝜕𝑀 [𝑙]

𝑘+𝑗

𝜕𝜆𝑑

}
+

𝜕𝑀 [𝑙]
𝑘+𝑚−1

𝜕𝜆𝑑
. (22)

The control input 𝒖(𝑘) is given by
𝒖(𝑘) = 𝑪⊤𝝃(𝑘) = 𝑪⊤(𝒙𝑘 − 𝒙∗), (23)

where 𝑪 is a control vector.
The characteristic equation of the variational equation (18) is given with substituting Eq. (23) for Eq. (18) by

det
(
𝑨 + 𝑩𝑪⊤ − 𝜇𝐼𝑛

)
= 0, (24)

where 𝐼𝑛 is an identity matrix with the size of 𝑛 × 𝑛.
The local stability along an 𝑚-periodic point of the system is controllable with applying an arbitrary linear control method,

e.g., pole placement control, to Eq. (24). The control input is applied to 𝜆𝑑 if the following inequality is satisfied:||𝒙𝑘 − 𝒙∗|| < 𝜖, (25)

where || ⋅ || means Euclidean norm and 𝜖 is an arbitrary positive and small value.

4 NUMERICAL EXPERIMENTS OF THE CONTROLLING METHOD

In this section, we numerically demonstrate the controlling method proposed in Sec. 3. For the simplicity, we treat a simple
switched dynamical system composed of two linear dynamical systems, as shown in Fig. 2 . The circuit equation is given as
follows:

𝑅𝐶 𝑑𝑣
𝑑𝑡

=
{

𝑣 − 𝐸 if switch is toward 1,
−𝑣 if switch is toward 2. (26)

Let us describe the system whose switch is toward 1 is the system 1, and the system whose switch is toward 2 is the system 2.
In this circuit, 𝑆(𝑡) is a periodic function with period 𝑇 , which corresponds the threshold 𝑞, and CLK is a clock pulse applied
with the period 𝑇 . The switching rule of this circuit is completely the same as the rule mentioned in Sec. 3. With rewriting
𝑡∕𝑅𝐶 → 𝑡, the normalized equation of Eq. (26) is

𝑑𝑣
𝑑𝑡

=
{

𝑣 − 𝐸 if system 1,
−𝑣 if system 2. (27)

Note that the period 𝑇 of the function 𝑆(𝑡) should be replaced by 𝑅𝐶𝑇 . The solutions to the system 1 and 2 are analytically
solved as follows:

system 1 ∶ 𝑣(𝑡) = (𝑣𝑘 − 𝐸)𝑒𝑡−𝑘𝑇 + 𝐸,
system 2 ∶ 𝑣(𝑡) = 𝑣𝑘𝑒−𝑡+𝑘𝑇 ,

(28)
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where 𝑣𝑘 = 𝑣(𝑘𝑇 ) ∈ 𝑹 and 𝑒 is the base of the natural logarithm. From Eq. (28), 𝑣𝑘 and 𝑣𝑘+1 satisfy the following equation:

𝑣𝑘+1 =
{

(𝑣𝑘 − 𝐸)𝑒𝑇 + 𝐸 if 𝑡1(𝑣𝑘) ≥ 𝑇 ,
(𝑣𝑘 − 𝐸)𝑒−𝑇+2𝑡1(𝑣𝑘) + 𝐸𝑒−𝑇+𝑡1(𝑣𝑘) if 𝑡1(𝑣𝑘) < 𝑇 ,

(29)

where 𝑡1(𝑣𝑘) is the time when the solution departing from 𝑣𝑘 arrives the threshold.
The following steps are the procedure to construct the controlling system for numerical experiments.

Step. 1 Preliminary clarify the position of the 𝑚-periodic point 𝑣∗ existing in chaos. For example, if 𝑣∗ is the fixed point, this
is obtained by solving 𝑣𝑘+1 = 𝑣𝑘 = 𝑣∗. Consequently, from Eq. (29), the solution to the following equation equals to the
position of the fixed point 𝑣∗:

𝑣∗ − (𝑣∗ − 𝐸)𝑒−𝑇+2𝑡1(𝑣∗) + 𝐸𝑒−𝑇+𝑡1(𝑣∗) = 0. (30)
We numerically solve Eq. (30) by Newton’s method.

Step. 2 Calculate 𝑨 and 𝑩 in Eq. (18) for 𝑣∗.

Step. 3 Derive the control vector 𝑪 . Generally, 𝑩 is a matrix if Eq. (24) is satisfied; and then, 𝑪 is derived from Eq. (24). We
call this 𝑪 a control gain. For simplicity, we assume a dead-beat control, i.e., we choose 𝜇 = 0 here.

Step. 4 Determine the control boundary. The control input (23) is applied to the control parameter if the following condition is
satisfied: |𝑣𝑘 − 𝑣∗| < 𝜖, (31)
where, in this instance, we set 𝜖 = 0.3.

Let us apply these steps to the following practical examples.

4.1 A sine wave threshold
The scheme of sinusoidal pulse width modulation25 includes the sinusoidal reference voltage. Similarly, we consider a case that
the function 𝑆(𝑡) is a sine wave:

𝑆(𝑡) = 𝑉 sinΩ𝑡 + 𝑉0, Ω = 2𝜋
𝑇

, (32)

where 𝑉 , 𝑉0 and Ω are the amplitude, the DC component, and the angular velocity, respectively. At this time, 𝑡1(𝑣𝑘) in Eq. (29)
is numerically calculated by solving the following equation with Newton’s method:

(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) + 𝐸 − 𝑉 sinΩ𝑡1(𝑣𝑘) − 𝑉0 = 0. (33)

We choose the constant values for the following parameters:

𝑅 = 10 [kΩ], 𝐶 = 0.1 [𝜇F], 𝐸 = 1.4 [V],
𝑇 = 0.5 [ms], 𝑉 = 0.1 [V], 𝑉0 = 0.3 [V]. (34)

Let us stabilize unstable periodic orbits to control the chaos of the system (27) whose threshold is the sine wave. We assume
that the control parameter is 𝑉0; then the control input 𝑢(𝑘) is applied to 𝑆(𝑡). Figure 3 shows the chaos that we control. As
Step. 2, for the fixed point 𝑣∗1, we need not to use the numerical integration for obtaining 𝑨 and 𝑩 since the system is piecewise
linear. In this case, 𝑨 and 𝑩 are analytically given by differentiating Eq. (29) with respect to 𝑣𝑘:

𝑨 =
𝑑𝑣𝑘+1
𝑑𝑣𝑘

= 𝐸𝑒−𝑇+𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑘

+ 𝑒−𝑇+2𝑡1(𝑣𝑘) + 2(𝑣𝑘 − 𝐸)𝑒−𝑇+2𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑘

,

𝑩 =
𝑑𝑣𝑘+1
𝑑𝑉0

= 2(𝑣𝑘 − 𝐸)𝑒−𝑇+2𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑉0

+ 𝐸𝑒−𝑇+𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑉0

.
(35)

Partial derivatives of 𝑡1(𝑣𝑘) with respect to 𝑣𝑘 and 𝑉0 are derived by differentiating Eq. (33) as follows:
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑘

= − 𝑒𝑡1(𝑣𝑘)

(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) − 𝑉 ΩcosΩ𝑡1(𝑣𝑘)
,

𝜕𝑡1(𝑣𝑘)
𝜕𝑉0

= 1
(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) − 𝑉 ΩcosΩ𝑡1(𝑣𝑘)

.
(36)
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FIGURE 3 (a) Time waveform of the chaos in the system (27) with a sine wave, and (b) trajectory of the chaos in 𝑣𝑘-𝑣𝑘+1 plane.

TABLE 1 Position of 𝑚-periodic points in the system (27) with the sine wave, their characteristic multipliers, and the control
gains, with 𝑚 = 1, 2.

𝑚 Position Characteristic multiplier Control gain 𝑪

1 2.476491 −1.361377 0.747476
2 2.242971 −1.262122 0.923931

For the 2-periodic point 𝑣∗2, 𝑨 and 𝑩 are also analytically given by

𝑨 =
𝑑𝑣𝑘+2
𝑑𝑣𝑘

=
𝑑𝑣𝑘+2
𝑑𝑣𝑘+1

𝑑𝑣𝑘+1
𝑑𝑣𝑘

,

𝑩 =
𝑑𝑣𝑘+2
𝑑𝑉0

=
𝑑𝑣𝑘+2
𝑑𝑣𝑘+1

𝑑𝑣𝑘+1
𝑑𝑉0

+
𝑑𝑣𝑘+2
𝑑𝑉0

.
(37)

The derivatives in Eq. (37) are computed by follows:
𝑑𝑣𝑘+2
𝑑𝑣𝑘+1

= 𝑒−𝑇+2𝑡1(𝑣𝑘+1)
{
1 −

2(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) + 𝐸
(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) − 𝑉 ΩcosΩ𝑡1(𝑣𝑘+1)

}
,

𝑑𝑣𝑘+1
𝑑𝑣𝑘

= 𝑒𝑇 ,

𝑑𝑣𝑘+2
𝑑𝑉0

= 𝑒−𝑇+𝑡1(𝑣𝑘+1)
{ 2(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) + 𝐸

(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) − 𝑉 ΩcosΩ𝑡1(𝑣𝑘+1)

}
,

𝑑𝑣𝑘+1
𝑑𝑉0

= 0,

(38)

where the partial derivatives of 𝑡1(𝑣𝑘) are replaced as Eq. (36). Table 1 shows the position of 𝑚-periodic points, their
characteristic multipliers, and the control gain computed by Step. 1 to Step. 3.

Figure 4 shows the results of controlling. Before starting a control, in the shaded regions in each figure, the system (27)
yields chaos as shown in Fig. 3 . Then, if the condition (31) is satisfied, the control input 𝑢(𝑘) of Eq. (23) is applied to 𝑆(𝑡). After
that, each orbit rapidly approaches to each target solution. In other words, the chaos in each figure is stabilized to the periodic
solution. In addition, after starting a control, we find the control input 𝑢(𝑘) converges to 0 as time grows. This results in that the
proposed method is enough ideal to control chaos.
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FIGURE 4 Time waveforms of the system (27) with a sine wave before and after starting a control. (a) Time waveform
controlled to the 1-periodic orbit. (b) Time waveform controlled to the 2-periodic orbit.

4.2 A sawtooth wave threshold
A sawtooth wave is well used as the reference voltage in the pulse width modulation27. We consider a case that the function
𝑆(𝑡) is a sawtooth wave:

𝑆(𝑡) = 𝑣𝑟 −
ℎ
𝑇
(𝑡 mod 𝑇 ), (39)

where 𝑣𝑟, ℎ are the DC component and the amplitude of the sawtooth wave, respectively, and (⋅ mod ⋅) is the modulo operation
of the real numbers, e.g., (0.27 mod 0.2) = 0.07. At this time, 𝑡1(𝑣𝑘) is numerically calculated by solving the following equation
with Newton’s method:

(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) + 𝐸 − 𝑣𝑟 +
ℎ
𝑇
(𝑡1(𝑣𝑘) mod 𝑇 ) = 0. (40)

We choose the constant values for the following parameters:

𝑅 = 10 [kΩ], 𝐶 = 0.33 [𝜇F], 𝐸 = 1.4 [V],
𝑇 = 0.485 [ms], 𝑣𝑟 = 2.9 [V], ℎ = 0.2 [V]. (41)

Similarly to the case of the sine wave, let us control the chaos the system (27) whose threshold is the sawtooth wave with
stabilizing an unstable fixed point 𝑣∗1 and an unstable 2-periodic point 𝑣∗2. We assume that the control parameter is 𝑣𝑟; then the
control input 𝑢(𝑘) is applied to 𝑆(𝑡). Figure 5 shows the chaos that we control.

In a case of the sawtooth wave, for the fixed point 𝑣∗1, 𝑨 is the same as Eq. (35) and 𝑩 is analytically given by

𝐵 =
𝑑𝑣𝑘+1
𝑑𝑣𝑟

= 2(𝑣𝑘 − 𝐸)𝑒−𝑇+2𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑟

+ 𝐸𝑒−𝑇+𝑡1(𝑣𝑘)
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑟

. (42)
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FIGURE 5 (a) Time waveform of the chaos in the system (27) with a sawtooth wave, and (b) trajectory of the chaos in 𝑣𝑘-𝑣𝑘+1
plane.

TABLE 2 Position of 𝑚-periodic points in the system (27) with the sawtooth wave, their characteristic multipliers, and the
control gains, with 𝑚 = 1, 2.

𝑚 Position Characteristic multiplier Control gain 𝑪

1 2.375331 −1.590389 0.795742
2 2.116001 −1.954534 1.124820

Partial derivatives of 𝑡1(𝑣𝑘) with respect to 𝑣𝑘 and 𝑣𝑟 are derived by differentiating Eq. (40) as follows:
𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑘

= − 𝑒𝑡1(𝑣𝑘)

(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) + ℎ
𝑇

,

𝜕𝑡1(𝑣𝑘)
𝜕𝑣𝑟

= 1
(𝑣𝑘 − 𝐸)𝑒𝑡1(𝑣𝑘) + ℎ

𝑇

.
(43)

For the 2-periodic point 𝑣∗2, 𝑨 is the same as Eq. (37) and 𝑩 are analytically given by

𝑩 =
𝑑𝑣𝑘+2
𝑑𝑣𝑟

=
𝑑𝑣𝑘+2
𝑑𝑣𝑘+1

𝑑𝑣𝑘+1
𝑑𝑣𝑟

+
𝑑𝑣𝑘+2
𝑑𝑣𝑟

. (44)

The derivatives for 𝑨 and 𝑩 are computed by follows:

𝑑𝑣𝑘+2
𝑑𝑣𝑘+1

= 𝑒−𝑇+2𝑡1(𝑣𝑘+1)
⎧⎪⎨⎪⎩1 −

2(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) + 𝐸

(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) + ℎ
𝑇

⎫⎪⎬⎪⎭ ,

𝑑𝑣𝑘+1
𝑑𝑣𝑘

= 𝑒𝑇 ,

𝑑𝑣𝑘+2
𝑑𝑣𝑟

= 𝑒−𝑇+𝑡1(𝑣𝑘+1)
⎧⎪⎨⎪⎩
2(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) + 𝐸

(𝑣𝑘+1 − 𝐸)𝑒𝑡1(𝑣𝑘+1) − ℎ
𝑇

⎫⎪⎬⎪⎭ ,

𝑑𝑣𝑘+1
𝑑𝑣𝑟

= 0,

(45)

where the partial derivatives of 𝑡1(𝑣𝑘) are replaced as Eq. (43). Table 2 shows the position of 𝑚-periodic points, their
characteristic multipliers, and the control gain computed by Step. 1 to Step. 3.

Figure 6 shows the results of controlling. From the result, the controlling method also works reasonable.
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FIGURE 6 Time waveforms of the system (27) with a sawtooth wave before and after starting a control. (a) Time waveform
controlled to the 1-periodic orbit. (b) Time waveform controlled to the 2-periodic orbit.

5 CIRCUIT EXPERIMENTS OF THE CONTROLLING METHOD

In this section, we implement the proposed controlling method as a real circuit, shown in Fig. 7 . The controller is installed
in the circuit in Fig. 2 , and is composed of a sample-hold circuit, a window comparator, a subtracting amplifier, an inverting
amplifier, and a summing amplifier. A mechanism of the controller is described below.

1. The sample-hold circuit discretizes the voltage of capacitance with the period of the target unstable periodic orbit and
applies the output voltage 𝑣𝑘 to the subtracting amplifier and the window comparator.

2. The subtracting amplifier outputs the difference 𝜉(𝑘) between 𝑣𝑘 and the voltage corresponding the target unstable periodic
point.

3. The window comparator detects whether the voltage approaches the target or not. Consequently, if the inequality (31) is
satisfied, the switch is turned into 1′, and otherwise, the switch is turned into 2′.

4. If the switch is toward 1′, 𝜉(𝑘) is applied to the inverting amplifier. The inverting amplifier generates the control input 𝑢(𝑘)
from 𝜉(𝑘) and 𝑪 , where we appropriately assign 𝑪 from the ratio of 𝑅2 to 𝑅1 and applies it to the summing amplifier.

5. The summing amplifier outputs the voltage 𝑣out = 𝑢(𝑘) + 𝑆(𝑡).

5.1 A sine wave threshold
In this part, we assume that 𝑆(𝑡) is the sine wave that we defined in Eq. (32). Let us fix the parameters as the same as Eq.
(34). Figure 8 shows the result of the controlling. After starting the control, the time waveforms of Fig. 8 (a) and (b) rapidly
converge to 1-periodic orbit and 2-periodic orbit, respectively. Their trajectory converge to 1 and 2 points in 𝑣𝑘-𝑣𝑘+1 plane, as
shown in Fig. 8 (c) and (d).
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FIGURE 7 A controller implemented as a circuit.

5.2 A sawtooth wave threshold
As another experiment , we assume that 𝑆(𝑡) is the sawtooth wave that we defined in Eq. (39). We also fix the parameters as the
same as Eq. (41). Figure 9 shows the result of the controlling. Similarly to the previous section, the time waveforms of Fig.
9 (a) and (b) rapidly converge to 1-periodic orbit and 2-periodic orbit after starting the control, respectively. Their trajectories
converge to show 1 and 2 points in 𝑣𝑘-𝑣𝑘+1 plane, as shown in Fig. 9 (c) and (d).

As the result, the proposed method has been valid for controlling the chaos in switched dynamical systems.

6 CONCLUSION

In this study, we developed a generalized method to control the chaos in switched dynamical systems, which stabilizes an
unstable periodic orbit by controlling the periodic threshold value. We first described an 𝑛-dimensional switched dynamical
system, and introduced its behavior. For the mathematical construction of the controlling method, we defined two kinds of local
maps and derived their derivatives with respect to the initial conditions and the control parameter. We finally implemented the
proposed method in numerical simulations and confirmed validity of it. We also implemented the method in real circuits and
found validity for it.
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