Regulation of a-klotho Expression by Dietary Phosphate During Growth Periods

Shiori Fukuda-Tatano^{1,2}, Hironori Yamamoto^{1,3,4}, Otoki Nakahashi^{1,5}, Ryouhei Yoshikawa¹, Mayu Hayashi¹, Maki Kishimoto¹, Yukiko Imi⁶, Hisami Yamanaka-Okumura¹, Kohta Ohnishi¹, Masashi Masuda¹and Yutaka Taketani^{1,*}

¹Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan ²Department of Health and Nutrition, Faculty of Nursing and Nutrition, The University of Shimane, 151 Nishihayashigi, Izumo-city, Shimane 693-8550, Japan

³Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, Ohde-cho 3-1-1, Echizen city, Fukui 915-8586, Japan

⁴Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan

⁵Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima-shi, Tokushima 770-8514, Japan ⁶Department of Clinical Nutrition and Dietetics, Konan Women's University, Kobe 658-0001, Japan

*To whom correspondence should be addressed.

E-mail: taketani@tokushima-u.ac.jp

1 Abstract

2	Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions,
3	particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast
4	growth factor 23 (FGF23) and parathyroid hormone (PTH) to maintain plasma Pi levels. FGF23
5	is a potent phosphaturic factor that binds to the α -klotho/FGFR complex in the kidney to promote
6	excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α -klotho
7	expression. Down-regulation or lack of α -klotho induces a premature aging-like phenotype,
8	resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and
9	osteoporosis. However, it remains unclear what effects dietary Pi has on α -klotho expression at
10	different life stages, especially during growth periods. To investigate this, we used C57BL/6J
11	mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks
12	old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2,
13	1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased
14	renal α -klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a
15	high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent
16	group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study
17	indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α -klotho
18	expression and pathogenesis of renal calcification compared with periadolescent mice.

19 Keywords

20	Dietary phosphate, Growth periods, α -Klotho, FGF23, Vitamin D metabolism, Kidney
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

37 Introduction

38 Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods [1, 2]. Pi deficiency can cause abnormal mineralization of bone 39 40 and lead to metabolic bone disorders such as rickets and osteomalacia. On the other hand, an 41 excessive intake of dietary Pi is known as to be a risk factor for impaired kidney function and 42 cardiovascular diseases [3]. In recent years, excess intake of dietary Pi has been a concern in 43 Japan as well as other developed countries [4, 5]. In particular, Pi intake from "food additives" 44 used in various processed foods has increased significantly [6, 7]. According to the National 45 Health and Nutrition Examination Survey in Japan, Pi intake for each age group is about 1000 mg 46 [8]. On the other hand, total intake of Pi including food additives has been reported to be about 47 two-fold [9]. 48 Pi homeostasis is regulated by its absorption from the intestine, reabsorption, and excretion 49 through the kidney, and mobilization from the bone. These processes are regulated by various Pi-50 regulating factors such as parathyroid hormone (PTH), 1,25-dihydroxyvitamin D [1,25(OH)₂D], 51 and fibroblast growth factor 23 (FGF23) [10-12]. FGF23 is a potent phosphaturic hormone that 52 is secreted from the bone in response to elevated serum Pi levels or increased dietary Pi intake. 53 Secreted FGF23 can bind to FGF receptor with α-klotho, which is a co-receptor for FGF23 in the 54 kidney, and suppress the expression of 25-hydroxyvitamin D-1 α-hydroxylase (CYP27B1) and

55	type II sodium-dependent Pi cotransporters (Npt2a and Npt2c) [13, 14]. Thus, the FGF23/ α -
56	klotho signaling system plays an important role in both Pi homeostasis and vitamin D metabolism.
57	α -klotho was originally identified as an aging-suppressor gene [15]. It is expressed mainly in
58	the distal tubules of the kidney, and down-regulation or a lack of α -klotho induces a premature
59	aging-like phenotype. Mutant mice which lack α -klotho show premature aging-like phenotypes
60	such as shorter life-spans, arteriosclerosis, and ectopic calcification. These premature aging-like
61	phenotypes are due to hyperphosphatemia and hypervitaminosis D [15-17]. α -klotho and Npt2a
62	double-knockout mice did not show hyperphosphatemia or ectopic calcification [29]. On the other
63	hand, double-knockout mice fed with high a Pi diet showed a similar phenotype to α -klotho
64	knockout mice [18]. These results suggest that a high Pi diet may be responsible for the expression
65	of a premature aging-like phenotype. According to several reports, α -klotho expression is
66	suppressed under high dietary Pi intake, increased oxidative stress, and chronic kidney disease
67	(CKD) [19-21].
68	α -klotho expression is decreased by a high Pi diet and increased by a low Pi diet in mature
69	mice [19]. However, the effects of dietary Pi on α -klotho expression at different life stages,
70	especially during growth periods, remain unclear. Therefore, we hypothesized that a high Pi diet

- 71 during growth periods may suppress α-klotho expression and contribute to early-onset aging-
- 72 related diseases. In this study, we examined the effects of dietary Pi on renal α -klotho expression;

73 phosphate, calcium, and vitamin D metabolism; and ectopic calcification during growth periods.

74

75 Materials and Methods

76 Animals and Diets

77 This study was approved by the Animal Experimentation Committee of Tokushima University. 78 In this study, we chose to use male mice, because female mice have estrous cycle which affect 79 bone and mineral metabolism. Male C57BL/6J mice were purchased from Japan SLC (Shizuoka, 80 Japan) at the ages of 2 and 6 weeks and housed in cages. All animals were kept on a 12-h: 12-h 81 light-dark cycle with unlimited access to distilled water. Before mice were given the experimental 82 diet, 2-week-old male mice were given breast milk and the normal diet (Oriental Yeast Co., ltd., 83 Tokyo, Japan) containing 0.8% Pi and 1.0% calcium (Ca). 7-week-old male mice were given the 84 normal diet only before experimental period. The experimental diets were based on the modified 85 AIN-93G [22] the protein source of which was egg white and with a modified mineral mix without 86 Ca and Pi to prepare a Pi deficient diet. CaCO₃ was added to each diet at 0.6% Ca, and KH₂PO₄ 87 was added to prepare 0.02%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5% and 1.8% Pi diets on the Pi deficient 88 diet (Table 1). To compare the effects of dietary Pi intake on plasma Pi or other biochemical and 89 patho-histological analyses between weaned and periadolescent mice, we conducted a "short-term 90 study." In this short-term study, weaned mice (3 weeks old) and periadolescent mice (7 weeks

91	old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2,
92	1.5, or 1.8% Pi diets for 7 days. Each mouse was given the experimental diet in accordance with
93	a pair-feeding protocol. Therefore, daily food intake did not differ among the groups. To
94	investigate the long-term effects of dietary Pi on growing mice, we conducted a "long-term study."
95	In this long-term study, weaned mice were randomly divided into two experimental groups and
96	fed with either a 0.6 or 1.8% Pi diet for 7, 14, or 21 days. At the end of the experimental period,
97	all mice were euthanized under anesthesia and blood, urine, and kidney samples were collected
98	for the following analyses.
99	
100	Blood and urine parameters
101	Plasma and urine concentrations of Pi, Ca, and creatinine (Cre) were determined using the
102	Phospha-C test (Wako, Osaka, Japan), the Calcium-E test (Wako), and the LabAssay TM Creatinine
103	test (Wako). Concentrations of plasma intact-FGF23 and intact-PTH were determined using
104	FGF23 ELISA kits (Kainos, Tokyo, Japan) and Mouse PTH 1-84 ELISA kits (Immutopics, San
104 105	FGF23 ELISA kits (Kainos, Tokyo, Japan) and Mouse PTH 1-84 ELISA kits (Immutopics, San Clemente, CA). Plasma 1,25(OH) ₂ D levels were measured using a radioimmunoassay (RIA) kit

107

108 Real-time PCR

109	Total RNA was isolated from homogenized kidneys using ISOGEN RNA extraction reagent
110	(Nippon Gene, Tokyo, Japan). First-strand cDNA was synthesized from 2.5 μ g of total RNA and
111	primed with oligo (dT) using MMLV-reverse transcriptase (Invitrogen, San Diego, CA). Real-
112	time quantitative polymerase chain reaction (RT-PCR) analysis was performed using
113	StepOnePlus TM (Applied Biosystems, Forster City, CA, USA). The prepared first-strand cDNA
114	was amplified by PCR using Fast SYBR®Green Master Mix (Applied Biosystems) in a 10 μl
115	reaction volume, with 10 pmol of each primer. The primer sequences used for PCR amplification
116	are described in Table 2. The amplification program was 95 °C for 20 s followed by 40 to 50
117	cycles of 95 °C for 3 s, 60 °C for 30 s, and 60 °C for 1 min. The PCR products were separated by
118	electrophoresis using 1% agarose gels. The PCR products were quantified by fit-point analysis
119	and the mRNA expression was normalized using β -actin as an internal control. The value from
120	the periadolescent mice fed the 0.6% phosphate diet was considered to be 1.00.
121	
122	Von Kossa staining

123 Von Kossa staining was performed to detect ectopic calcification. Harvested tissues were fixed 124 with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS), and then dehydrated in an 125 ascending ethanol series, embedded in paraffin, and sliced at 4 μm thickness. The tissue sections 126 were treated with 5% silver nitrate solution under ultraviolet light for 1 h. The sections were then

128	were counterstained with hematoxylin-eosin (HE).
129	
130	Statistical analysis
131	Results are expressed as the mean \pm SEM for each group. Statistical significance was
132	determined by the Tukey-Kramer post hoc test, after two-way ANOVA. A p value < 0.05 was
133	considered to be significant.
134	
135	Results
136	Effects of dietary Pi on biochemical parameters in plasma and urine
137	To examine the effects of dietary Pi on biochemical parameters in plasma and urine, mice
138	were fed diets of different Pi content. As dietary Pi content increased, plasma Pi concentration
139	increased in the weaned group, but not in the periadolescent group (Fig. 1a). Plasma Ca
139 140	
	increased in the weaned group, but not in the periadolescent group (Fig. 1a). Plasma Ca
140	increased in the weaned group, but not in the periadolescent group (Fig. 1a). Plasma Ca concentration did not change in either group except for mice on the 0.02% Pi diet (Fig. 1b). As
140 141	increased in the weaned group, but not in the periadolescent group (Fig. 1a). Plasma Ca concentration did not change in either group except for mice on the 0.02% Pi diet (Fig. 1b). As dietary Pi content increased, urinary Pi excretion increased in both groups (Fig. 1c). A high Pi diet
140 141 142	increased in the weaned group, but not in the periadolescent group (Fig. 1a). Plasma Ca concentration did not change in either group except for mice on the 0.02% Pi diet (Fig. 1b). As dietary Pi content increased, urinary Pi excretion increased in both groups (Fig. 1c). A high Pi diet (1.5 and 1.8% Pi) did not increase urinary Ca excretion in the periadolescent group, but a high Pi

washed with distilled water and immersed in 5% hypo solution (sodium thiosulfate). Sections

127

145 Effects of dietary Pi on phosphate-regulating factors in plasma

146	To examine the effects of dietary Pi on phosphate-regulating factors in plasma, we measured
147	plasma FGF23, 1,25(OH) ₂ D, and PTH 1-84. The plasma FGF23 concentration was significantly
148	elevated in the weaned mice fed with a high Pi diet (1.5 and 1.8% Pi). In the periadolescent group,
149	a high Pi diet slightly, but significantly, increased plasma FGF23 levels (Fig. 2a). Plasma
150	1,25(OH) ₂ D concentration was significantly elevated in the low Pi diet group (0.02% Pi), and
151	tended to increase, as dietary Pi content increased, in both groups (Fig. 2b). A high Pi diet (1.5
152	and 1.8% Pi) increased plasma PTH 1-84 concentration compared with the 0.6% Pi diet in the
153	periadolescent group, but not in the weaned group (Fig. 2c).
154	
155	Effects of dietary Pi on mRNA expression of renal FGF23/α-klotho signal-related gene and

156 inflammatory cytokines

To examine the effects of dietary Pi on the renal FGF23/ α -klotho signaling pathway, we measured renal α -klotho and FGFR1 mRNA expression levels using RT-PCR. In the periadolescent group, renal α -klotho mRNA expression levels did not change significantly. On the other hand, in the weaned group, α -klotho mRNA expression levels decreased significantly following a high Pi diet (1.5% and 1.8% Pi) (Fig. 3a). Renal FGFR1 mRNA expression did not change in either group. We hypothesized that the decrease in renal α -klotho expression in the weaned group impaired the FGF23/ α -klotho signal. Therefore, we examined renal Egr-1 mRNA 164 expression, which is a target gene of the FGF23/ α -klotho signal [14]. As shown in Fig. 3c, renal 165 Egr-1 mRNA expression was significantly elevated in the weaned fed with a high Pi diet (1.5 and 166 1.8% Pi), but unchanged in the periadolescent group. Furthermore, we examined the expression 167 of one of the inflammatory cytokines, renal TNF- α mRNA. As shown in Fig. 3d, renal TNF- α 168 mRNA expression was significantly elevated in weaned mice fed with a high Pi diet (1.5 and 169 1.8% Pi), but unchanged in the periadolescent group.

170

171 Effects of dietary Pi on renal mRNA expression of sodium-dependent Pi transporters, Ca

172 transporter, and vitamin D metabolism-related genes

173 We also examined the effects of dietary Pi intake on renal mRNA expression for sodium-174 dependent Pi transporters (Npt2a and Npt2c) and vitamin D metabolism-related genes. Renal 175 Npt2a mRNA expression was significantly decreased in the weaned mice fed with a high Pi diet 176 (1.5 and 1.8% Pi) (Fig. 4a), and renal Npt2c mRNA expression also tended to decrease in the 177 weaned mice fed with a high Pi diet (1.5 and 1.8% Pi) (Fig. 4b). Renal Cyp27b1 mRNA 178 expression was significantly increased in the weaned mice fed with a low phosphate diet (0.02% 179 Pi), and tended to increase in the weaned group as their dietary Pi content increased (Fig. 4c). 180 Renal Cyp24a1 mRNA expression tended to increase in both groups as dietary Pi content 181 increased (Fig. 4d). The expression of mRNA for the transient receptor potential vanilloid member

182 5 (TRPV5), which is a major calcium transporter in the apical membrane of renal distal tubules,

183 was significantly higher in the weaned mice fed with a high Pi diet (Fig. 4e).

184

185 Effects of dietary Pi on renal calcification

- 186 Recent reports have indicated that a high Pi diet can induce renal calcification [23, 24].
- 187 Therefore, we investigated the effects of dietary Pi on renal calcification using Von Kossa staining.
- As shown in Fig. 5A, a high Pi diet (1.5 and 1.8% Pi) clearly induced renal calcification in the
- 189 weaned group (Fig. 5a). However, in the periadolescent group, renal calcification was not

190 observed, even in the 1.8% Pi diet group (Fig. 5b).

191

Long-term effects of a high Pi diet on biochemical parameters in the plasma and urine of weaned mice

In the short-term study of the two life stages, it was clear that a high Pi diet had much greater adverse effects on the kidneys of weaned mice compared with periadolescent mice. Moreover,

- 196 the FGF23/ α -klotho signal was activated in the weaned mice fed with high a Pi diet, despite the
- 197 fact that renal α-klotho mRNA expression decreased. However, it was still unclear what long-
- 198 term effects a high Pi diet may have had on the FGF23/ α -klotho signal in the weaned group.
- 199 Therefore, we examined the effects of long-term administration of a high Pi diet on the FGF23/ α -

200

klotho signal in weaned mice. Weaned mice were randomly divided into two experimental groups

- and fed with either 0.6 or 1.8% Pi diets for 7, 14, or 21 days.
- The plasma Pi concentration was significantly higher at 14 and 21 days in the 1.8% Pi diet
- group compared with the 0.6% Pi diet group (Fig. 6a). Plasma Ca concentration was significantly
 lower at 7 and 14 days in the 1.8% Pi diet group compared with the 0.6% Pi diet group, but no
- significant differences were observed after 21 days in the 1.8% Pi diet group compared with the
- 206 0.6% Pi diet group (Fig. 6b). Urinary Pi excretion was significantly higher in the 1.8% Pi diet
- group compared with the 0.6% Pi diet group. Interestingly, after 21 days of the 1.8% Pi diet group,
- 208 urinary Pi excretion was significantly lower compared with days 7 and 14 (Fig. 6c). Urinary Ca
- 209 excretion was significantly higher at 7 and 14 days of in the 1.8% Pi diet group compared with
- 210 the 0.6% Pi diet group (Fig. 6d).
- 211

212 Long-term effects of a high Pi diet on the FGF23/α-klotho signal in weaned mice

213 To examine the effects of long-term administration of a high Pi diet on the FGF23/ α -klotho

- 214 signal in weaned mice, we measured plasma FGF23 concentration, and renal α-klotho and Egr-1
- 215 mRNA expression. The plasma FGF23 concentration of the 1.8% Pi diet group increased 60 times
- compared with that of 0.6% Pi diet group at 7 days, and this was sustained until 21 days (Fig. 7a).
- 217 Renal α-klotho mRNA expression in the 1.8% Pi diet group was significantly decreased by about

218	20% compared with the 0.6% Pi diet group (Fig. 7b). Renal Egr-1 mRNA expression was
219	significantly higher in the 1.8% Pi diet group compared with the 0.6% Pi diet group. Interestingly,
220	this then significantly decreased at 21 days in the 1.8% Pi diet group compared with 7 and 14
221	days, although high plasma FGF23 levels were sustained (Fig. 7c).
222	
223	Discussion
224	Here, we examined the effects of dietary Pi on Pi metabolism, renal calcification, and the
225	FGF23/ α -klotho signaling pathway under different doses of dietary Pi, at different life stages, and
226	over different experimental periods in mice. Interestingly, a high Pi diet only decreased renal α -
227	klotho mRNA expression and caused renal calcification in weaned mice. Previous reports showed
228	that a high Pi diet decreased renal α -klotho expression and caused renal calcification in adult mice
229	and rats [19, 24]. However, there have been no studies that have examined the effect of a high Pi
230	diet on renal α -klotho mRNA expression and renal calcification at different life stages. Renal α -
231	klotho mRNA expression is reported to have been suppressed in CKD patients [25], and TNF- α
232	was increased by Pi overload in CKD rats [26-28]. In this study, renal TNF- α mRNA expression
233	was significantly higher in the weaned mice fed with a high Pi diet. Thus, it is suggested that the
234	decrease in renal α -klotho expression observed in the weaned mice fed with a high Pi diet could
235	be related to impaired renal function and/or increased inflammatory cytokines such as TNF- α .

236	A high Pi diet suppressed expression of α -klotho mRNA and caused abnormal mineral
237	metabolism in the weaned mice. Similar abnormal Pi and Ca metabolism have also been observed
238	in kl/kl mice [16, 29]. Therefore, the abnormal Pi and Ca metabolism in the weaned mice fed with
239	a high Pi diet could be due to the decrease in renal α -klotho expression. As shown by the results
240	from the long-term administration of a high Pi diet in the weaned mice, plasma Pi levels increased
241	significantly after 14 and 21 days in spite of a sustained increase in serum FGF23 levels. FGF23
242	decreases expression of sodium-dependent phosphate transporters Npt2a and Npt2c in the kidney,
243	whose function is to increase urinary Pi excretion to maintain plasma Pi levels (22). However,
244	urinary Pi excretion decreased at 14 and 21 days. At 21 days in particular, renal Egr-1 mRNA
245	levels were decreased, suggesting that suppression of the α -klotho signaling pathway may be a
246	cause of abnormal Pi metabolism under long-term administration of a high Pi diet. Thus, the
247	suppression of α -klotho expression could be involved in a FGF23-resistant state.
248	On the other hand, kl/kl mice grow normally and are indistinguishable from their +/+ or kl/+
249	littermates up to 3 to 4 weeks of age [15]. The previous observation suggests that the effects of
250	high Pi diet on weaned mice are not simply for the sake of decreased α -klotho expression.
251	Although there are not enough results to support these hypotheses, high Pi intake in growing
252	period must be harmful rather than that in adulthood.

253 On the other hand, urinary Ca excretion increased in the weaned mice fed with a high Pi diet;

254	urinary Ca excretion remained at the level of day 0, although it gradually decreased during the
255	growth period with a 0.6% Pi diet. Renal TRPV5 mRNA expression was significantly higher in
256	the weaned mice fed with a high Pi diet. Increased urinary Ca excretion and renal TRPV5
257	expression have also been reported in kl/kl mice [30]. This is consistent with increased Ca
258	excretion. In the kidney, Ca can be transported into cells across the apical membrane via TRPV5,
259	and can be exported to the interstitial space across the basolateral membrane via $\mathrm{Na^{+\!/Ca^{2+}}}$
260	exchangers (NCX1) [31]. In kl/kl mice, renal TRPV5 mRNA expression increased; however,
261	NCX1 mRNA expression decreased [30]. It has been reported that TRPV5 cannot be retained at
262	the apical membrane in the absence of klotho [32]. Therefore, an increase in renal TRPV5 mRNA
263	expression is probably functionally insignificant, and this notion is further supported by the
264	decreased expression of NCX1 in kl/kl mice [30]. Therefore, urinary Ca excretion increased
265	despite the increased TRPV5 mRNA expression in our study, probably because the efflux of Ca
266	to the interstitial space was inhibited due to suppressed NCX1 expression. However, protein
267	expression or phosphorylation studies for TRPV5 are needed to clarify the details.
268	Furthermore, α -klotho is essential for the recruitment of Na ⁺ /K ⁺ -ATPase to the basolateral
269	membrane, which is important to reduce extracellular ionized Ca ²⁺ , and it is suggested that
270	hypercalciuria in kl/kl mice resulted from abnormal Ca reabsorption caused by α -klotho
271	deficiency [33]. In this study, it is possible that a similar abnormality occurred, because renal α -

272 klotho expression decreased markedly in the weaned mice fed a high Pi diet.

273	Generally, a high Pi diet can increase plasma FGF23 and PTH concentration [34]. This study
274	showed plasma FGF23 concentration increased in response to an increase in dietary Pi content.
275	However, plasma PTH concentration in the weaned mice fed with a high Pi diet did not
276	significantly increase. This might be due to high plasma FGF23 levels, because FGF23 can
277	directly suppress the secretion of PTH [17]. Furthermore, secretion of PTH is also regulated by
278	α -klotho dependent on Na ⁺ /K ⁺ -ATPase in the parathyroid glands [33]. The secretion of PTH was
279	also suppressed in kl/kl mice compared to wild-type mice [33]. In this study, we did not examine
280	parathyroid tissue to study PTH secretion. However, suppressed α -klotho expression in the
281	parathyroid glands was also involved in the suppressed PTH secretion by a high Pi diet in the
282	weaned mice. Therefore, it is suggested that the marked decrease in α -klotho expression caused
283	by a high Pi diet induced abnormal Pi and Ca metabolism in the weaned mice.
284	In the short-term study, a high Pi diet increased FGF23/ α -klotho in the weaned mice, despite
285	decreased renal α -klotho expression. It is known that activation of the FGF23/ α -klotho signal
286	suppresses 1,25(OH) ₂ D production, by suppression of renal Cyp27b1 expression. However,
287	plasma 1,25(OH) ₂ D concentration and renal Cyp27b1 expression tended to increase in the weaned
288	mice fed with a high Pi diet. Recent reports have indicated that renal Cyp27b1 expression is
289	induced by TNF- α [35-37]. In this study, renal TNF- α mRNA expression was significantly higher

290 in the weaned mice fed with a high Pi diet. Therefore, TNF-α may be an important factor behind 291 the increase in plasma 1,25(OH)₂D concentration. Unfortunately, we could not clarify the 292 mechanism at this time, further studies will be needed. 293 In addition, the activation of the FGF23/ α -klotho signal also contributes to the maintenance 294 of Pi homeostasis; however, metabolic disorders of Pi such as increase in plasma Pi concentration 295 were caused in the weaned mice fed with a high Pi diet. Therefore, the activation of FGF23/ α -296 klotho signal would be not sufficient for the adaptation to the high dietary Pi intake in the weaned 297 mice due to the marked decrease in renal α -klotho expression. 298 This study has some limitation. We did not evaluate plasma circulating α-klotho and PTH 299 levels and analyzing mineralization and FGF23 expression in bone. Such data are important to 300 understand the effect of high Pi diet on bone phenotype such as osteomalacia, and regulation of 301 hormone secretion. However, we focused renal regulation of Pi metabolism, especially α -klotho 302 expression, which is the most important step for Pi homeostasis, and ectopic calcification which 303 is important phenotype in CKD and aging. In addition, long-term study was only performed using 304 weaned mice. Although the long-term effects of high Pi diet on adolescent or older mice is also 305 challenging question, our long-term study at this time is supportive data for short-term study. To 306 address those questions, further study will be needed.

307 The present study indicates that a high Pi diet has much greater adverse effects on renal α -

308	klotho expression and pathogenesis involving renal calcification in weaned mice compared with
309	periadolescent mice. These results suggest that a high Pi intake during growth periods in juveniles
310	must be more harmful than in periadolescent or later period. In addition, long-term administration
311	of a high Pi diet may cause an FGF23-resistant state due to the suppression of renal α -klotho
312	expression.
313	
314	
015	

315 Acknowledgements

316 We thank Shoko Ikeda, Mari Nakao, Nozomi Yokoyama, Rina Onishi, Kazuki Fujimoto,

317 Natsuki Oka (Department of Clinical Nutrition and Food Management, Institute of Health

- Biosciences, University of Tokushima Graduate School, Tokushima, Japan) for technical
 assistance.
- 320

321 Compliance with Ethical Standards

- 322 Conflict of interest Shiori Fukuda-Tatano, Hironori Yamamoto, Otoki Nakahashi, Ryouhei
- 323 Yoshikawa, Mayu Hayashi, Maki Kishimoto, Yukiko Imi, Hisami Yamanaka-Okumura, Kohta
- 324 Ohnishi, Masashi Masuda and Yutaka Taketani declare no conflicts of interest.

326	Human and Animal Rights and Informed Consent The present study was approved by the
327	Animal Experimentation Committee of Tokushima University and was conducted in accordance
328	with the guidelines for the management and handling of experimental animals.
329	
330	
331	
332	
333	
334	
335	
336	

338 References

339	1.	Takeda E, Yamamoto H, Nashiki K, Sato T, Arai H, Taketani Y (2004) Inorganic
340		phosphate homeostasis and the role of dietary phosphorus. J Cell Mol Med 8:191-200
341	2.	Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption:
342		molecular mechanisms. Physiol Rev 80:1373-1409
343	3.	Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y (2014) Increasing dietary
344		phosphorus intake from food additives: potential for negative impact on bone health. Adv
345		Nutr 5:92-97
346	4.	Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS,
347		Noori N, Hirschberg R, Benner D, Nissenson AR, Kopple JD (2010) Understanding
348		sources of dietary phosphorus in the treatment of patients with chronic kidney disease.
349		Clin J Am Soc Nephrol 5:519-530
350	5.	Calvo MS, Park YK (1996) Changing phosphorus content of the U.S. diet: potential for
351		adverse effects on bone. J Nutr 126:1168S-1180S
352	6.	Benini O, D'Alessandro C, Gianfaldoni D, Cupisti A (2011) Extra-phosphate load from
353		food additives in commonly eaten foods: a real and insidious danger for renal patients. J
354		Ren Nutr 21:303-308
355	7.	Sherman RA, Mehta O (2009) Phosphorus and potassium content of enhanced meat and

356

poultry products: implications for patients who receive dialysis. Clin J Am Soc Nephrol

357 4:1370-1373

- 358 8. Japan MoHLi (2015) *The National Health and Nutrition Survey in Japanese*.
- 359 9. Japan MoHLi (2014) Fiscal food additives daily intake overhaul survey in Japanese.
- Miyamoto K, Segawa H, Ito M, Kuwahata M (2004) Physiological regulation of renal
 sodium-dependent phosphate cotransporters. Jpn J Physiol 54:93-102
- 362 11. Wöhrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, Müller M, Kinzel B,
- 363 Thuery A, Brueggen J, Hynes NE, Sellers WR, Hofmann F, Graus-Porta D (2011) FGF
- 364 receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23
- 365 signaling and regulating FGF-23 expression in bone. J Bone Miner Res 26:2486-2497
- 366 12. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L,
- 367 Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D
- 368 receptor null mice. Endocr Rev 29:726-776
- 369 13. Hu MC, Kuro-o M, Moe OW (2013) Renal and extrarenal actions of Klotho. Semin
 370 Nephrol 33:118-129
- 14. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto
- 372 S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor
- 373 for FGF23. Nature 444:770-774

374	15.	Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y,
375		Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S,
376		Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome
377		resembling ageing. Nature 390:45-51
378	16.	Kuro-o M (2010) Klotho. Pflugers Arch 459:333-343
379	17.	Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis
380		R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J
381		Clin Invest 117:4003-4008
382	18.	Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity
383		accelerating mammalian aging. FASEB J 24:3562-3571
384	19.	Morishita K, Shirai A, Kubota M, Katakura Y, Nabeshima Y, Takeshige K, Kamiya T
385		(2001) The progression of aging in klotho mutant mice can be modified by dietary
386		phosphorus and zinc. J Nutr 131:3182-3188
387	20.	Mitobe M, Yoshida T, Sugiura H, Shirota S, Tsuchiya K, Nihei H (2005) Oxidative stress
388		decreases klotho expression in a mouse kidney cell line. Nephron Exp Nephrol 101:e67-
389		74
390	21.	Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, Moe OW (2011) Klotho
391		deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol

392 22:124-136

393	22.	Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents:
394		final report of the American Institute of Nutrition ad hoc writing committee on the
395		reformulation of the AIN-76A rodent diet. J Nutr 123:1939-1951
396	23.	Liu QL, Sato S, Kishikawa T, Matsuzaki H, Yamanaka N (2001) Effectiveness of a
397		traditional Chinese medicine, Wulingsan, in suppressing the development of
398		nephrocalcinosis induced by a high phosphorus diet in young rats. Med Electron Microsc
399		34:103-114
400	24.	Matsuzaki H, Katsumata S, Uehara M, Suzuki K, Miwa M (2007) High-phosphorus diet
401		induces osteopontin expression of renal tubules in rats. J Clin Biochem Nutr 41:179-183
402	25.	Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF (2012)
403		FGF23/Klotho axis: phosphorus, mineral metabolism and beyond. Cytokine Growth
404		Factor Rev 23:37-46
405	26.	Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton
406		RG, Choudhary S (2011) Klotho depletion contributes to increased inflammation in
407		kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation.

- 408 Diabetes 60:1907-1916
- 409 27. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C,

410		Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, Egido J, Ortiz A, Sanz
411		AB (2011) The inflammatory cytokines TWEAK and TNF α reduce renal klotho
412		expression through NFκB. J Am Soc Nephrol 22:1315-1325
413	28.	Yamada S, Tokumoto M, Tatsumoto N, Taniguchi M, Noguchi H, Nakano T, Masutani K,
414		Ooboshi H, Tsuruya K, Kitazono T (2014) Phosphate overload directly induces systemic
415		inflammation and malnutrition as well as vascular calcification in uremia. Am J Physiol
416		Renal Physiol 306:F1418-1428
417	29.	Nabeshima Y (2009) Discovery of alpha-Klotho unveiled new insights into calcium and
418		phosphate homeostasis. Proc Jpn Acad Ser B Phys Biol Sci 85:125-141
419	30.	Woudenberg-Vrenken TE, van der Eerden BC, van der Kemp AW, van Leeuwen JP,
420		Bindels RJ, Hoenderop JG (2012) Characterization of vitamin D-deficient klotho(-/-)
421		mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate
422		homeostasis in klotho(-/-) mice? Nephrol Dial Transplant 27:4061-4068
423	31.	van de Graaf SF, Hoenderop JG, Bindels RJ (2006) Regulation of TRPV5 and TRPV6 by
424		associated proteins. Am J Physiol Renal Physiol 290:F1295-1302
425	32.	Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC,
426		van Leeuwen JP, Bindels RJ, Hoenderop JG (2009) Klotho prevents renal calcium loss. J
427		Am Soc Nephrol 20:2371-2379

428	33.	Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K,
429		Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka
430		S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T
431		(2007) alpha-Klotho as a regulator of calcium homeostasis. Science 316:1615-1618
432	34.	Scialla JJ, Wolf M (2014) Roles of phosphate and fibroblast growth factor 23 in
433		cardiovascular disease. Nat Rev Nephrol 10:268-278
434	35.	Noyola-Martínez N, Díaz L, Zaga-Clavellina V, Avila E, Halhali A, Larrea F, Barrera D
435		(2014) Regulation of CYP27B1 and CYP24A1 gene expression by recombinant pro-
436		inflammatory cytokines in cultured human trophoblasts. J Steroid Biochem Mol Biol 144
437		Pt A:106-109
438	36.	Zehnder D, Quinkler M, Eardley KS, Bland R, Lepenies J, Hughes SV, Raymond NT,
439		Howie AJ, Cockwell P, Stewart PM, Hewison M (2008) Reduction of the vitamin D
440		hormonal system in kidney disease is associated with increased renal inflammation.
441		Kidney Int 74:1343-1353
442	37.	Pryke AM, Duggan C, White CP, Posen S, Mason RS (1990) Tumor necrosis factor-alpha
443		induces vitamin D-1-hydroxylase activity in normal human alveolar macrophages. J Cell
444		Physiol 142:652-656

445

446 Figure Captions

4 4 17	T10 4	T CC . C 1' .	D '	1 . 1 . 1		1 1	•
	Hing	Hitteete of dieter	V PI On	hiochemical	noromotore in	nlacma and	1111100
447	112.1	Effects of dietar	v i i On	DIOCHCHIICAI	Darameters m	Diasilia allu	uinc
			/		1	1	

- 448 Weaned (3 weeks old) and periadolescent (7 weeks old) mice were randomly divided into seven
- 449 experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. **a** plasma
- 450 Pi. **b** plasma Ca. **c** urine Pi/Cre. **d** urine Ca/Cre. Data are represented as means \pm SEM (n = 6–9).
- 451 Different letters between groups show significant statistical differences with at least p < 0.05.
- 452 Significant effect (p < 0.05): D = effect of dietary Pi; A = effect of age; D*A = effect of interaction.

453

- 454 **Fig. 2** Effects of dietary Pi on phosphate-regulating factors in plasma
- 455 Weaned (3 weeks old) and periadolescent (7 weeks old) mice were randomly divided into seven
- 456 experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. **a** plasma
- 457 FGF23. **b** plasma 1,25(OH)₂D. **c** plasma parathyroid hormone 1-84 (PTH 1-84). Data are
- 458 represented as means \pm SEM (n = 6-9). Different letters between groups show significant
- 459 statistical differences with at least p < 0.05. Significant effect (p < 0.05): D = effect of dietary Pi;
- 460 A = effect of age; D*A = effect of interaction.

461

462 Fig. 3 Effects of dietary Pi on mRNA expression of renal FGF23/α-klotho signal-related gene and
 463 inflammatory cytokines

464 Weaned (3 weeks old) and periadolescent (7 weeks old) mice were randomly divided into seven 465 experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. Total 466 mRNA was prepared from the kidney of each mouse, and gene expression was measured by 467 quantitative RT-PCR. a α-klotho mRNA expression. b FGF receptor 1 (FGFR1) mRNA 468 expression. c Egr-1 mRNA expression. d TNF-α mRNA expression. Data are represented as 469 means \pm SEM (n = 6-9). Different letters between groups show significant statistical differences 470 with at least p < 0.05. Significant effect (p < 0.05): D = effect of dietary Pi; A = effect of age; D*A 471 = effect of interaction.

473 Fig. 4 Effects of dietary Pi on mRNA expression for renal phosphate transporters, Ca transporter,

474	and related genes for vitamin D metabolism
475	Weaned (3 weeks old) and periadolescent (7 weeks old) mice were randomly divided into seven
476	experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. Total
477	mRNA was prepared from the kidney of each mouse, and gene expression was measured by
478	quantitative RT-PCR. a Npt2a mRNA expression. b Npt2c mRNA expression. c Cyp27b1 mRNA
479	expression. d Cyp24a1 mRNA expression. e TRPV5 mRNA expression. Data are represented as
480	means \pm SEM (n = 6-9). Different letters between groups show significant statistical differences
481	with at least $p < 0.05$. Significant effect ($p < 0.05$): D = effect of dietary Pi; A = effect of age; D*A

482 = effect of interaction.

484	Fig. 5 Effects of dietary Pi on renal calcification
485	Weaned (3 weeks old) and periadolescent (7 weeks old) mice were randomly divided into seven
486	experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. Von
487	Kossa staining was performed to detect renal calcification. a Renal calcification in the 0.6, 0.9,
488	1.2, 1.5 or 1.8% Pi diet groups in weaned mice kidneys. b Renal calcification in the 1.8% Pi diet
489	groups in weaned and periadolescent mice kidneys. Scale bars = $100 \ \mu m$
490	
491	Fig. 6 Effects of a long-term high Pi diet in weaned mice on biochemical parameters in their
492	plasma and urine
493	Weaned (3 weeks old) mice were randomly divided into two experimental groups and fed with
494	either 0.6 % (○) or 1.8% (■) Pi diet for 7, 14, or 21 days. a plasma Pi. b plasma Ca. c urine Pi/Cre.
495	d urine Ca/Cre. Data are represented as means \pm SEM (n = 6-9). * $p < 0.05$ vs 0.6% Pi diet group
496	at the same time point. ${}^{\#}p < 0.05$ vs 0 day, ${}^{\P}p < 0.05$ vs 1.8% Pi diet for the 21-day group. ${}^{\$}p < 0.05$
497	0.05 vs 0.6% Pi diet group for 7-day group.
498	

499 Fig. 7 Effects of a long-term high Pi diet in weaned mice on the FGF23/ α -klotho signal

Weaned (3 weeks old) mice were randomly divided into two experimental groups and fed with either 0.6 % (\circ) or 1.8% (**•**) Pi diet for 7, 14, or 21 days. **a** plasma FGF23. Total mRNA was prepared from the kidney of each mouse, and gene expression was measured by quantitative RT-PCR. **b** α-klotho mRNA expression. **c** Egr-1 mRNA expression. Data are represented as means ± SEM (n = 6-9). **p* < 0.05 vs 0.6% Pi diet group at the same time point. **p* < 0.05 vs 1.8% Pi diet for 21-day group.

In one diant (a)				Pi			
Ingredient (g)	0.02%	0.3%	0.6%	0.9%	1.2%	1.5%	1.8%
Egg white	20.0	20.0	20.0	20.0	20.0	20.0	20.0
L-Cysteine	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Cornstarch	39.7	39.7	39.7	39.7	39.7	39.7	39.7
α-Cornstarch	13.2	13.2	13.2	13.2	13.2	13.2	13.2
Sugar	10.31	9.08	7.77	6.45	5.13	3.81	2.49
Soybean oil	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Cellulose	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vitamin mix	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Choline bitartrate	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Tert-butylhydroquinone	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
CaCO ₃	1.4980	1.4980	1.4980	1.4980	1.4980	1.4980	1.4980
KH ₂ PO ₄	0.0879	1.3183	2.6366	3.9548	5.2731	6.5914	7.9097
Mineral mix changed	1.5645	1.5645	1.5645	1.5645	1.5645	1.5645	1.5645

Table 1 Composition of experimental diets

The mineral mix did not contain CaCO3 or KH2PO4.

Gene	Sense Primer (5' to 3')	Antisense Primer (5' to 3')	Accession
Name			Number
α-klotho	CAAAAGCTGATAGAGGACAATGGC	GGCAGAGAAATCAACACAGTAAGG	NM_013823
FGFR1	CCAGTGCATCCATGAACTCTGGGGTTCTCC	GGTCACACGGTTGGGTTTGTCCTTATCCAG	NM_010206
Egr-1	AGCGAACAACCCTATGAGCA	TCGTTTGGCTGGGATAACTC	NM_007913
TNF-α	AGCCTGTAGCCCACGTCGTA	TCTTTGAGATCCATGCCGTTG	NM_013693
Npt2a	AGAGCCCTTCACAAGACTCATCAT	TACCCTGGACATAGAAGTGGAAGC	NM_011392
Npt2c	TGAAGAACGCTGACCAACTGA	AGCAGAGCTGAGGATGTCCAG	NM_080854
Cyp27b1	ATGGTGAAGAATGGCAGAGG	TAGTCGTCGCACAAGGTCAC	NM_010009
Cyp24a1	TGCCATTCACAACTCGGACCCT	TCAAGCCAGCGTTCGGGTCTAA	NM_009996
TRPV5	CAGCACGTGGATCAGCTACA	CTCTTTGCCGGAAGTCACAG	NM_001007572
β-actin	CTGACCCTGAAGTACCCCATTGAACA	CTGGGGTGTTGAAGGTCTCAAACATG	NM_007393

 Table 2 Sequence of oligonucleotide primers for quantitative RT-PCR analysis

Fig. 1

Fig. 2

1.5 1.8

1.2 Periadolescent

1.8

0.3 0.6 0.9

0.02

1.5

Weaned

0.02 0.3 0.6 0.9 1.2

Fig. 3

Fig. 4

def def det

1.8

1.5

Periadolescent

0.02 0.3 0.6 0.9 a T

1.5 1.8

ab T

0.02

0.3 0.6 0.9 1.2 1.5

Weaned

Fig. 5

b

Fig. 6

Fig. 7

ł

. 21

14 (days on diet)