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Abstract: This paper proposes a method for estimating the emotions expressed by emoticons based on a 

distributed representation of the character meanings of the emoticon. Existing studies on emoticons have 

focused on extracting the emoticons from texts and estimating the associated emotions by separating them 

into their constituent parts and using the combination of parts as the feature. Applying a recently developed 

technique for word embedding, we propose a versatile approach to emotion estimation from emoticons by 

training the meanings of the characters constituting the emoticons and using them as the feature unit of the 

emoticon. A cross-validation test was conducted for the proposed model based on deep convolutional 

neural networks using distributed representations of the characters as the feature. Results showed that our 

proposed method estimates the emotion of unknown emoticons with a higher F1-score than the baseline 

method based on character n-grams. 
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1. Introduction 

With the development of communication by text, more and more people, regardless of age or gender, are 

using Social Networking Services for their daily interactions. One of the advantages of text-based 

communication via the Internet is that it enables users to talk with anyone, anywhere and to respond 

almost instantaneously. However, as it is sometimes difficult to convey emotion using text only, 

opportunities to add non-verbal information such as pictures to a text are available. Emoticons are one type 

of such non-verbal information. Over time, these conveyors of emotion have proliferated; they are now 

widely used on electronic bulletin boards, chat systems, and in e-mails. In Japan, especially, the number and 

diversity of emoticons continue to increase at a rapid pace. There have been numerous studies dealing with 

emoticons as they have become increasingly important. 

It is obvious that assessing emoticons by character unit is not a very effective way to estimate the 

emotion conveyed by the emoticon. To be successful, it is necessary to know the positions of the characters 

and their co-occurring characters. Moreover, emoticons look different and give different impressions 

depending on their font types or contexts. To capture contextual similarities between the characters and the 

semantic/usage features of the characters, as well as to consider the co-occurrence relationship of 

emoticons, requires a corpus that includes a substantial variety of emoticons. However, because the types of 

characters are limited, by modeling what emotion is represented by various character combinations, it is 

possible to achieve an effective estimation of the associated emotion even with a relatively small supervised 
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data set. 

Our study trained character embedding expressions from emoticons by applying a recently developed 

word embedding method and then used these expressions as the feature for emotion estimation. We 

estimated the associated emotion by training the character features of the emoticon with deep 

convolutional neural networks. 

2. Related Works 

There have been numerous related studies on estimating emotion from texts; however, few studies have 

exclusively targeted emoticons. One of the reasons for this is that emoticons tend to be treated as signs, like 

pictographs, and considered not suitable subjects for linguistic semantic analysis. Some studies on emotion 

estimation from texts have registered emoticons into the emotional expression dictionaries [1], [2]. 

Yamada et al. [3] proposed a facial expression estimation method based on character n-grams. The 

approach constructs a facial expression estimation model by calculating a character n-gram appearance 

probability for each facial expression displayed by an emoticon. Results of an evaluation experiment 

showed that the proposed method had a higher facial expression estimation accuracy than an approach that 

used a single character appearance feature. 

Kazama et al. [4] proposed a method that extracts unknown emoticons by using an emoticon extraction 

algorithm and judging surface/semantic similarities using word2vec. The method was used to estimate 

emotions from Twitter texts. However, because their method does not consider the similarity between the 

constituent parts of the emoticons, it cannot be said that their method is robust to all-new emoticons that 

have never appeared in any corpus. Recently, IBM’s Watson [5] has been used to conduct reputation 

analysis by considering emoticons. However, there are practical problems with this as the varieties of the 

target emoticons are quite small in number. 

The CAO system proposed by Ptasynski et al. [6] is a system for emotion analysis of emoticons using a 

database containing an emoticon register. In the database, emoticons are annotated with semantic 

information. It is important to note, however, that single emoticons do not show facial expressions and that 

the sense of an emoticon changes depending on peripheral words or additional parts such as hands or 

objects. Expanding the database will not completely eliminate unknown expressions or semantic 

information.  

Dividing emoticons into character units would provide a way to analyze components of the face 

expressed by each character. The characters could be used to represent various organs in the emoticons. By 

analyzing a corpus with annotated names of the organs attached to each character in the emoticon, it would 

be possible to calculate a likelihood that indicates which organs are expressed by which characters. 

However, annotating each part in a huge emoticon database would require a significant cost. As a result, 

such annotated emoticon data have not been published, which has discouraged the advancement of 

associated studies.  

The lack of published resources and comprehensive database of emoticons makes it difficult to conduct a 

large experiment. Our study aims to construct an emoticon emotion estimation (EEE) model by training a 

large amount of unsupervised emoticon data, capturing the feature of emoticons by character unit, and 

using a small emotion-labeled corpus as training data. 

3. Proposed Method 

3.1. Emoticon Character Embedding 

Our proposed method uses Word2vec [7] to acquire character embedding (character distributed 

semantic representation) of emoticons. Word2vec is a method or tool to calculate word distributed 
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representations. It generates a fixed length, real-valued vector for words that appear in the corpus by 

training neural networks using the feature of skip-gram or continuous Bag-of-Words (CBOW) extracted 

from the corpus tokenized with word units. 

The generated real-valued vector is called a word distributed semantic representation or word 

embedding vector. The semantic/contextual similarities or relevance between words can be calculated by 

using this vector as a feature. There are other methods to calculate word distributed semantic 

representations [8, 9]. However, Word2vec was chosen here because the method is the most widely used 

tool at present. 

In the proposed approach, emoticons are automatically extracted from Twitter texts and are split into 

character units. The target language is Japanese; the character encoding type is utf8. We decided to use the 

regular expression rule for automatic extraction and used \([^\]]{4,45}\) as the regular expression pattern 

for emoticon extraction, since most of the emoticons include (“, “) as a facial contour and at least one 

character is included in the inner contour. This means we do not treat emoticons that do not include the 

close bracket, “)”. We set the maximum number of characters inside the brackets at 10 to avoid 

miss-extraction. 

3.2. Deep Convolutional Neural Networks 

The use of Deep Convolutional Neural Networks (DCNN) has a record of high performance in image 

recognition and has been quite effective in text classification [10]. 

In this study, we used a published implementation of Chainer [11] and a definition of hyper parameters as 

our DCNN. Fig. 1 shows the network structure of the DCNN used in this study. It consists of an input layer, a 

convolution layer, and max pooling layers. This structure avoids over-fitting and increases the 

generalization capability by inserting a dropout function between the layers. Generally, it is said that 

over-fitting often occurs because deep neural networks have such a complicated structure. Because this 

study aims to perform emotion estimation with high accuracy for unknown emoticons by using a small 

training data set with annotation, we regarded versatility as more important. 

 

 

Fig. 1. Structure of deep convolutional neural networks. 
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We used padding since the lengths of emoticons vary depending on their type. Considering distributions 

of emoticon lengths, we decided on a maximum sequential length of 45. Symbol ‘W’ indicates kernel size. 

Kernel size expresses window size for the convolution process. In the convolutional process, the feature of 

the tth character positioned from the beginning of a string is expressed by a local feature obtained from 

window size C. Convolutional process can be interpreted as expressing the feature of the tth character by the 

summation of the weighed hidden state vectors around the character. Equation 1 calculates feature vector 
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3.3. Emotion-Labeled Emoticon Corpus 

We constructed an emotion-labeled emoticon dictionary based on the emoticon dictionaries [12-18] 

published for general utility. Emotion labels are defined based on Fischer’s emotion systematic chart [19] 

shown in Table 1. Examples of emoticons registered into the emoticon dictionary and their emotion labels 

are shown in Table 2. 

 
Table 1. Definition of Emotion Labels  

Emotion label Joy Surprise Anger Sorrow Neutral 

Emotions joy, love, etc. surprise anger, hate, etc. sorrow, anxiety, etc. neutral 

 

Table 2. Example of Emoticons 

Emotion Example of emoticons 

Joy （ﾟ▽＾）, （＊^-^＊）, (ヽ(ﾟ∀ﾟ), （＊ ∇́`）, （＾＾◎）, etc. 

Surprise （ﾟД゜;）, （○。○）, ( ﾟ ｘﾟ), （°Д°lll）, (◎ﾟДﾟσ), （(;;ﾟДﾟ), etc. 

Anger ((└(ﾟεﾟ), （｀･(ｪ ), （‡ﾟДﾟ), （*｀３ ）́, ((ﾟ∀ﾟ`;;), （ `д’）, etc. 

Sorrow （ ﾉд`）, （´д｀*;）, （Ｔ○Ｔ）, （ｍ＿ｍ）, （・＿：）, etc. 

Neutral （’∋‘）, (●＇I＇●), ( ￣ -￣）, ('・c_，・`), ( ・ω・）, etc. 

4. Experiment 

The experimental data are shown in Table 3. We target a corpus for pre-training the character embedding 

expressions according to the regular expression rule and automatically judge whether an expression is an 

emoticon. We remove the strings that are judged as non-emoticons from the pre-training corpus (emoticon 

filtering) and determine whether accuracy increases as a result. 

At the same time, we collect the strings of emoticons from the existing emoticon dictionaries (apart from 

the training data), then set them as positive examples. We calculate cosine similarity between the character 

strings in these positive examples and those in the pre-training corpus, focusing on the appearance 
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frequency vector of the characters. Then, the strings with similarity less than 0.9 are removed from the 

pre-training corpus. We use a corpus that was subject to emoticon filtering for comparison. 

 
Table 3. Experimental Data 

 Without filtering With filtering 

Pre-training corpus 5,658,013 785,569 

Labeled emoticon dictionary 3,080 

Non-labeled emoticon dictionary 5,914 

 

We also compare the performance between the proposed model and the emotion estimation models 

trained by support vector machines(svm), random forest(rf), decision tree(dt), Gaussian Naive Bayes(gnb), 

the K-nearest neighbors algorithm(knn), logistic regression(lr), AdaBoost(adb) and quadratic 

discriminant analysis(qda) that used the character n-gram (1≤n≤4) as the feature. 

In this experiment, we evaluate the proposed and comparative models using five-fold cross-validation. 

We adjusted the data balance in the training data according to the smallest emotion label numbers in the 

labeled emotion dictionary. At that time, we randomly selected the emoticons with each emotion label to be 

used for training data.  

Fig. 2 shows the Precision-Recall curve with the highest F1-score—with and without emoticon 

filtering—for the pre-training corpus. Fig. 3 shows the Precision-Recall curve of the baseline method using 

the n-gram feature. The labels of the plot points in Fig. 3 indicate the n value of each n-gram. 

The marker colors indicate type of emotion: red for joy, green for surprise, blue for anger, black for 

sorrow, and magenta for neutral. The combinations of parameters in Fig. 2 are the parameters of Word2vec 

(window, size, mincount) = (5, 300, 1) without filtering, and the parameters of Word2vec: (window, size, 

mincount) = (3, 300, 5) with filtering. 

Fig. 2 shows that the precision and recall of the “neutral” emotion are both 0. Fig. 3 indicates that 

precision and recall are ill-balanced in the baseline method; as shown, recall is high and precision is low for 

all the machine learning algorithms. 

 

 
Fig. 2. Precision-Recall curve of the proposed method (with/without filtering). 
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Fig. 3. Precision-Recall curve of the baseline method. 

5. Discussion 

It is not possible to express positional information for the characters in emoticons by using only character 

appearance information. One way to consider positional information is to use character n-grams. However, 

because the types of character n-grams increase with an increase in the value of n, the dimension of the 

feature will increase in proportion to the number of training data values, which could cause over-fitting.  

In the evaluation experiment conducted here, the emotion estimation model based on character n-grams 

produced lower F1-scores than the DCNN method using character embedding as its feature. As seen in the 

Precision-Recall curves, in the evaluation results for the baseline method, there are many emotions with 

high recall and low precision. In addition, the various emotion estimators often output the same emotion 

labels. The F1-scores might be improved by adjusting the parameters for each machine learning algorithm. 

However, the only way to realize effective learning would be to increase the size of the training data set, as 

the value of n did not affect the F1-scores. 

We examined the effectiveness of emoticon filtering for the pre-training corpus but found few differences. 

As the method without filtering achieved higher F1-scores than the method with filtering, we could not 

confirm the effectiveness of filtering. 

With respect to the adjustment of the parameters of Word2vec for pre-training, it was found that the size 

of the dimensions of the character embedding vectors affected the F1-scores more than emoticon filtering. 

This indicates that in a corpus larger than a certain size, the character embedding can be trained with less 

influence from noise (symbols other than emoticons). 

Table 4 shows a comparison of the F1-scores with and without filtering (when the ‘neutral’ emotion was 

removed) for the combinations of parameters with the highest F1-scores for the proposed method. 

Significantly, the F1-score for “Anger” is quite low. On the other hand, the precision for “Joy” and “Sorrow” 

are high. Notably, there were almost no differences in these tendencies due to filtering. 
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Table 4. Comparison of F1-Scores for Each Emotion Label 

 Without filtering  

(window=5, size=300, mincount=1) 

With filtering  

(window=3, size=300, mincount=5) 

Emotion Precision Recall F1-score Precision Recall F1-score 

Joy 0.736 0.579 0.648 0.711  0.515  0.598  

Surprise 0.454 0.581 0.510 0.417  0.563  0.479  

Anger 0.025 0.256 0.045 0.022  0.237  0.041  

Sorrow 0.667 0.535 0.594 0.677  0.490  0.568  

Average 0.471 0.488 0.449 0.457  0.451  0.422  

 

The versatility of emotion estimation from emoticons increased with the use of character embedding. 

However, it was found that the bias associated with using a small-scale annotated training data set could not 

be avoided, raising questions regarding the necessity of a large scale emoticon database. It goes without 

saying that a high quality and completely labeled database would be very helpful for the analysis of the 

human cognitive mechanism to deal with emoticons and the emotions they express. 

In this paper, we aimed to estimate emotions from emoticons that had already been extracted from 

sentences. However, the sense or emotion expressed by an emoticon varies depending on the context. 

Moreover, because the ambiguity/polysemy of the emoticon depends on the personalities/cultural 

backgrounds of the users, future efforts are needed to determine how we might convert such 

information—information that cannot be determined uniquely—into knowledge.  

We compared similarities between characters for the two conditions—with and without filtering. Table 5 

shows partial results (for the character “д”). 

 
Table 5. Comparison of Similarities between Characters 

Target Character: д  

Without filtering With filtering 
character similarity character similarity 

⊿ 0.454 艸 0.614 

Д 0.439 ｪ 0.604 

ﾟ 0.364 Å 0.595 

∀ 0.361 ヮ 0.558 

 
The character “д” is often used to represent the mouth in emoticons. As can be seen in the table, in the 

“without filtering” condition, characters with a similar “д”, shape are ranked high in the list. On the other 

hand, in the “with filtering” condition, characters with a dissimilar shape are ranked high, with the “艸” 

leading the way. 

One possible reason is that “艸” is often used in emoticons to show hands covering the mouth; thus, the 

positional relationship might have caused a high similarity value. Moreover, although vector dimension is 

the same for both the “with filtering” and “without filtering” conditions, parameters such as window size 

and mincount are different. These different parameters may have affected the similarity values.  In 

addition, filtering the corpus reduced the corpus size, making it difficult to obtain a sufficient number of 

examples. As a result, a high-accuracy vector could not be generated. 

6. Conclusion 
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In this paper, we have described a versatile emotion estimation model for emoticons by training deep 

neural networks and using a character embedding vector trained from the emoticon corpus as the feature. 

In an evaluation experiment, we produced higher F1-scores than the baseline model, which was based on a 

simple character n-gram feature without pre-training. 

In our experiment comparing results with/without emoticon filtering on the corpus for pre-training, no 

noticeable improvement in performance was observed when filtering was used. In the future, we intend to 

improve the method for generating the character embedding vector to increase accuracy and versatility. 

There are still problems in resource construction that need to be addressed. One of them involves how we 

might efficiently increase the size of the annotated corpus to reduce the influence of deviations in the 

annotated emoticon corpus. As extensive annotation would require a substantial human cost, we would like 

to find a semi-automatic emotion labeling approach that uses a technique for emotion estimation from 

sentences. 
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