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Beams carrying orbital angular momentum (OAM) has attracted attention as a potential candidate to

expand the transmission capacity in the optical communication. Mode sorting is an efficient method to

demultiplex the OAM multiplexed lightwaves. We have reported the mode sorting performance for OAM

beams suffering lateral displacement and angular deflection. It was found that the angular deflection was

severe, namely, only 100-µrad deflection deteriorated the performance in terms of crosstalk. Thus, the strict

angular alignment would be required in the free-space optical communication using OAM multiplexing. In

this paper, we propose an adaptive compensation method based on detection of the angular deflection of

beams carrying OAM on mode sorting in order to relax such a strict requirement. Numerical simulation

results reveal that the compensation in every 100 µrad effectively suppresses the crosstalk caused by the

angular deflection.

1. Introduction

Optical transmission capacity has been increased by multiplexing technologies such as wave-

length division multiplexing (WDM), polarization division multiplexing (PDM), and space

division multiplexing (SDM) for catching up with the growing demand of the communication

traffic.1) Orbital angular momentum (OAM) is one of the orthogonal spatial modal basis for

mode division multiplexing (MDM) technology.2) OAM beams have an advantage that differ-

ent azimuthal OAM states are mutually orthogonal while propagating coaxially. This orthog-

onality increases the transmission capacity by using multiple OAM states together with other

multiplexing technologies. There are various applications of OAM beams other than optical

communication such as optical tweezing,3,4) laser material surface processing,5,6) quantum

entanglement,7,8) image processing9) and quantum metrology.10)

OAM beams are characterized by helical phase front and usually have an annular ring

intensity profile with a phase singularity at the beam center. The helical phase front is de-
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scribed by a phase term of exp(imϕ) in analytic expression, whereϕ is the rotation angle on

the azimuthal coordinate andm is an integer called topological charge (TC) which means

the number of intertwined helices. Representative OAM beams are Laguerre-Gaussian (LG)

beam11,12) and Bessel-Gaussian (BG) beam.13,14) Another OAM beam called ‘perfect vortex’

(PV) beam is generated by taking the spatial Fourier transform of BG beam.15) This beam

has a unique characteristic that whose ring width and average ring diameter do not strongly

depend on TC.

It is necessary to demultiplex the OAM multiplexed beams to retrieve information car-

ried by each of the OAM modes in the receiver. Demultiplexing can be basically performed

by the reciprocal way of the multiplexing such as by using spiral phase plates, cylindrical

lens mode converters, fiber mode couplers, q-plates, metamaterial-based phase plate, silicon

integrated optics, and spatial light modulators (SLMs).2,16–19) Recently reported mode sort-

ing methods20–22)spatially separate OAM multiplexed beams in lateral position in ascending

order of TCs by using SLMs and Fourier lenses. The principle is based on a log-polar coordi-

nate transformation followed by a phase correction using SLMs and spatial Fourier transform.

The advanced methods21,22) enable high resolution sorting by employing a beam copy func-

tion with the coordinate transformation in order to mitigate overlapping between adjacent

sorting results of OAM beams with neighboring TCs. Another high resolution mode sorting

method utilizes a spiral coordinate transformation to unwrap OAM beams.23)

Since OAM transmission is mainly through free-space, misalignment of the transmitter

and the receiver may affect the performance of retrieving information carried by each of the

OAM modes. Studies24,25) reported the influence of lateral displacement and angular deflec-

tion between the transmitting OAM beams and the receiver plane. However, they did not

mention the influence on mode sorting performance. Thus, we firstly reported such influ-

ence on ordinary resolution and high resolution mode sorting performances for LG and PV

beams by numerically verifying the tolerance.26,27) We have also reported the influence of

distance displacement in Microoptics Conference 2018.28) The important finding of our in-

vestigation so far is that the influence of angular deflection is much more severe and would

be a major limiting factor for the mode sorting performance since strict angular alignment

within ±100µrad is required. Compared to the angular deflection, the lateral displacement

was found to be less severe since displacement within±20 % of the beam diameter was ac-

ceptable. Although the alignment of the transmitter and receiver has once been fixed, the

transmitted lightwave experiences beam tilt and wandering due to the turbulent atmosphere

in free-space communication.29,30) The resultant received beam is forced to have angular de-
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flection and lateral displacement, which needs to be adaptively compensated to improve the

signal quality.

Therefore, in this paper, we propose an adaptive compensation method for the angular

deflection and numerically investigate the mode sorting performance with or without com-

pensation. Most of adaptive compensation methods reported so far for OAM carrying beam in

literature31–33)aimed to compensate for stochastic amplitude and phase fluctuation due to at-

mospheric turbulence by using iterative feedback processes. The method we proposed in this

paper is simpler and does not need such iterative processes since it aims to compensate for the

deterministic angular deflection. Figure 1 explains the definition of lateral angular deflection.

It is defined by vertical angular deflectionγ and horizontal angular deflectionψ expressing

the tilted aperture of the mode sorter with respect to the plane perpendicular to beam axis.

Our recent report34) verified the effectiveness of the proposed adaptive compensation method

only for the vertical angular deflection. This paper describes more comprehensive explana-

tion of the compensation principle and clarifies its effectiveness for both of the vertical and

the horizontal angular deflections. Numerical simulation results reveal that the adaptive com-

pensation effectively compensates for the influence of angular deflection below an acceptable

level of crosstalk which is defined in Section 3 as a performance metric.

The rest of the paper is organized as follows. Section 2 describes the principle of adaptive

compensation and analytic expression of LG beam, PV beam, and the angular deflection.

Section 3 discusses the numerical calculation conditions and the results measured by crosstalk

as a performance metric. Section 4 concludes the paper.

2. Adaptive compensation for angular deflection

The principle of adaptive compensation for angular deflection is based on the spatial Fourier

transform. The schematic shown in Fig. 2 consists of an adaptive wavefront compensator

and a mode sorter. The transmitted beam includes data-carrying multiple OAM beams and a

non-data-carrying pilot beam used for detecting the amount of angular deflection. They are

assumed to have the same amount of angular deflection. The pilot beam is in 0-th order OAM

mode and has an orthogonal polarization state to the data-carrying OAM beams.

A polarization beam splitter (PBS) in the adaptive wavefront compensator extracts the

pilot. The extracted pilot is Fourier transformed by passing through a lens. When the pilot

has a certain amount of phase tilt due to the angular deflection, the light spot of the Fourier

transformed pilot moves on the lateral position according to the phase tilt. After taking the

intensity profile by a camera (Rx1), a PC detects the pilot position and calculates the com-
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Fig. 1. Lateral displacement and angular deflection.

Fig. 2. Schematic of the proposed adaptive compensation method for angular deflection.
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Fig. 3. (Color online) Phase distribution of pilot, intensity profile of pilot after Fourier transform by a lens,

compensation phase distribution added to SLM1, sorting results of LG beam (m= 3) with and without

compensation when horizontal angular deflectionψ = 100 and 200µrad.

pensation pattern for the angular deflection based on the detected position. The calculated

compensation pattern is the inverse phase tilt of the pilot and is transferred onto the SLM1 in

the mode sorter. Thus, the angular deflection on the transmitted data-carrying OAM beams

are compensated in the SLM1. Note that the SLM1 displays combined phase distribution not

only the compensation pattern but also log-polar coordinate transformation.

Figure 3 shows the phase distribution of the pilot, the intensity profile of the pilot after

Fourier transform by a lens, the compensation phase distribution added to SLM1, sorting

results of LG beam (m = 3) with and without compensation when horizontal angular deflec-

tion ψ = 100 and 200µrad. Parameters used in this calculation are summarized in Table I.

As shown in the intensity profile of the Fourier transformed pilot, lateral position is moved

to right according to the amount ofψ. It is found that the sorting results without compen-

sation are spreading in horizontal direction, which may result in misunderstanding of the

included OAM modes in the transmitted beam. This spreading is explained by expanding the

tilt term of Eq. (3), namely, exp(·) can be expanded and rearranged with Maclaurin series,

power-reduction formulae of the trigonometric function, and Euler’s formula. As a result, an

LG beam in a tilted coordinate is expressed by the superposition of modes having multiple

TCs. Thus, the sorting results without compensation are spreading in horizontal direction. In

contrast, the sorting results with compensation have only a single high intensity profile, thus,

included OAM modes can be clearly distinguished.

5/12



Jpn. J. Appl. Phys. REGULAR PAPER

3. Numerical calculation

The mathematical expression of the LG beam with azimuthal index (TC)m and radial index

n at waist plane (z= 0) is given in cylindrical coordinates (r, ϕ) by

LGnm(r, ϕ) =

√
2n!

πw2(n+ |m|)!

 √2r
w

|m| L|m|n

(
2r2

w2

)
exp

(
− r2

w2

)
exp (imϕ) (1)

whereL|m|n (·) is the generalized Laguerre polynomial,w = w0

√
1+ (z/zR)2 is the Gaussian

radius corresponding to the beam waist ofw0 atz= 0, zR = πw2
0/λ is the Rayleigh range, and

λ is the wavelength. The ring radius in the intensity profile of the LG beam is related to TC.

The PV beam generated at the focal point of the Fourier lens with focal lengthf from the

BG beam35) is given by

PVnm(r, ϕ) = im−1w0

w
Im

(
2rr 0

w2

)
exp

(
−

r2 + r2
0

w2

)
exp (imϕ) (2)

wherew = 2 f /kw0 is the Gaussian radius at the focal point,Im(·) is anm-th order modified

Bessel function of first kind,m corresponds to TC,r0 = kr f /k represents the ring radius of

the PV beam at the focal point,kr is the radial wave vector, andk = 2π/λ is the wave number.

When r = r0 andw is small enough,Im(·) can be approximated to exp(·). Thus, the beam

diameter of the PV beam is not related to TC.

The beam carrying OAM with vertical angular deflectionγ and horizontal angular deflec-

tion ψ is expressed as25)

OAMdef(r, ϕ) = OAM(r, ϕ) exp (ik tanγ · r sinϕ + ik tanψ · r cosϕ) (3)

where functionOAM(r, ϕ) relates to a beam carrying OAM in an ideal position and free from

angular deflection. The proposed adaptive compensation method performs multiplication of

the inverse term of exp(·) in Eq. (3) to the received beam to remove the angular deflection.

Numerical calculations are performed by using Scilab software and the conditions are

summarized as Table I. The former five parameters are for the input beams, the following five

parameters are for the mode sorter, and the latter two parameters are commonly used. The

method of Ref.22) is used as the high resolution mode sorting for both LG and PV beams. Two

copies of the log-polar coordinate transformed beams are placed at both sides of the original

transformed beam for the high resolution mode sorter. The reason for the parameter choice

is the same as our previous work.27) Namely, we consider matching of the specifications

of equipments we have for future experimental verification and the reproducibility of the

reported high-resolution mode sorting method.22)

Mode numbers included in the received OAM beam can be identified by detecting the
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Table I. Numerical calculation conditions.

Parameters Value

Radial vector index n = 0

Wavelength λ = 632.8 nm

LG beam waist wLG
0 = 1 mm

PV beam waist wPV
0 = 0.2 mm

PV beam radial wave vector kPV
r = 40 mm−1

Size parameter22) d = 0.1592 mm

Location parameter22) p = 0 mm

Focal length22) f = 191 mm

Fan-out optimization parameter22) a±1 = −π/2,b±1 = 1.329

Phase compensation for−1,0,+1-order copies22) ϕbc = 0,1.55,0

Two dimensional calculation area 6.4× 6.4 mm2

Spatial resolution 25× 25µm2/pixel

Fig. 4. Intensity profile after mode sorting for (a, b) LG beam and (c, d) PV beam having a single TC of

m= −3,−2,−1,0,1, 2,3. Panels (a) and (c) are without any angular deflection and panels (b) and (d) are with

γ = 100-µrad vertical angular deflection.
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Fig. 5. (Color online) Crosstalk contour maps without compensation as functions of vertical angular

deflectionγ and horizontal angular deflectionψ for (a, b, c) LG beam and (d, e, f) PV beam. Panels (a) and (d)

arem= −3, (b) and (e) arem= 0, and (c) and (f) arem= 2.

intensity profile after mode sorting in the horizontal direction atY = 0 by using, for ex-

ample, a photo-detector array. Figure 4 shows the intensity profile after mode sorting ob-

tained by such a way on the axisY = 0 for LG beam and PV beam having a single TC of

m = −3,−2,−1,0,1,2,3. Figures 4(a) and 4(b) show the intensity profiles without angular

deflection and withγ = 100-µrad vertical angular deflection for LG beam, respectively. Fig-

ures 4(c) and 4(d) are those for PV beam. There are small intensity growth by otherm in the

bottom area at positions corresponding to each ofm in Figs. 4(b) and 4(d), which may affect

the light intensity detection. Thus, we use crosstalk as a performance metric of the mode

sorting. Its definition is the same as our previous study,27) which is the ratio of the maximum

of detected intensities among undesired modes by the intensity of the desired mode as

XTm=l = 10 log10
max(Im,l)

Im=l
[dB] (4)

wherel is an integer corresponding to the desired mode andI represents the detected intensity.

The detected intensity is calculated by the trapezoidal integration of five consecutive pixels in

mode sorting results since it is the maximum number of pixels without overlapping between

adjacent modes in our numerical analyses.

Figure 5 shows crosstalk contour maps without compensation as functions of the vertical

angular deflectionγ and the horizontal angular deflectionψ. Figures 5(a), 5(b), and 5(c) are

results for LG beam, and Figs. 5(d), 5(e), and 5(f) are those for PV beam. The transmitted
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Fig. 6. (Color online) Crosstalk contour maps with compensation as functions of vertical angular deflection

γ and horizontal angular deflectionψ for (a, b, c) LG beam and (d, e, f) PV beam. Panels (a) and (d) are

m= −3, (b) and (e) arem= 0, and (c) and (f) arem= 2.

LG and PV beams simultaneously include nine TCs ofm= −4,−3,−2,−1,0,1,2,3,4 in this

calculation. Between these modes, Figs. 5(a) and 5(d) arem = −3, 5(b) and 5(e) arem = 0,

and 5(c) and 5(f) arem = 2. These contour maps have bowl-like shapes with the minimum

crosstalk value around zero angular deflection. Focusing on high crosstalk regions, especially

four corners of Figs. 5(a), 5(c), 5(d), and 5(f), crosstalk of the LG beam is higher than that

of the PV beam. Thus, the LG beam shows weaker tolerance to the angular deflection than

the PV beam. This is because the thicker ring width of the intensity profile of LG beam is

vulnerable to phase tilt due to the angular deflection in the mode sorting process compared to

the thinner ring width of PV beam.

Figure 6 shows crosstalk contour maps with compensation as functions of vertical angular

deflectionγ and horizontal angular deflectionψ. The panel layout of Fig. 6 is similar to Fig. 5.

The only difference is that the adaptive compensation is performed in every 100-µrad angular

deflection since it corresponds to one pixel move of the peak intensity on the Fourier plane

after the lens in the wavefront compensator with calculation conditions shown in Table I. All

contour maps look like 3× 3 tiles in which the small crosstalk central square of−50 µrad

≤ γ ≤ 50 µrad and−50 µrad ≤ ψ ≤ 50 µrad in Fig. 5 is copied to the surrounded tiles

in every 100µrad. Therefore, the crosstalk is effectively suppressed to be less than−3 dB

by the adaptive compensation. Further reduction of crosstalk is achievable by increasing the

spatial resolution of the pilot detection and performing compensation in a finer interval of the
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angular deflection.

4. Conclusions

We have proposed the adaptive compensation method for angular deflection on OAM mode

sorting by detecting the phase tilt of the pilot based on Fourier optics. Numerical calculation

for the mode sorting performance revealed that the crosstalk was effectively suppressed by

the proposed method. Comparing the performance between LG and PV beams, LG beam

provided weaker tolerance to the angular deflection since the thicker ring width of the inten-

sity profile of LG beam was vulnerable to phase tilt in the mode sorting process compared to

the thinner ring width of PV beam. Our future works will include experimental verification

of the proposed method and consider adaptive compensation methods for lateral displace-

ment. For this purpose, we will also investigate detection methods that recognize the cause of

misalignment such as angular deflection, lateral displacement, and both of them.
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