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ABBREVIATIONS: CTX, cardiotoxin; MAPKs, mitogen-activated protein kinases; 

CKD, chronic kidney disease; SFO, saccharated ferric oxide; Myh, myosin heavy chain; 

FTH, ferritin heavy chain; FTL, ferritin light chain; ERK, extracellular signal-regulated 

kinase; HPF, Hydroxyphenyl fluorescein; DFO, deferoxamine; GA, gastrocnemius; 

DAPI, 4′,6-diamidino-2-phenylindole; DHE. dihydroethidium; Col1a1, collagen type 

I alpha 1 chain; Col1a2, collagen type I alpha 2 chain; Col3a1, collagen type III alpha 1 

chain; Tgf-1, transforming growth factor-beta 1; DCFH-DA, 2 ′  , 7 ′

-dichlorofluorescin diacetate; TBARS, thiobarbituric acid reactive substance ; MDA, 

malondialdehyde; ROS, reactive oxygen species; NF-B, nuclear factor-kappa B



 

 

Abstract 1 

Skeletal muscle atrophy is caused by disruption in the homeostatic balance of muscle 2 

degeneration and regeneration under various pathophysiological conditions. We have 3 

previously reported that iron accumulation induces skeletal muscle atrophy via a 4 

ubiquitin ligase-dependent pathway. However, the potential effect of iron accumulation 5 

on muscle regeneration remains unclear. To examine the effect of iron accumulation on 6 

myogenesis, we used a mouse model with cardiotoxin (CTX)-induced muscle 7 

regeneration in vivo and C2C12 mice myoblast cells in vitro. In mice with iron overload, 8 

the skeletal muscles exhibited increased oxidative stress and decreased expression of 9 

satellite cell markers. Following CTX-induced muscle injury, these mice also displayed 10 

delayed muscle regeneration with a decrease in the size of regenerating myofibers, 11 

reduced expression of myoblast differentiation markers, and decreased phosphorylation 12 

of mitogen-activated protein kinase signaling pathways. In vitro, iron overload also 13 

suppressed the differentiation of C2C12 myoblast cells, but the suppression could be 14 

reversed by superoxide scavenging using tempol. Excess iron inhibits myogenesis via 15 

oxidative stress, leading to an imbalance in skeletal muscle homeostasis. 16 

 17 

Keywords: iron, myogenesis, oxidative stress, mitogen-activated protein kinases 18 

(MAPKs) 19 
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Introduction 20 

Iron is an essential trace metal element. However, excess iron causes 21 

oxidative stress by catalyzing the production of highly toxic hydroxy-radicals via the 22 

Fenton reaction. Disorders, such as cardiomyopathy, hepatic failure, and diabetes, are 23 

induced by ectopic accumulation of excess iron in hereditary iron overload disorders 24 

(1). Moreover, increased iron content in the body can also be associated with many 25 

other diseases that do not fall under the domain of iron overload disorders. These 26 

include liver diseases (2), obesity (3), diabetes (4, 5), cardiovascular diseases (6, 7), and 27 

kidney diseases (8). These diseases are ameliorated by iron reduction, as shown by both 28 

clinical (9-11) and experimental studies (12-16) . 29 

Skeletal muscle wasting, also known as sarcopenia, is caused by aging (17) 30 

and chronic disorders, such as chronic heart failure (18), chronic kidney disease (CKD) 31 

(19), diabetes (20), and metabolic disease (21), which worsen quality of life and lead to 32 

morbidity or mortality (22). In terms of the relationship between skeletal muscle and 33 

tissue iron content indicated by serum ferritin (a marker of body iron store), high iron 34 

content is associated with a decrease in skeletal muscle mass in elderly women (23). 35 

The serum ferritin level is also higher in sarcopenic obese individuals (24). Skeletal 36 

muscle mass has been shown to decrease with increased iron accumulation (25-27) due 37 

to the alterations in iron metabolism in aged rats. Direct iron administration reduces 38 

skeletal muscle mass due to elevated oxidative stress (28), and skeletal muscle atrophy, 39 



 

 4 

induced by excessive iron, involves E3 ubiquitin ligase action mediated by the 40 

inactivation of Akt-FOXO3a due to oxidative stress (29).  41 

Skeletal muscle is a highly regenerative organ in the body. The loss of muscle 42 

mass is induced by enhanced muscle degradation and by reduced muscle regeneration 43 

(30). In muscle regeneration, satellite cells are crucial in muscle growth and repair. In 44 

the process of regeneration upon muscle injury, the behavior of satellite cells is tightly 45 

regulated by several transcription factors during quiescence, proliferation, and 46 

differentiation. Pax-7 is expressed in adult quiescent satellite cells in mice (31) and 47 

human (32). In response to injury, satellite cells proliferate and activated cells express 48 

myogenic regulatory factors including myogenic differentiation 1 (MyoD), myogenic 49 

factor 5 (Myf5), and myogenin (Myog) (33), and Pax-7 is downregulated prior to 50 

terminal differentiation to myofibers (34). Notably, satellite cell dysfunction is seen in 51 

mouse models of aging (35, 36), diabetes (37-39), and CKD (40). and satellite cell 52 

numbers also decrease with age in humans (32, 41, 42).  53 

The balance between muscle regeneration and degradation is important for the 54 

maintenance of muscle mass. As described above, excess iron promotes skeletal muscle 55 

degradation via activation of E3 ubiquitin ligase (29). However, whether the 56 

regenerative potential of normal skeletal muscle is altered during iron overload induced 57 

muscle wasting is unknown. In the present study, we found that excess iron 58 

accumulation suppressed skeletal muscle differentiation by suppressing the 59 

mitogen-activated protein kinase (MAPK) signaling pathway, and that the delay in 60 
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skeletal muscle differentiation was a consequence of oxidative stress induced by excess 61 

iron.  62 

Material and methods  63 

Materials 64 

Saccharated ferric oxide (SFO) and cardiotoxin (CTX) were purchased from 65 

Nichi-Iko Pharmaceutical (Toyama, Japan) and A (St Louis, MO, USA), respectively. 66 

The following commercially available antibodies were used: anti-myosin heavy chain 67 

(Myh) 3 (same as embryonic Myh (eMyh)), anti-myogenin, anti-ferritin heavy chain 68 

(FTH), anti-ferritin light chain (FTL) (Santa Cruz Biotechnology, Inc., Dallas, TX), 69 

anti-phospho-p38MAPK (Thr180/Tyr182), anti-total p38MAPK, anti-phospho-p44/42 70 

MAPK (extracellular signal-regulated kinase 1/2, ERK1/2), anti-total p44/42 MAPK 71 

(Extracellular Signal-regulated Kinase (ERK) 1/2) (Cell Signaling Technology, 72 

Danvers, MA, USA), anti-Pax-7 (Developmental Studies Hybridoma Bank, Iowa City, 73 

IA, USA), and anti-α-tubulin (Merck KGaA, Darmstadt, Germany) as a protein loading 74 

control. Hydroxyphenyl fluorescein (HPF) was purchased from Goryo chemical 75 

(Sapporo, Japan). Deferoxamine (DFO) was purchased from Sigma-Aldrich (St. Louis, 76 

Missouri, USA). 77 

Animal preparation and procedures 78 

All experimental procedures for mice were performed in accordance with the 79 

guidelines of the Animal Research Committee of Tokushima University Graduate 80 
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School, and the protocol was approved by the Institutional Review Board of Tokushima 81 

University Graduate School for animal protection (Permit Number: 13095). The mice 82 

were randomly divided into two groups: vehicle group and iron treatment group. 83 

Seven-week-old male C57BL/6J mice were obtained from Nippon CLEA (Tokyo, 84 

Japan) and were maintained with ad libitum access to water and food (Type NMF; 85 

Oriental Yeast, Tokyo, Japan). After 1 week of acclimation, to prepare a mouse model 86 

of iron overload, mice were treated once a week with intraperitoneal SFO (2 mg/200 87 

μl/25 g mouse) or with the same volume of vehicle for four consecutive weeks (43). 88 

Aged C57BL/6J mice were 2 years old. Control young mice were 2 months old. In the 89 

type 2 diabetic mouse model, 8-week-old BKS-background db/db mice (diabetes) and 90 

heterozygous db/m mice (non-diabetes) were purchased from Nippon CLEA Japan, Inc. 91 

(Tokyo, Japan). Adenine-induced CKD model mice were prepared as previously 92 

described (44). 93 

CTX-induced muscle injury model 94 

A 50 µl volume of 10 µM CTX or an equal volume of phosphate buffered 95 

saline (PBS) was injected into the gastrocnemius (GA) muscles using an insulin syringe 96 

as described previously (45). On day 0, 3, 7, and 14 after CTX injection, the mice were 97 

euthanized by intraperitoneally injecting an overdose of pentobarbital, and GA muscles 98 

were removed and stored at −80°C until further use. 99 

Cell culture  100 



 

 7 

We used C2C12 myoblast cells to investigate the effect of excess iron on 101 

skeletal muscle differentiation as described previously (29). The cells were grown to 102 

sub-confluence for approximately 24–48 h, and incubated with either vehicle or iron 103 

sulphate (FeSO4) for 24 h. The culture medium was replaced with a differentiation 104 

medium (DMEM) containing 2% horse serum, and incubated for the indicated 105 

durations. In some experiments, the cells were pre-treated with 100 μM tempol and 50 106 

μM DFO for 1 h before stimulation with iron. The treatment protocol of FeSO4 and 107 

tempol was determined in our previous study (29). We performed 3 to 6 well replicates 108 

per experiment and repeated each experiment at least 2 times. C2C12 myoblast cells 109 

were used until the 5th to 7th passages. 110 

RNA extraction and evaluation of mRNA expression levels 111 

The methods of RNA extraction, cDNA synthesis, and quantitative RT-PCR 112 

have been previously described (46). In brief, the tissues were homogenized with the 113 

Minilys beads-based homogenizer (Bertin Instruments, Montigny-le-Bretonneux, 114 

France) in RNAiso reagent (Takara Bio, Otsu, Japan). RNA extraction and cDNA 115 

synthesis were performed according to the manufacturer’s instructions (PrimeScript RT 116 

reagent kit with gDNA Eraser (Perfect Real Time), Takara Bio). Quantitative RT-PCR 117 

was performed using the CFX Connect Real-Time PCR Detection System (Bio-Rad 118 

Laboratories, Hercules, CA, USA) with THUNDERBIRD® SYBR® qPCR Mix 119 

(TOYOBO Co., Ltd., Osaka, Japan). The primer sets used were: 5 ′ - 120 

GACTCCGGATGTGGAGAAAA-3′ and 5′-GAGCACTCGGCTAATCGAAC -3121 
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′  for Pax-7, 5 ′ - AGTGAATGAGGCTTCGAGA-3 ′  and 5 ′122 

-CAGGATCTCCACCTTGGGTA-3 ′  for MyoD, 5 ′ - 123 

AGACGCCTGAAGAAGGTGAC-3′ and 5′-ACCTTGGGGAGTCTCTTCAA-3′ 124 

for Myf5, 5 ′ - CACGATGGACGTAAGGGAGT -3 ′  and 5 ′ - 125 

CCAGATGGACGTAAGGGAGT-3 ′  for Myogenin, 5 ′ - 126 

AGAGTCTGTCAAGGCCCTGA-3′ and 5′- CAGCCTGCCTCTTGTAGGAC-3′ 127 

for Myh3 (embryonic Myh),  5′-GAGCGGAGAGTACTGGATCG-3′  and 5′128 

-GTTCGGGCTGATGTACCAGT-3′ for collagen type I alpha 1 chain (Col1a1), 5′129 

-GTGTTCAAGGTGGCAAAGGT-3′ and 5′-GACCGAATTCACCAGGAAGA-3130 

′  for collagen type I alpha 2 chain (Col1a2), 5 ′131 

-ACCAAAAGGTGATGCTGGAC-3′  and 5′ -GACCTCGTGCTCCAGTTAGC-3132 

′  for collagen type III alpha 1 chain (Col3a1), 5 ′133 

-TGAGTGGCTGTCTTTTGACG-3′ and 5′-AGCCCTGTATTCCGTCTCCT-3′ 134 

for transforming growth factor-beta 1 (Tgf-1), 5 ′135 

-CTGTAACCGGATGGCAAACT-3′ and 5′-CTGTACCCACATGGCTGATG-3′ 136 

for F4/80, and 5 ′ -GCTCCAAGCAGATGCAGCA-3 ′  and 5 ′137 

-CCGGATGTGAGGCAGCAG-3′ for 36B4 (internal control). The expression levels 138 

of all target genes were normalized using 36B4 expression, and the values were 139 

compared to the control group in terms of relative fold changes. 140 

Protein extraction and western blot analysis  141 
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Protein extraction and western blotting were performed as previously 142 

described (46). The tissue or cell samples were homogenized or sonicated in a protein 143 

lysis buffer containing inhibitors of proteinase and phosphatase, and the proteins were 144 

extracted. The extracted proteins were boiled for 5 min in Laemmli sample buffer and 145 

used for western blotting. The detected immune-reactive bands were quantified by 146 

densitometric analysis using Image J (version 1.38) software (National Institutes of 147 

Health, Bethesda, MD, USA) as described previously (47). Phosphorylation specific 148 

signals are normalized against levels of total target protein, and protein expression is 149 

normalized using tubulin as an internal loading control. 150 

Histological analysis 151 

GA muscles were fixed overnight in 4% paraformaldehyde at 4°C and 152 

embedded in paraffin. Sections 3 µm in thickness were prepared and stained with 153 

hematoxylin-eosin to measure the area of muscle fiber. Area measurements of at least 154 

100 fibers were obtained for each animal from 10 randomly selected fields in five 155 

different sections. Muscle fiber area was quantified using Image J (version 1.38) 156 

software. The regenerating myofibers were indicated as myofibers with centralized 157 

nuclei. Picrosirius red staining was used for evaluating skeletal muscle fibrosis as 158 

previously described (48).  159 

Fusion index  160 
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 Forty-eight hours after the initiation of muscle differentiation, C2C12 cells 161 

were fixed with 4% paraformaldehyde for 10 min and stained with anti-Myh3 overnight 162 

at 4°C and mounted using mounting medium 4′,6-diamidino-2-phenylindole (DAPI, 163 

VECTASHIELD; Vector Laboratories, Burlingame, CA, USA). Five different fields per 164 

well were randomly selected and the number of nuclei in each myotube and the total 165 

number of nuclei in cells were counted in each field. The fusion index was calculated as 166 

the percentage of the total number of nuclei in Myh-positive cells from the total number 167 

of nuclei counted in the field. 168 

In situ superoxide detection 169 

Superoxide production in the skeletal muscle was detected by the 170 

dihydroethidium (DHE) staining method as described previously (29). Non-fixed frozen 171 

tissue sections were incubated with DHE in PBS (10 μM) in a dark, humidified 172 

container at room temperature for 30 min and then observed using a fluorescence 173 

microscope.  174 

In situ detection of labile ferrous iron and hydroxyl radicals 175 

Labile ferrous iron and hydroxyl radicals were detected by RhoNox-1 (49) 176 

and HPF, respectively. In brief, the frozen sections were fixed in 10% neutral 177 

formaldehyde for 1 min, washed with HBSS, and incubated with 5 μM RhoNox-1 and 5 178 

μM HPF in a dark, humidified container at room temperature for 30 min. After washing, 179 
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the section was observed using fluorescence microscopy (46). RhoNox-1 was 180 

synthesized according to the literature procedure (49). 181 

TBARS assay 182 

A thiobarbituric acid reactive substance (TBARS) assay was used to measure 183 

malondialdehyde (MDA) concentration in skeletal muscles as previously described 184 

(13). The suspension of homogenized muscle tissue that was not centrifuged was used 185 

for the assay.  186 

Measurement of oxidative stress in C2C12 myoblast cells 187 

Intracellular reactive oxidative species were detected and quantified using 2′188 

, 7′-dichlorofluorescin diacetate (DCFH-DA; Sigma-Aldrich) as described previously 189 

(46).  190 

Cell viability assay 191 

Cell proliferation was accessed using a CellTiter 96 AQueous non-radioactive 192 

cell proliferation assay kit (Promega KK, Tokyo, Japan) (46). Cytotoxicity was 193 

evaluated using a Cytotoxicity LDH Assay Kit-WST (DOJINDO LABORATORIES, 194 

Kumamoto, Japan) according to the manufacturer’s instructions. Briefly, C2C12 195 

myoblast cells were seeded in 96-well plates at a cell concentration of 1 × 10
4
 cells per 196 

well and incubated for 24 h. When the cell growth was sub-confluent, FeSO4 was added 197 

and the cells were cultured in DMEM with or without fetal bovine serum (FBS) for 24 198 

h. The proliferation or cytotoxicity of cells was assessed with MTS assay or LDH assay 199 
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by measuring the absorbance at 490 nm using an iMARK microplate reader (Bio-Rad 200 

Laboratories).  201 

Quantification of iron content 202 

Iron content of tissues or cells was measured using an iron assay kit according 203 

to the manufacturer’s instructions (Metallo assay LS, Metallogenics, Chiba, Japan) as 204 

described previously (29). Iron concentration was evaluated using tissue-weight or 205 

protein concentration and expressed as μg Fe per g of wet tissue or μg Fe per protein 206 

concentration. 207 

Measurement of p38MAPK activity 208 

The activity of p38MAPK was measured using a commercially available kit 209 

according to the manufacturer’s instructions (CycLex p38 Kinase Assay/Inhibitor 210 

Screening Kit, MEDICAL and BIOLOGICAL LABORATORIES Co., Ltd., Nagoya, 211 

Japan). 212 

Statistical analysis 213 

Data are presented as mean ± standard deviation (mean ± SD). Mann–Whitney 214 

U test was used for comparisons between the two groups. For comparisons between 215 

more than two groups, the statistical significance of each difference was evaluated using 216 

the Kruskal–Wallis test. Statistical significance was indicated by P < 0.05. 217 

Results 218 

Iron content of skeletal muscle in mouse models of aging, diabetes, and CKD 219 
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  Skeletal muscle regeneration is suppressed during muscle wasting due to 220 

aging in humans (41), in addition to diabetes (37) and CKD (40) in mice. We first 221 

evaluated iron accumulation in skeletal muscle under the above conditions using a 222 

mouse model involving aged mice (2-years-of-age), db/db mice (type 2 diabetic model), 223 

and CKD mice (adenine-induction), respectively. Iron content (Figure 1A), as well as 224 

FTH and FTL protein expression (Supplementary figure), were elevated in skeletal 225 

muscle with aging, diabetes, and CKD. Similar to iron content, oxidative stress was also 226 

increased in skeletal muscles with aging, diabetes, and CKD (Figure 1B). In terms of 227 

mRNA expression of satellite cell markers, Pax-7, MyoD, and Myf5 were significantly 228 

reduced in skeletal muscles of mice with diabetes and CKD. Aged mice displayed 229 

reduced mRNA expression of Pax-7 and Myf5, but not MyoD, in skeletal muscles 230 

(Figure 1C). Iron accumulation in skeletal muscle might cause the decline of satellite 231 

cells by increasing oxidative stress. Therefore, iron is a potential problem for impaired 232 

myogenesis in aging, diabetes, and CKD. 233 

Effect of iron overload on skeletal muscle 234 

 To evaluate the effect of excess iron on muscle regeneration, we used mice 235 

with iron overload. The iron overload model showed that there were no differences in 236 

body weight and skeletal muscle weight between vehicle- and iron-treated mice (Table. 237 

1). Iron content as well as the protein expression of FTH and FTL were increased in 238 

mice with iron overload (Figures 2A and B). Oxidative stress markers, such as DHE 239 

intensity and TBARS concentration, were increased in skeletal muscles of mice with 240 
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iron overload (Figures 2C and D). The mRNA expression of satellite cell markers Pax-7 241 

and MyoD was significantly reduced in skeletal muscles of mice with iron overload 242 

(Figure 2E). Similarly, the number of Pax-7 positive cells was reduced in skeletal 243 

muscles of iron-treated mice (Figure 2F). However, there were no differences in muscle 244 

fiber area as well as mRNA expression of atrogin-1 and MuRF1 between 245 

vehicle-treated mice and iron-treated mice (Figure 2G and H). 246 

Suppressive action of iron accumulation on skeletal muscle regeneration after 247 

CTX-induced injury 248 

To examine the effect of iron accumulation on skeletal muscle regeneration, CTX was 249 

injected in the skeletal muscles of mice. The mRNA expression of myogenic 250 

transcription factors myogenin and Myh3 were upregulated in muscles after CTX injury. 251 

However, their mRNA expression was downregulated in mice with iron overload 252 

(Figure 3A). Histological analysis revealed that mice with iron overload showed 253 

reduced number of regenerated muscle fibers with centralized nuclei as well as muscle 254 

fiber area after CTX injury on day 7 and day 15 compared to control mice (Figures 3B 255 

and C). In addition, fibrosis-related genes (Col1a1, Col1a2, Col3a1, and Tgf-1 256 

mRNA) were highly expressed in muscle of the iron-treated group at day3 or 7 and later 257 

after CTX injury (Figure 3D). Collagen deposition was increased in CTX-injured 258 

muscle at day 15 of iron overload as visualized in histology with picrosirius red staining. 259 

On the contrary, no differences in the expression of the macrophage marker F4/80 were 260 

observed in skeletal muscle between the vehicle- and iron-treated groups (data not 261 
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shown). The p38MAPK-dependent pathway plays a pivotal role in the activation of 262 

myogenic differentiation (50). Diabetic and CKD mice, not aged mice, showed the 263 

reduced phosphorylation of p38MAPK and ERK1/2 (Figure 1D and E). 264 

Phosphorylation of p38MAPK was upregulated in skeletal muscles after CTX injury on 265 

day 3, day 7 and day 14, which was suppressed by iron overload. Similar to p38MAPK, 266 

the degree of ERK1/2 phosphorylation was also lower on day 3 and 7 in CTX-injured 267 

muscle of mice with iron overload (Figure 3F).  268 

Inhibitory action of iron on C2C12 myoblast differentiation 269 

 To examine the mechanism of inhibitory effect of iron on skeletal muscle 270 

regeneration, we used C2C12 myoblast cells. The proliferative activity of these cells 271 

was prevented by iron treatment in the presence or absence of serum in the culture 272 

media. We also tested cytotoxicity of iron by LDH assay, and iron treatment increased 273 

LDH release independent of the presence or absence of serum in the culture media 274 

(Figure 4A). C2C12 myoblast cells were differentiated with an increase in Myh and 275 

myogenin mRNA expression after transfer of cells to differentiation media, which 276 

inhibited by concomitant treatment with iron (Figures 4B). The fusion index of 277 

myotubes was also reduced by iron treatment (Figure 4C). p38MAPK phosphorylation 278 

was significantly higher in C2C12 myoblast cells treated with iron before differentiation. 279 

However, the increase in p38MAPK phosphorylation was even lower 5 and 10 min after 280 

transfer to the differentiation media in iron-loaded C2C12 myoblast cells compared with 281 

vehicle-loaded cells. ERK1/2 phosphorylation was also higher in C2C12 myoblast cells 282 
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at 10, 15, and 30 min after transfer to the differentiation media, which was suppressed 283 

in iron-loaded culture media beforehand (Figure 4D). Similar to p38MAPK 284 

phosphorylation, p38MAPK activity was increased after the changing to differentiation 285 

media. This increase was lowered by iron treatment (Figure 5F). 286 

Involvement of oxidative stress in iron-mediated suppression of C2C12 myoblast 287 

differentiation 288 

 In C2C12 myoblast cells, oxidative stress was induced by iron overload, 289 

which was later suppressed by the superoxide scavenger tempol (Figure 5B). The iron 290 

content was also increased by iron treatment. However, tempol did not change the 291 

increased iron content (Figure 5A). Iron-induced inhibition of C2C12 myoblast 292 

differentiation, which lead to a reduction in mRNA expression of myogenin and Myh as 293 

well as decrease in fusion index, was restored by tempol pre-treatment (Figures 5C and 294 

D). Tempol partially ameliorated the reduced phosphorylation of p38MAPK and 295 

ERK1/2, which was inhibited by iron treatment 5 min or more after transfer to the 296 

differentiation medium (Figure 5E). In addition, tempol reversed the reduced 297 

p38MAPK activity with iron treatment 5 min after the change to differentiation medium 298 

(Figure 5G). In addition, DFO, an iron chelator, partly ameliorated iron-mediated 299 

inhibition of myoblast differentiation (Supplementary figure 2). 300 

Discussion 301 
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Iron accumulation has a harmful effect on myogenesis due to oxidative stress, 302 

causing imbalance in skeletal muscle homeostasis. Presently, the suppression of skeletal 303 

muscle regeneration due to iron overload, the increment of oxidative stress in a mouse 304 

model of CTX injury, and the inhibitory action of iron on muscle differentiation were 305 

all recovered by tempol in vitro.  306 

 Skeletal muscle mass is determined and regulated by the coordinated balance 307 

between muscle degradation and regeneration. Disruption of this balance leads to a 308 

decrease in skeletal muscle mass, which is known as sarcopenia. Excess iron causes 309 

skeletal muscle atrophy by inducing protein degradation due to oxidative stress (28, 29). 310 

In the present study, excess iron also impaired myogenesis due to oxidative stress. Our 311 

findings suggested that iron plays a pivotal role in the loss of skeletal muscle mass 312 

through its anti-myogenesis properties. 313 

 Mice with excess iron showed reduced mRNA expression of the satellite cell 314 

markers Pax-7 and MyoD in skeletal muscle under basal conditions. The activation of 315 

satellite cell markers is an important event during muscle repair and regeneration in 316 

mice (51, 52). Conversely, inactivation of these markers occurs with age or disease. The 317 

number and function of satellite cell markers are also reduced and impaired in muscles 318 

of mice with advancing age (35, 36, 53). The expression of Pax-7 and MyoD is 319 

decreased in skeletal muscles of mice with CKD (40) and diabetes (37-39). In humans, 320 

satellite cell numbers and Pax-7 expression decrease in skeletal muscle with aging 321 

relative to those during youth (41, 42), and myogenic potential of satellite cells is 322 
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compromised in aging human muscle (54). Moreover, there is a decline in the capacity 323 

of muscle regeneration with increasing age in both mice and humans (55-57), 324 

suggesting skeletal muscle loss mediated by the reduction of myogenesis. We found 325 

that iron concentration was elevated and that satellite cell markers were reduced in 326 

skeletal muscles in mouse models of aging, CKD, and diabetes. Oxidative stress 327 

influences both the function and proliferation of satellite cells (58). Oxidative stress was 328 

increased in the skeletal muscle of the mouse models. Therefore, iron accumulation 329 

might augment oxidative stress and promote the decline of both satellite cell number 330 

and function, resulting in impaired muscle regeneration. Satellite cells are generally 331 

thought to be essential during muscle regeneration. A recent study has shown that 332 

expression of Pax-7 in satellite cells is lower, and the exercise-induced satellite cell 333 

response is blunted in skeletal muscle of old mice (32). On the other hand, satellite cell 334 

numbers do not decline in human muscle with aging (59), and there is no difference in 335 

the proliferative response of satellite cells between children and adults (58). There is no 336 

difference in satellite cell numbers between young and aged mice although an 337 

age-related decline in myoblast generation is seen in response to injury (60). Thus, 338 

studies of age-related decreases in satellite cell number and function have to date 339 

yielded contradictory results. Therefore, further studies are necessary for clarifying the 340 

role of satellite cells in impaired muscle regeneration and muscle loss during aging 341 

conditions, as well as in disease states such as diabetes and CKD. 342 
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CTX-injured muscle showed increased Tgf-1, Col1 and Col3 mRNA and 343 

collagen deposition, and these were higher in mice with iron overload, resulting in the 344 

promotion of excessive fibrosis. Similar to skeletal muscle, iron causes tissue fibrosis in 345 

cardiovascular organs (15, 61), kidney (14, 62), and liver (63) in mouse disease models. 346 

The interaction between fibroblasts and satellite cells is important in the regulation of 347 

myogenesis (64). Abnormal extracellular matrix deposition and fibrosis are known to 348 

impair muscle regeneration after acute injury (65, 66). Deletion of satellite cells also 349 

enhances muscle fibrosis after CTX-injury (64). Therefore, increased fibrosis, as well as 350 

reduced satellite cell numbers, might lead to compromised myogenesis after CTX injury 351 

under iron overload. 352 

 CTX-injured muscle regeneration has been widely accepted as a valid means 353 

of investigating the mechanism of skeletal muscle regeneration and differentiation (67). 354 

Generally, the expression of myogenin and Myh are upregulated and regenerative 355 

muscle fibers with centered nuclei are seen during muscle regeneration after CTX injury 356 

(40, 68). In the present study, iron-treated mice displayed suppressed upregulation of 357 

myogenin and Myh3 mRNA expression and the regenerative muscle fibers with central 358 

nuclei were reduced in injured muscle with CTX compared to vehicle-treated mice. This 359 

indicates the involvement of iron in impaired muscle regeneration. In addition, the 360 

phosphorylated levels of p38MAPK and ERK1/2 were increased in CTX-injured 361 

muscle. However, the increase in phosphorylated levels was also lowered in skeletal 362 

muscles of mice treated with excess iron. The p38MAPK signaling pathway is crucial in 363 
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regulating skeletal muscle gene expression at different stages of the myogenic process 364 

(69). p38MAPK promotes skeletal muscle differentiation via activation of the MEF2C 365 

transcription factor (50, 70). Thus, p38MAPK activation is essential for skeletal muscle 366 

differentiation and regeneration. In the light of ERK1/2 action on skeletal muscle 367 

differentiation, ERK1/2 activation also seems to promote skeletal muscle differentiation 368 

in a similar manner along with the p38MAPK signaling pathway. Inhibition of ERK1/2 369 

signaling suppresses multinucleated myotube formation and decreases the expression of 370 

muscle-specific genes (MyoD and myogenin) in myoblasts after the induction of 371 

differentiation (70-72). However, ERK1/2 is reportedly required for myoblast 372 

proliferation, but not for differentiation (73, 74). Thus, the role of the ERK1/2 pathway 373 

on skeletal muscle differentiation is still controversial and further research is needed to 374 

clarify this aspect. 375 

In the present study, excess iron increased ferrous iron and reactive oxygen 376 

species (ROS) abundance in skeletal muscle, suggesting the occurrence of the Fenton 377 

reaction under iron overload. C2C12 myoblast differentiation was impaired under iron 378 

overload conditions, and the free radical scavenger tempol ameliorated iron-mediated 379 

reduction of myoblast differentiation and MAPK activity, indicating the involvement of 380 

excess iron-mediated oxidative stress in impaired muscle differentiation via inactivation 381 

of the p38MAPK and ERK1/2 signaling pathways. We have previously shown that iron 382 

reduces Akt-FOXO3a phosphorylation and that this phosphorylation is prevented by 383 

tempol (29). Therefore, iron-mediated oxidative stress might be involved in the 384 
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suppression of the aforementioned kinase pathway. Previous studies have shown that 385 

oxidative stress induced by hydrogen peroxide or creatinine directly impairs muscle 386 

differentiation in C2C12 myoblast cells (75-77). Tumor necrosis factor-alpha-induced 387 

oxidative stress is involved in impaired muscle differentiation in tumor-bearing mice 388 

(78). Thus, ROS can generally cause inhibition of myogenic differentiation (75, 76, 79), 389 

and this action cannot be attributed solely to increased cell death (77). ROS can increase 390 

nuclear factor-kappa B (NF-B) activity (75), which inhibits skeletal muscle 391 

differentiation (80, 81). Taken together, iron overload might promote ROS-mediated 392 

impaired myogenesis.  393 

On the other hand, oxidative stress also plays an important signaling role in 394 

skeletal muscle adaptation (82). Contrary to our findings, oxidative stress induced by 395 

hydrogen peroxide activates the p38MAPK and ERK1/2 pathways through NF-B 396 

transactivation in skeletal myoblasts (83). Therefore, the effect of oxidative stress on 397 

myogenesis has dual physiological and pathological aspects and is controversial (84). 398 

More research is necessary to further elucidate the inhibitory mechanisms of iron on 399 

myogenesis. 400 

Iron deficiency is an acknowledged concern, and functional foods amended 401 

with iron are commercially available to prevent iron deficiency. However, as previously 402 

mentioned, the iron content in the human body increases with age and in diseases, 403 

including diabetes and CKD, indicating increased iron content in skeletal muscle. The 404 

level of iron intake is important. Excess iron intake impairs regeneration of skeletal 405 
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muscle and can induce muscle atrophy. Muscle atrophy and degradation in the presence 406 

of excess iron also involves the oxidative stress-ubiquitin ligase E3 pathway (29). Thus, 407 

iron deficiency and excess can be detrimental. 408 

In conclusion, iron overload affects skeletal muscle differentiation, possibly 409 

through oxidative stress-dependent inhibition of the p38 MAPK and ERK1/2 signaling 410 

pathways. This finding suggests a crucial role of iron in muscle regeneration, and 411 

clarifies the underlying mechanisms of skeletal muscle homeostasis.  412 
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Figure legends 

Fig 1. Iron content, oxidative stress, MAPKs phosphorylation, and satellite cell markers 

in mice models of aging, diabetes, and chronic kidney disease (CKD)  

(A) Iron content of skeletal muscle in 2-month-old versus 2-year-old mice, db/m mice 

versus db/db mice, and control mice versus CKD mice. Values are expressed as mean ± 

SD. *P < 0.05 (in each paired comparison); n = 8 in each group. (B) Left panel: 

Representative images of DHE staining of skeletal muscle of 2-month-old versus 

2-year-old mice, db/m mice versus db/db mice, and control mice versus CKD mice with 

negative controls in each mouse (NC: negative control). Right panel: Quantitative 

analysis of relative fluorescence intensity. Values are expressed as mean ± SD; n = 5 in 

each group. *P < 0.05 (in each paired comparison). (C) mRNA expression of the 

satellite cell markers Pax-7, MyoD, and Myf5 in skeletal muscle of 2-month-old versus 

2-year-old mice, db/m mice versus db/db mice, and control mice versus CKD mice.  

Values are expressed as mean ± SD; n = 5 in each group. *P < 0.05 (in each paired 

comparison). Phosphorylation of (D) p38MAPK and (E) ERK1/2 in skeletal muscle of 

2-month-old versus 2-year-old mice, db/m mice versus db/db mice, and control mice 

versus CKD mice. Upper panel: representative protein expression levels of 

phosphorylated p38MAPK, total p38MAPK, phosphorylated ERK1/2, total ERK1/2, 

and tubulin. Lower panels: semi-quantitative densitometry analysis of p38MAPK and 

ERK1/2 phosphorylation. Values are expressed as mean ± SD. *P < 0.05 (in each 

paired comparison); n = 5 in each group. 
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Fig 2. Iron status, oxidative stress, MAPK phosphorylation, and satellite cell marker 

levels, and histology of skeletal muscle at basal conditions in mice with vehicle 

treatment or iron overload. 

(A) Iron concentration in skeletal muscles. Values are expressed as mean ± SD. **P < 

0.01; n = 6–12 in each group. (B) Protein expression of H-ferritin (FTH) and L-ferritin 

(FTL) in skeletal muscle. Upper panel: representative protein expression levels of FTH, 

FTL, and tubulin. Lower panels: semi-quantitative densitometry analysis of FTH and 

FTL expression. Values are expressed as mean ± SD. **P < 0.01; n = 6–9 in each 

group. (C) Left panel: Representative images of DHE staining of skeletal muscle with 

negative controls in each mouse. Right panel: Quantitative analysis of relative 

fluorescence intensity. Values are expressed as mean ± SD; n = 6–9 in each group. **P 

< 0.01 (vs. vehicle). (D) Malondialdehyde concentration in skeletal muscle. Values are 

expressed as mean ± SD; n = 11–12 in each group. *P < 0.05. (E) mRNA expression of 

satellite cell markers in skeletal muscle. Values are expressed as mean ± SD; n = 10–14 

in each group. **P < 0.01 (vs. vehicle). (F) Left panels: Representative images of Pax-7 

(red), 4′,6-diamidino-2-phenylindole (DAPI, blue), and merged (purple) with negative 

control in gastrocnemius muscle of vehicle-treated and iron-treated mice. Right panel: 

Quantitative analysis of Pax-7 positive cells. Values are expressed as mean ± SD; n = 

5-6 in each group. *P < 0.05 (vs. vehicle). (G) Left panel: Representative images of 

skeletal muscle with or without iron load. Right panel: The mean area of muscle fibers. 
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Values are expressed as mean ± SD. (H) mRNA expression of atrogen-1 and MuRF1 in 

skeletal muscle. Values are expressed as mean ± SD; n = 7 in each group. (I) Left 

panels: Representative images of RhoNox-1 (red), hydroxyphenyl fluorescein (HPF, 

green), 4′ ,6-diamidino-2-phenylindole (DAPI, blue), and merged (orange) with 

negative control in gastrocnemius muscle of vehicle-treated and iron-treated mice. Right 

panel: Semi-quantitative analysis of RhoNox-1 and HPF fluorescence intensity. Values 

are expressed as mean ± SD; n = 5 in each group. *P < 0.05 (vs. vehicle). 

Fig 3. Regeneration of skeletal muscle after cardiotoxin (CTX)-induced injury in mice 

with or without iron treatment  

(A) The effect of iron overload on the changes in myogenin and Myh3(eMyh) mRNA 

expression in skeletal muscle after CTX injection. Values are expressed as mean ± SD. 

*P < 0.05, **P < 0.01 (vs. vehicle at same day); n = 6-14 in each group. (B) Left; 

Representative images of CTX-induced muscle injury at day 7 with or without iron 

loading. Right; The percentage of regenerating myofibers with centralized nuclei, the 

mean area of muscle fibers, and the distribution of myofiber areas in skeletal muscles 7 

days after CTX injection. Values are expressed as mean ± SD. ** P < 0.01 (vs. vehicle); 

n = 6–14 in each group. (C) Left; Representative images of CTX-induced muscle injury 

at day 15 with or without iron loading. Right; Percentage of regenerating myofibers 

with centralized nuclei, the mean area of muscle fibers, and the distribution of myofiber 

areas in skeletal muscles at 15 days after CTX injection. Values are expressed as mean 

± SD. ** P < 0.01 (vs. vehicle); n = 5-6 in each group. (D) The effect of iron overload 
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on changes in Collagen 1a1 (Col1a1), Collagen 1a2 (Col1a2), and Collagen III 

(Col3a1), and Transforming growth factor beta-1 (Tgf-1) mRNA expression in 

skeletal muscle after CTX injection. Values are expressed as mean ± SD. *P < 0.05 (vs. 

vehicle at same day); n = 6 in each group. (E) Histological analysis of fibrosis in 

skeletal muscle at day 15 after CTX injury. Left; Representative images of picrosirius 

red staining in CTX-induced muscle injury at day 15 with or without iron loading. 

Right; Percentage of fibrosis fraction in skeletal muscles at 15 days after CTX injury. 

Values are expressed as mean ± SD. ** P < 0.01 (vs. vehicle); n = 5-6 in each group. 

(F) The effect of iron overload on the alteration in p38 and ERK1/2 phosphorylation in 

skeletal muscles after CTX injection. Values are expressed as mean ± SD. *P < 0.05, ** 

P < 0.01 (vs. vehicle at same day); n = 6-10 in each group.  

 

Fig 4. Effect of iron on C2C12 myoblast differentiation  

(A) Effect of iron on cell proliferation and death in C2C12 myoblast cells. Left: 

Myoblast proliferation with or without iron stimulation. Values are expressed as mean ± 

SD, n = 8 in each group. *P < 0.05, **P < 0.01. Right: Myoblast death with or without 

iron stimulation. Values are expressed as mean ± SD, n = 8 in each group. *P < 0.05. 

(B) Western blot images of myogenin, myosin heavy chain (Myh)3, FTH, FTL, and 

tubulin during myoblast differentiation. The changes in protein expression of myogenin 

and Myh3 with or without iron treatment during myoblast differentiation. Values are 

expressed as mean ± SD. *P < 0.05, ** P < 0.01; n = 16 in each group. (C) Effect of 
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iron on fusion index. Left: Representative immunohistochemical fluorescence of Myh3 

(green) and DAPI (blue) in C2C12 myoblast cells. Right: Semi-quantitative analysis of 

fusion index. Values are expressed as mean ± SD. **P < 0.01; n = 7 in each group. (D) 

The effect of iron on the alteration of p38 and ERK1/2 phosphorylation during C2C12 

myoblast differentiation. Values are expressed as mean ± SD. *P < 0.05, **P < 0.01; n 

= 7–8 in each group. 

 

Fig 5. The effect of tempol on iron-mediated suppressive effect on C2C12 myoblast 

differentiation  

(A) Iron content of C2C12 myoblast cells. Values are expressed as mean ± SD. *P < 

0.05, ** P < 0.01; n = 6 in each group. (B) Iron-induced intracellular oxidative stress of 

C2C12 myoblast cells with or without tempol. Values are expressed as mean ± SD. ** P 

< 0.01; n = 12-18 in each group. (C) The effect of tempol on the suppression of muscle 

differentiation induced by iron. Values are expressed as mean ± SD. *P < 0.05, **P < 

0.01 (vs. other 3 groups at same day); n = 12-16 in each group. (D) The effect of tempol 

on iron-mediated suppression of fusion index. Values are expressed as mean ± SD. *P < 

0.05, **P < 0.01; n = 7 in each group. (E) The effect of tempol on iron-mediated 

reduction of p38MAPK and ERK1/2 phosphorylation. Values are expressed as mean ± 

SD. *P < 0.05, **P < 0.01 (vs. Fe+Tempol at same time); n = 8 in each group. (F) 

p38MAPK activity at 0 and 5 min after change in differentiation medium in C2C12 

myoblast cells with or without iron treatment. Values are expressed as mean ± SD. *P < 
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0.05, **P < 0.01; n = 7 in each group. (G) p38MAPK activity at 5 min after change of 

differentiated medium in iron-treated C2C12 myoblast cells with or without tempol. 

Values are expressed as mean ± SD. *P < 0.05 (vs. Fe); n = 7 in each group.  
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Values are expressed as mean ± SD. n = 5-14 in each group. 

Table 1. Characteristics of vehicle-treated mice and chronic iron-treated mice 

 

Vehicle-treated group  Iron-treated group 

Initial body weight (g) 20.9 ± 1.3 20.9 ± 0.8 

Body weight 4 weeks later (g) 24.9 ± 2.9 24.2 ± 1.5 

Gastrocnemius muscles (mg) 141.2 ± 20.0 136.4 ± 8.9 

Soleus muscles (mg) 9.2 ± 1.2 9.0 ± 1.3 

Extensor digitorum longus muscles (mg) 14.4 ± 1.4 13.7 ± 0.9 
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Supplementary figure 1 
Protein expression of H-ferritin (FTH) and L-ferritin (FTL) in skeletal muscle of 2-month-old 

and 2-year-old mice, db/m mice and db/db mice, and control mice and CKD mice. Upper 

panel: representative protein expression levels of FTH, FTL, and tubulin. Lower panels: semi-

quantitative densitometry analysis of FTH and FTL expression. Values are expressed as mean 

± SD. *P < 0.05 (vs. 2 months of age, db/m mice, and control mice in each); n = 5 in each 

group. 



Supplementary Figure 2 Ikeda, et al. 
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Supplementary figure 2 
The effect of deferoxamine (DFO) on iron-mediated suppression of myoblast differentiation. (A) 

Effect of iron on fusion index. Left: Representative immunohistochemical fluorescence of Myh3 

(green) and DAPI (blue) in C2C12 myoblast cells. Right: Semi-quantitative analysis of fusion index. 

Values are expressed as mean ± SD. *P < 0.05; n = 5 in each group. (B) Western blot images of 

myosin heavy chain (Myh)3, and tubulin during myoblast differentiation. Values are expressed as 

mean ± SD. *P < 0.05; n = 5 in each group.  
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