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The maximum-likelihood expectation-maximization (ML-EM) algorithm is used for an iterative image reconstruction (IIR)
method and performs well with respect to the inverse problem as cross-entropy minimization in computed tomography. For
accelerating the convergence rate of the ML-EM, the ordered-subsets expectation-maximization (OS-EM) with a power factor
is effective. In this paper, we propose a continuous analog to the power-based accelerated OS-EM algorithm. The continuous-
time image reconstruction (CIR) system is described by nonlinear differential equations with piecewise smooth vector fields by a
cyclic switching process. A numerical discretization of the differential equation by using the geometric multiplicative first-order
expansion of the nonlinear vector field leads to an exact equivalent iterative formula of the power-basedOS-EM.The convergence of
nonnegatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem for consistent inverse
problems. We illustrate through numerical experiments that the convergence characteristics of the continuous system have the
highest quality compared with that of discretization methods. We clarify how important the discretization method approximates
the solution of the CIR to design a better IIR method.

1. Introduction

In computed tomography (CT), iterative image reconstruc-
tion (IIR) [1–4] gives better quality images compared with
filtered backprojection, which is a transform reconstruction
method based directly on the Radon inversion formula.
Among IIR methods, the maximum-likelihood expectation-
maximization (ML-EM) [4] algorithm shows a better per-
formance with respect to cross-entropy minimization or
likelihood maximization [5, 6] and is most suitable for the
reconstruction of CT since its derivation from underlying
the Poisson distribution. To accelerate theML-EMalgorithm,
which has a drawback of slow convergence, the ordered-
subset variation of the ML-EM, known as the ordered-
subsets expectation-maximization (OS-EM) [7, 8], is an
effective and popular method. In addition to the OS-EM
method, a larger power factor that does not cause divergence
in the iterative process was introduced [9–13] to further
accelerate the convergence rate. It was asserted [12] that a

power-based ML-EM algorithm with increased power (step
size) resulted in not only accelerating the convergence rate
but also maximizing the likelihood values. However, there is
currently no general formula for optimizing the convergence
rate by choosing appropriate values of the subsets number
and the step size, which depend on the tomography system
condition.

In this paper, we propose a continuous analog to the
power-based accelerated OS-EM, which is based on the
approach of continuous-time dynamical optimization [14–
19]. The system is described by a switched nonlinear differ-
ential equation with piecewise smooth vector fields. Recon-
structed image pixels were obtained by using the initial value
problem of differential equations describing the dynamical
system, for example, a continuous-time image reconstruction
(CIR) system. The proposed hybrid dynamical system has a
different vector field from that of our previously presented
continuous system [20–22]. We indicated that discretizing
the differential equations using the geometric multiplicative
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first-order expansion of the nonlinear vector field leads to
the exact same iterative formula of the power-based OS-EM
with the scaling parameter as a step size of discretization.
Iterative algorithms with the Runge-Kutta (RK), as well
as Euler methods that are applied to multiplicatively and
additively discretize the CIR system, can be used for image
reconstruction. This paper shows that the discretization of a
differential equation system can construct an IIR algorithm
for solving bound-constrained inverse problems in CT.

The proposed CIR system has an advantage in that the
convergence of nonnegatively constrained solutions to a
stable equilibrium is globally guaranteed by the Lyapunov
stability theorem [23] for consistent inverse problems. Specif-
ically, we prove theoretically that a weighted Kullback-Leibler
(KL) divergence [24] between a solution and the equilibrium
can become a common Lyapunov function for a continuous
OS-EM system with an arbitrary number of subsets and
under arbitrary switching signals. A cross-entropy function
of the KL-divergence between projection and backprojection
monotonically decreases along the solution to the continuous
ML-EM system. This means the likelihood function mono-
tonically increases in time.

To study the cross-entropy convergence property in the
case of inconsistent inverse problems, we applied numerical
simulations using a dataset acquired from a clinical SPECT
scanner for the CIR system and three kinds of discretization
methods: the Euler discretization or equivalently the power-
based OS-EM method, its rescaled method, and the third-
order RK discretizationmethod.We see that the convergence
of solutions to the CIR system has the highest quality
compared with that of other iterative methods. We clarify
how important the discretization method approximates the
solution of the CIR in designing a better IIR method.

2. System Description

Image reconstruction in CT is a problem to obtain unknown
variable 𝑥 ∈ 𝑅𝐽+ for pixel values satisfying

𝑦 = 𝐴𝑥, (1)

where 𝑦 ∈ 𝑅𝐼++ and 𝐴 ∈ 𝑅𝐼×𝐽+ , respectively, denote the pro-
jection and a projection operator representing the discretiza-
tion of the Radon transform (𝑅+ and 𝑅++, resp., indicate the
set of nonnegative and positive real numbers). If the system in
(1) has a nonnegative solution, it is consistent; otherwise, it is
inconsistent. The problem can be reduced to finding 𝑥 using
an optimization scheme thatminimizes an objective function
with respect to the system of (1).

Before describing the proposed system, we will prepare
a number of definitions and notations. Let 𝑦𝑚 ∈ 𝑅𝐼𝑚+ and𝐴𝑚 ∈ 𝑅𝐼𝑚×𝐽+ be, respectively, a subvector consisting of 𝐼𝑚
partial elements of 𝑦 and a submatrix of 𝐴 with the same
corresponding rows of 𝑦𝑚 for 𝑚 = 1, 2, . . . ,𝑀, with 𝑀
indicating the total number of divisions. We also define

𝜆𝑗 fl ( 𝐼∑
𝑖=1

𝐴 𝑖𝑗)
−1

,

𝜆𝑚𝑗 fl ( 𝐼
𝑚

∑
𝑖=1

𝐴𝑚𝑖𝑗)
−1

,
𝑗 = 1, 2, . . . , 𝐽,

(2)

where 𝐴 𝑖𝑗 is the (𝑖, 𝑗) element of𝐴 and 𝜆 fl (𝜆1, 𝜆2, . . . , 𝜆𝐽)⊤.
To simplify the description, we denote vector-valued func-
tions Log(𝛼) fl (log(𝛼1), log(𝛼2), . . . , log(𝛼𝐿))⊤ of each ele-
ment in vector 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝐿)⊤ and Exp(𝛽) fl (exp(𝛽1),
exp(𝛽2), . . . , exp(𝛽𝐿))⊤ of 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝐿)⊤, respectively.

The objective function considered in this paper is
expressed in the generalized KL-divergence

KL (𝛼, 𝛽) = 𝐿∑
ℓ=1

𝛼ℓ log 𝛼ℓ𝛽ℓ + 𝛽ℓ − 𝛼ℓ
= 𝛼⊤ (Log (𝛼) − Log (𝛽)) + V⊤ (𝛽 − 𝛼) ,

(3)

for the given nonnegative vectors 𝛼 and 𝛽 with 𝛼ℓ and 𝛽ℓ
denoting the ℓth elements of 𝛼 and 𝛽, respectively, and
V indicating an all-ones vector. The divergence KL(𝛼, 𝛽),
known as Csiszár’s 𝐼-divergence measure [25], for the vectors𝛼 and 𝛽 in 𝑅𝐿+ is nonnegative with KL(𝛼, 𝛽) = 0 if and only if𝛼 = 𝛽.

The proposed method for solving the tomographic
inverse problem is based on the use of an initial value problem
of the switched nonlinear dynamical system [26, 27], which
consists of a family of𝑀 subsystems

𝑑𝑥 (𝑡)𝑑𝑡 = 𝑋 (𝑡)
⋅ Log (Λ𝑚𝐴𝑚⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑥 (𝑡)))) ,

𝑡 − 𝑘𝜏 ∈ [𝑡𝑚−1, 𝑡𝑚) , 𝑡 ≥ 0, 𝑥 (0) = 𝑥0 ∈ 𝑅𝐽++
(4)

for 𝑚 = 1, 2, . . . ,𝑀, 𝑘 = 0, 1, . . ., and a series of times0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑀 = 𝜏, where 𝑋(𝑡) fl diag(𝑥(𝑡))
and Λ fl diag(𝜆). Note that each subsystem is described by
autonomous differential equations with a sufficiently smooth
vector field. The solutions to the hybrid dynamical system
[27] are constructed through the connection of the last state
of the previous𝑚th subsystem and the initial state of the next(𝑚 + 1)th subsystem at every 𝑡𝑚, for 𝑚 = 1, 2, . . . ,𝑀, and
setting𝑀+ 1 to be 1 for cyclic switching process.
3. Theoretical Results

In this section, the theoretical results of the solutions to the
hybrid dynamical system in (4) are given.

We first show that a solution can be made to stay positive.
This property is preservedwhether or not the inverse problem
is consistent and indicates that the CIR system does not
produce images with unphysical negative pixel values.

Proposition 1. If the initial value 𝑥0 of the switched dynamical
system in (4) is chosen in 𝑅𝐽++, its solution 𝜙(𝑡, 𝑥0) behaves in𝑅𝐽++ for all 𝑡 ≥ 0.
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Proof. The vector field of the 𝑗th element of the 𝑚th sub-
system can be rewritten as 𝑑𝑥𝑗/𝑑𝑡 = 𝑥𝑗𝑓𝑚𝑗 (𝑥) with the
function 𝑓𝑚𝑗 . Therefore, 𝑑𝜙𝑗/𝑑𝑡 ≡ 0 holds for any 𝑗 on
the subspace satisfying 𝑥𝑗 = 0, which means the subspace
becomes invariant, and, on the basis of the uniqueness criteria
of solutions to the initial value problem, any flow cannot pass
through every invariant subspace.This leads to the proof.

Assuming that the individual subsystems have the com-
mon equilibrium 𝑒 satisfying 𝑦𝑚 = 𝐴𝑚𝑒 for any 𝑚 =1, 2, . . . ,𝑀, we can prove the existence of a Lyapunov func-
tion for all subsystems in (4), which guarantees that the
corresponding switched system has a stable equilibrium 𝑒.

The OS-EM [7, 8] was introduced to accelerate the com-
putation time of ML-EM. However, even in the consistent
case, the convergence proof in [7] requires the values of 𝜆𝑚𝑗
to be independent of the subset 𝑚, which is referred to as
the “subset balance.” This condition is restrictive in practical
applications. Byrne [6] presented a more general sufficient
condition called “a generalized subset balance,” meaning that𝜆𝑚𝑗 is separable; positive values 𝛿𝑚 exist such that

𝜆𝑚𝑗 = 𝛿𝑚𝜆𝑗, 𝑗 = 1, 2, . . . , 𝐽, (5)

where 𝑚 = 1, 2, . . . ,𝑀. Our convergence proof on the
stability of an equilibrium observed in the switched system
in (4) needs the same condition as (5).

One of the main results is a stability theorem for the
continuous OS-EM system as follows.

Theorem 2. If there exists a unique solution 𝑒 ∈ 𝑅𝐽++ to the
system 𝑦 = 𝐴𝑥 with the matrix 𝐴 satisfying the condition
of (5), the equilibrium 𝑒 of the dynamical system in (4) is
asymptotically stable.

Proof. This follows from Lyapunov’s stability theorem. We
define a possible candidate for a Lyapunov function as a
weighted KL-divergence,

𝑉 (𝑥) = 𝐽∑
𝑗=1

𝜆−1𝑗 KL (𝑒𝑗, 𝑥𝑗)

= 𝐽∑
𝑗=1

𝜆−1𝑗 (𝑒𝑗 log 𝑒𝑗𝑥𝑗 + 𝑥𝑗 − 𝑒𝑗) ,
(6)

which is positive definite and is well-defined via Proposition 1
when initial value 𝑥0 is chosen in 𝑅𝐽++. It can be written as

𝑉 (𝑥) = 𝐽∑
𝑗=1

𝜆−1𝑗 ∫𝑥𝑗
𝑒𝑗

𝑠 − 𝑒𝑗𝑠 𝑑𝑠. (7)

Using the concavity of the log function and Jensen’s inequal-
ity, we then calculate its derivative with respect to the
dynamical system in (4) as

𝑑𝑉𝑑𝑡 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(4) =

𝐽∑
𝑗=1

𝑥𝑗 − 𝑒𝑗𝜆𝑗𝑥𝑗
𝑑𝑥𝑗𝑑𝑡 = − 𝐽∑

𝑗=1

𝑒𝑗𝜆j

⋅ log (𝜆𝑚𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑥)))

+ 𝐽∑
𝑗=1

𝑥𝑗𝜆𝑗 log (𝜆
𝑚
𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑥)))

≤ − 𝐽∑
𝑗=1

𝑒𝑗𝜆𝑗 (𝜆
𝑚
𝑗 𝐴𝑚𝑗 ⊤ (Log (𝑦𝑚) − Log (𝐴𝑚𝑥)))

+ 𝐽∑
𝑗=1

𝑥𝑗𝜆𝑗 (𝜆
𝑚
𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑥))

− 1) = −𝛿𝑚 𝐼
𝑚

∑
𝑖=1

𝑦𝑚𝑖 ((log (𝑦𝑚𝑖 ) − log ((𝐴𝑚𝑥)𝑖)))

+ 𝛿𝑚 𝐼
𝑚

∑
𝑖=1

(𝐴𝑚𝑥)𝑖 (exp (log (𝑦𝑚𝑖 ) − log ((𝐴𝑚𝑥)𝑖)) − 1)

≤ −𝛿𝑚 𝐼
𝑚

∑
𝑖=1

𝑦𝑚𝑖 (1 − exp (log ((𝐴𝑚𝑥)𝑖) − log (𝑦𝑚𝑖 )))

+ 𝛿𝑚 𝐼
𝑚

∑
𝑖=1

(𝐴𝑚𝑥)𝑖 (exp (log (𝑦𝑚𝑖 ) − log ((𝐴𝑚𝑥)𝑖)) − 1)
= 0,

(8)

where 𝑚 = 1, 2, . . . ,𝑀, and 𝑥 in 𝑅𝐽++. The derivative equals
zero at 𝑥 = 𝑒 ∈ 𝑅𝐽++. Consequently, the hybrid system
consisting of the family of subsystems in (4) has a common
Lyapunov function defined by (6), so the equilibrium 𝑒 of
the system is asymptotically stable under arbitrary switching
signals.

The proof ofTheorem 2 can be rephrased as follows. If the
system 𝑦 = 𝐴𝑥 has a unique solution 𝑒 ∈ 𝑅𝐽++, the objective
function 𝑉(𝑥) in (6) decreases monotonically in time for the
solution to the system in (4) with 𝑥0 ∈ 𝑅𝐽++.

We use another Lyapunov function as an objective func-
tion that has to be minimized.

Theorem 3. If the system 𝑦 = 𝐴𝑥 possesses a unique solution𝑒 ∈ 𝑅𝐽++, the following objective function 𝑊(𝑥) decreases
monotonically in time for solutions of the system in (4) with𝑀 = 1 and 𝑥0 ∈ 𝑅𝐽++:

𝑊(𝑥) = KL (𝑦, 𝐴𝑥) . (9)

Proof. We show that the function

𝑊(𝑥) = 𝑦⊤ (Log (𝑦) − Log (𝐴𝑥)) + V⊤ (𝐴𝑥 − 𝑦) , (10)

which is positive definite for 𝑥 ∈ 𝑅𝐽++, can be a Lyapunov
function. Because (𝑠 − 1)/𝑠 ≤ log(𝑠) ≤ 𝑠 − 1 for 𝑠 > 0, we can
obtain the derivative with respect to the system in (4) with𝑀 = 1 as follows:

𝑑𝑊𝑑𝑡 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(4) = (V − Exp (Log (𝑦) − Log (𝐴𝑥)))⊤ 𝐴𝑋
⋅ Log (Λ𝐴⊤ Exp (Log (𝑦) − Log (𝐴𝑥)))
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≤ −Exp (Log (𝑦) − Log (𝐴𝑥))⊤ 𝐴𝑋(𝑢
− Exp (− Log (Λ𝐴⊤ Exp (Log (𝑦) − Log (𝐴𝑥)))))
+ V⊤𝐴𝑋(Λ𝐴⊤ Exp (Log (𝑦) − Log (𝐴𝑥)) − 𝑢) ,

(11)

where 𝑢 ∈ 𝑅𝐽 and V ∈ 𝑅𝐼 indicate all-ones vectors. By putting
𝑝 fl Exp (Log (𝑦) − Log (𝐴𝑥)) (12)

for simplicity, (11) can be written as

𝑑𝑊𝑑𝑡 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(4) ≤ −𝑝⊤𝐴𝑋𝑢
+ 𝑝⊤𝐴𝑋 Exp (− Log (Λ𝐴⊤𝑝))
+ V⊤𝐴𝑋Λ𝐴⊤𝑝 − V⊤𝐴𝑋𝑢.

(13)

For the first and third terms of the right-hand side in (13), one
gets

− 𝑝⊤𝐴𝑋𝑢 + V⊤𝐴𝑋Λ𝐴⊤𝑝 = −𝑝⊤𝐴𝑋𝑢 + 𝑝⊤𝐴Λ𝑋𝐴⊤V
= 𝑝⊤𝐴𝑋(−𝑢 + Λ𝐴⊤V) = 0 (14)

and obtains for the second and fourth terms

𝑝⊤𝐴𝑋Exp (− Log (Λ𝐴⊤𝑝)) − V⊤𝐴𝑋𝑢
= 𝑢⊤𝑋Λ−1𝑢 − V⊤𝐴𝑋𝑢 = 𝑢⊤𝑋𝐴⊤V − V⊤𝐴𝑋𝑢 = 0. (15)

Therefore,

𝑑𝑊𝑑𝑡 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(4) ≤ 0 (16)

and the Lyapunov function 𝑊(𝑥) decreases along the flow.
This concludes the proof.

4. Discretization

Consider the numerical discretization of the piecewise dif-
ferential equations describing the CIR hybrid system. The
integration of differential equations by discretization via
the multiplicative calculus is derived as a multiplicative
counterpart of classical Euler and RK methods [28, 29].
The following shows the geometric multiplicative first-order
expansion of a nonlinear function that appeared in the vector
field. See [29] for details on constructing a multiplicative RK
method.

We describe the 𝑗th equation for the𝑚th subsystem in (4)
as

𝑑𝑥𝑗𝑑𝑡 (𝑡) = 𝑥𝑗 (𝑡) 𝑓𝑚𝑗 (𝑥 (𝑡)) (17)

at 𝑡 ∈ [𝑡𝑚−1+𝑘𝜏, 𝑡𝑚+𝑘𝜏) for𝑚 = 1, 2, . . . ,𝑀, and nonnegative
integer 𝑘. When applying the multiplicative Euler method to
the𝑚th subsystem, we obtain a single step at a time:

𝑥𝑗 (𝑡 + ℎ𝑚) = 𝑥𝑗 (𝑡) exp (ℎ𝑚𝑓𝑚𝑗 (𝑥 (𝑡))) , (18)

where ℎ𝑚 > 0 denotes a step size depending on 𝑚. For
the block continuous-time hybrid system, by choosing 𝑡𝑚 −𝑡𝑚−1 š ℎ𝑚 and by connecting solutions to the subsystems at
the discrete time 𝑡𝑛, where 𝑡0 = 0 and

𝑡𝑛 = 𝑛−𝑘𝑀∑
ℓ=1

ℎℓ + 𝑘𝑀∑
ℓ=1

ℎℓ (19)

for 𝑛 = 1, 2, . . ., with 𝑘 being the floor of 𝑛/𝑀, we have the
block-iterative form

𝑥𝑗 (𝑡𝑛+1) = 𝑥𝑗 (𝑡𝑛) exp (ℎ𝑚𝑓𝑚𝑗 (𝑥 (𝑡𝑛))) ,
𝑛 = 0, 1, 2, . . . , 𝑚 = (𝑛 mod 𝑀) + 1, 𝑥 (𝑡0) = 𝑥0.

(20)

Through this discretization procedure, the discrete time 𝑡𝑛 is
identical to the switching time 𝑡 = 𝑡𝑚+𝑘𝜏with 𝜏 = ∑𝑀ℓ=1 ℎℓ in
the hybrid dynamical systemunder the corresponding special
switching signals.

The iterative formula for the continuous-time system in
(4) is equivalent to the power-based OS-EM

𝑧𝑗 (𝑛 + 1) = 𝑧𝑗 (𝑛)
⋅ (𝜆𝑚𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑧 (𝑛))))ℎ𝑚

= 𝑧𝑗 (𝑛)(𝜆𝑚𝑗 ∑
𝑖∈𝐵𝑚

𝐴 𝑖𝑗 𝑦𝑖(𝐴𝑧 (𝑛))𝑖)
ℎ𝑚

,
𝑛 = 0, 1, 2, . . . , 𝑚 = (𝑛 mod 𝑀) + 1, 𝑧 (0) = 𝑥0,

(21)

where 𝑥(𝑡𝑛) in (20) is substituted with 𝑧(𝑛). Here, the collec-
tion {𝐵1, 𝐵2, . . . , 𝐵𝑀} is a partition or a subset of the index set{𝑖 = 1, 2, . . . , 𝐼}; the definition is the same as the derivation
of 𝐴𝑚 and 𝑦𝑚 for 𝑚 = 1, 2, . . . ,𝑀. The step size ℎ𝑚 in (20)
and (21) corresponds to the scaling parameters in the OS-EM
algorithm. Note that because the step size is derived in the
discretization procedure of the hybrid dynamical system, its
value does not affect the theoretical results of the solutions for
the CIR system defined in Section 2.

5. Numerical Example

This section numerically illustrates the convergence property
of continuous solutions to the CIR system and iterative
solutions to certain IIR procedures derived from its dis-
cretizations.We used a set of SPECT projection data available
from a publicly accessible database of Monte Carlo simulated
datasets for Emission Tomography (the MC-ET database)
[30]. The sinogram of a brain scan is shown in Figure 1.
The numbers of projections and pixels of the reconstructed
images were 𝐼 = 7,500 (125 bins and 60 directions in 180
degrees) and 𝐽 = 7,569 (87 × 87 pixels), respectively. The
projection data from 60 directions were divided into 𝑀
nonoverlapping subsets as uniformly as possible with 𝑀
being 2, 4, and 8. When𝑀 = 2 and 4, (5) holds with 𝛿𝑚 = 𝑀
for𝑚 = 1, 2, . . . ,𝑀; namely, the subsets into which the angles
are uniformly split satisfy the subset balance [7] condition.
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Figure 1: (a) Sinogram of brain scan and (b) profile of counts along vertical line in middle of sinogram.

Whereas, nonuniform division into eight subsets gives an
unbalanced dataset. The step size ℎ fl ℎ𝑚 of IIR was set
to 2.2 for any 𝑚 = 1, 2, . . . ,𝑀. Although bigger step size is
effective for accelerating IIR method, the algorithm diverges
or oscillates if it is too big [12, 13].The value of ℎwas chosen to
characterize the difference between lower- and higher-order
discretization methods (i.e., OS-EM and RK, resp.) in the
convergence process.

The IIR procedures considered here are the OS-EM
(or equivalently the multiplicative Euler method) in (21),
a rescaled OS-EM, and the multiplicative third-order RK
method of the CIR. The rescaled OS-EM was achieved by
multiplying the state 𝑧(𝑛+1) in (21) by the rescaling coefficient

𝜁 fl ∑𝑖∈𝐵𝑚 𝑦𝑖∑𝑖∈𝐵𝑚 (𝐴𝑧 (𝑛 + 1))𝑖 (22)

at every 𝑛th iteration step with 𝑚 = 1, 2, . . . ,𝑀; namely, the
mapping

R : 𝑅𝐽++ 󳨀→ 𝑅𝐽++; 𝑧 (𝑛 + 1) 󳨃󳨀→ 𝜁𝑧 (𝑛 + 1) (23)

was applied as a postprocess to the OS-EM procedure. The
multiplicative RK method with third-order is defined as
follows.

𝑧𝑗 (𝑛 + 1)
= 𝑧𝑗 (𝑛) 𝑝𝑚𝑗 (𝑧 (𝑛))ℎ𝑚/6 𝑞𝑚𝑗 (𝑧 (𝑛))2ℎ𝑚/3 𝑟𝑚𝑗 (𝑧 (𝑛))ℎ𝑚/6 , (24)

where

𝑝𝑚𝑗 (𝑧) fl 𝜆𝑚𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑧)) ,
𝑞𝑚𝑗 (𝑧) fl 𝜆𝑚𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚𝑤)) ,
𝑟𝑚𝑗 (𝑧) fl 𝜆𝑚𝑗 𝐴𝑚𝑗 ⊤ Exp (Log (𝑦𝑚) − Log (𝐴𝑚V))

(25)

with𝑤𝑗 fl 𝑧𝑗𝑝𝑚𝑗 (𝑧)ℎ𝑚/2 and V𝑗 fl 𝑧𝑗𝑝𝑚𝑗 (𝑧)−ℎ𝑚𝑞𝑚𝑗 (𝑧)2ℎ𝑚 , for 𝑗 =1, 2, . . . , 𝐽 and 𝑚 = (𝑛 mod 𝑀) + 1. To solve the differential
equation in (4) for CIR, we used the solver ode45, which is a
variable-step RK method in MATLAB (MathWorks, Natick,
USA).

Figure 2 plots the objective function 𝑊 in (9), which
is a cross-entropy function and a Lyapunov function for
the CIR system with 𝑀 = 1, obtained by using CIR, the
OS-EM, its rescaling, and the RK at time 𝑡 ∈ [0, 10𝑀]
and the 𝑛th discrete points for 𝑛 = 0, 1, . . . , ⌊10𝑀/ℎ⌋,
with the number of subsets 𝑀 being equal to 1, 2, 4,
and 8. Since there is no theory available to guarantee the
convergence of iterative solutions to IIR with a step size
greater than one, the iterative points diverge or oscillate
depending on the conditions set, including the selection
of 𝑀. We see that the OS-EM, having the relatively large
step size, accumulates an error per iteration because of the
insufficient accuracy of the computation by using first-order
approximation. As shown in Figure 3, which represents the
reconstructed images at 𝑡 = ⌊10𝑀/ℎ⌋ℎ, theOS-EMalgorithm
with 𝑀 ≥ 4 and the rescaled OS-EM with 𝑀 = 8 failed
to reconstruct images corresponding to the divergence of
the objective function 𝑊. However, a further experiment
indicated that the iterative sequence generated by the third-
order RK algorithm with𝑀 ≤ 8 did not diverge nor oscillate
for ℎ ≤ 2.4. One can confirm that the OS-EM and the
other iterative procedures originate from the meaning of
convergence from the CIR system and the third-order RK has
the best robust performance among three IIR algorithms. It
is important when designing a better IIR method to choose
a discretization method that approximates the solution of the
CIR.

6. Concluding Remarks

We proposed a hybrid dynamical system (CIR system), a
multiplicative Euler discretization that is exactly the same
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Figure 2: Values of𝑊 for CIR, OS-EM, rescaled OS-EM, and third-order RK (abbreviated as CIR, OSEM, ROSEM, andMRK3, resp.) at time𝑡, which is the independent variable of the continuous system (CIR), and at discretized time series defined by 𝑡𝑛 = 𝑛ℎ in 𝑡, with ℎ = 2.2 and𝑛 = 0, 1, 2, . . . , ⌊10𝑀/ℎ⌋, for the discrete systems (OSEM, ROSEM, and MRK3).

as a power-based accelerated OS-EM. We have theoretically
shown the positiveness of solutions and the stability of a
common equilibrium corresponding to the exact solution
of the consistent CT inverse problem. The proof of the
convergence to the stable equilibrium was made using the
Lyapunov stability theorem. As a result, the common Lya-
punov function or theKL-divergencemeasuremonotonically
decreases along the time course.

We confirmed through numerical experiments that the
convergence characteristics of the CIR systemhad the highest

quality compared with that of any discretization method.
This fact illustrates that the OS-EM method and its rescaled
method are considered to be derived from discretization of
the CIR system.
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