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important because echocardiographic data are nonstructural 
and there are differences in image properties in the dataset. 
Cardiologists need to make a labeled dataset to develop 
the model. After development of models, a clinical trial is 
key to this flow because developed models must be vali-
dated in different cohorts. A typical model development 
process is shown in Figure 2. AI researchers follow this 
process when developing a new model.

Recently, there have been some reports on AI in the med-
ical imaging modalities. For example, calcium scoring in 
low-dose chest computed tomography (CT), identification 
of functionally significant stenosis in CT angiography, and 
diagnosis of chronic myocardial infarction on cine mag-
netic resonance image (MRI) have been developed.3–5 Com-
pared with CT and MRI, in echocardiography there is an 
issue of high observer variation in the interpretation of 
images. Thus, AI might be help to improve observer varia-
tion and provide accurate diagnosis in echocardiography. 
In this review, we focus on the current status and future 
directions of AI in the field of echocardiography.

Direction of AI in Echocardiography
Echocardiography has a central role in the diagnosis and 
management of cardiovascular disease.6 Precise and reli-
able echocardiographic assessment is required for clinical 
decision-making.7–10 Even in the development of new tech-
nologies (3-dimentional echocardiography, speckle-tracking, 
semi-automated analysis, etc.), the final analytical decision 

I n the modern era, artificial intelligence (AI) is spread-
ing into all parts of daily life. AI is a program that has 
tasks based on algorithms in an intelligent manner. 

Machine learning is a subset of AI and focuses on the 
machine’s ability to receive a set of data and learn for itself. 
The tasks in machine learning can be classified into super-
vised and unsupervised learning problems. In the former, 
the task of assigning data to one of the discrete categories 
is called classification, whereas the task of fitting the desired 
output consisting of ≥1 continuous variables is called regres-
sion. In the latter, the goal may be to discover some groups 
categorized with similar variables, or features, called “clus-
tering”. Deep learning is a subset of machine learning that 
can solve a problem by using multilayered neural networks 
(Figure 1). Deep learning has led to state-of-the art improve-
ments in word recognition, visual object recognition, object 
detection, etc.1 Image recognition by machines trained 
through deep learning in some situations is superior to that 
of humans. Just a few years ago, we were surprised by a 
machine learning-based computer program (“AlphaGo”) 
that defeated the world champion of Go.2 The AI algo-
rithm continues to be enhanced every year. Medical imag-
ing also seems to be changing and undergoing an important 
revolution because of AI methods such as deep learning 
based on neural networks.

Data are an essential component of AI, and the quality 
and size of a dataset used to build a model will strongly influ-
ence the outcomes. When datasets are biased, the results 
are unusable in the clinical setting. Preprocessing is also 
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One landmark echocardiographic paper was recently pub-
lished.16 The authors used a deep learning model to build 
a fully automated echocardiogram interpretation program, 
including view identification, image segmentation, quanti-
fication of structure and function, and disease detection. 
Since then, many cardiologists can see a potential role for 
AI in the echocardiographic field. Our laboratory also inves-
tigated the building of models of automated diagnosis of 
myocardial infarction using a deep learning algorithm.17 The 
model showed several new insights and findings in the devel-
opment of the algorithm. AI has the potential to improve 
analysis and interpretation of medical images to an advanced 
stage compared with previous algorithms. Table summarizes 
the diagnostic ability of current machine-learning models 
in the field of echocardiography.16,18–25 The remainder of 
this review focuses on previously published deep learning 
approaches in echocardiography, view classifications, 
automated analysis of size and function, diagnosis of car-
diovascular diseases, and diastolic dysfunction.

is strongly dependent on operator experience. For exam-
ple, left ventricular ejection fraction (LVEF) is subjective, 
and variability could be influenced by observer experience. 
Several institutes have several readers with a wide range of 
experience levels.11,12 Until now, many interventions for 
reduction of variability in LVEF have been tested to over-
come this issue.13,14 Our multicenter group suggested that 
a simple teaching intervention can reduce the variability in 
LVEF assessment, especially for readers with limited expe-
rience.15 However, there are several limitations, including 
a lack of ground truth, limited number of sample sizes, etc. 
Thus, diagnostic errors are a major unresolved problem. 
Moreover, not only can cardiologists differ from one 
another in image interpretations, but the same observer 
may come to different conclusion when a reading is 
repeated. Daily high workloads in clinical practice may 
lead to this error, and all cardiologists require precise per-
ception in this field.

AI will likely help to overcome these issues. The AI 
algorithms might provide an aid to diagnostics with fewer 
errors and provide hidden features for accurate diagnosis. 

Figure 1.    Artificial intelligence, including machine learning and deep learning and their tasks.

Figure 2.    Development process for artificial intelligence models.
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not adequately resolve the problem of vendor differences 
and image qualities. A future enhanced model to classify 
the correct views would be required.

AI for Size and Function
Quantification of heart size and function is an essential part 
of echocardiography. Fully automated 3D echocardiographic 
analysis can obtain quantitative results without any observer 
interaction (e.g., selection of views, positioning markers 
and modifying borders). Commercially available software 
has been tested for accuracy and reproducibility. The algo-
rithms are knowledge-based probabilistic contouring algo-
rithms26 or adaptive analytics algorithms.27 The most 
frequently used software is the HeartModel algorithm in 
the Philips EPIQ series (Figure 4). This software shows 
automated tracings of the left ventricular and left atrial 
endocardial borders with 3D analysis. There are many stud-
ies comparing fully automated methods and either cardiac 
magnetic resonance or manual echocardiography,28–31 but 
there are some limitations from the clinical setting view-
point. One is the dependency on image quality, which has 
an important role, because results obtained with poor but 
analyzable image quality provide inaccurate results.32 On 
the other hand, although measurement accuracy using this 

AI for View Classifications
Echocardiographic images consist of several video clips, 
still images (M-mode and B-mode) and Doppler recordings 
because the heart’s structure and function are complex and 
require many views to diagnose cardiovascular diseases 
(Figure 3). Because of the nonstructural data in echocar-
diography, determination of the view is the essential first 
step in interpreting an echocardiogram. Recent studies 
applied deep learning with convolutional neural networks 
for view classification of echocardiograms.24 They trained 
a convolutional neural network to simultaneously classify 
15 standard views (12 video, 3 still), based on labeled still 
images and videos from 267 transthoracic echocardio-
grams with over 800,000 images that captured a range of 
real-world clinical variations. Their model classified among 
12 video views with 97.8% overall test accuracy without 
overfitting. Another group reported that a model for view 
classification was successfully trained with more layers and 
a larger number of echocardiography view classes.16 Thus, 
this method may be reasonable for application to image 
classification. On the other hand, there are some limita-
tions, including lack of explanation of the learning process 
and less than perfect classification. The utility is question-
able in the current version of models. Moreover, they did 

Table.  Studies of Machine Learning for Echocardiography

Authors Year Target Models
Training/ 
validation 

dataset

Test  
dataset Accuracy AUC

Madani et al24 2018 Echocardiography 
views (Classification)

Neural  
network

200,000  
images

20,000  
images

0.92 1.00

Zhang et al16 2018 Echocardiography 
views (Classification)

Neural  
network

Total 14,035 
studies

– 0.84 –

Raghavendra et al25 2018 Wall motion  
abnormalities  
(Classification)

Neural  
network

279 images – 0.75 –

Omar et al18 2018 Wall motion  
abnormalities  
(Classification)

Neural  
network

4,392 maps 61 subjects 0.95 –

Kusunose et al17 2019 Wall motion  
abnormalities  
(Classification)

Neural  
network  
(5 types)

960 images 240 images+120 
images from an 

independent 
cohort

– 0.97

Zhang et al16 2018 LV size and function 
(Regression*)

Neural  
network

Total 14,035 
studies

– Median absolute 
deviations of 

15–17%

–

�Sanchez-Martinez  
et al19

2018 Heart failure with 
preserved EF  
(Clustering)

Agglomerative 
hierarchical  
clustering

– – 0.73 –

Tabassian et al20 2018 Heart failure with 
preserved EF  
(Clustering and  
classification)

KNN and  
PCA

– – 0.81 –

Narula et al21 2016 Myocardial disease 
(HCM vs. athlete) 
(Classification)

Support vector 
machine

– – – 0.80

Sengupta et al22 2016 Myocardial disease 
(CP vs. RCM)  
(Classification)

Associative 
memory  
classifier

– – 0.94 0.96 

Zhang et al16 2018 Myocardial disease 
(HCM, amyloidosis, 
PAH) (Classification)

Neural  
network

Total 14,035 
studies

– – 0.85–0.93

*Left ventricle was segmented by a classification model and then the size and function were evaluated. AUC, area under the curve; CP, 
constrictive pericarditis; HCM, hypertrophic cardiomyopathy; KNN, k-nearest neighbor; PAH, pulmonary hypertension; PCA, principle compo-
nent analysis; RCM, restrictive cardiomyopathy.
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deep learning model for automatic segmentation of the LV 
in the apical 4- and 2-chamber views. For LV segmentation, 
their model had a Dice score of approximately 85% in the 
apical 2-chamber view, and approximately 80% in the api-
cal 4-chamber view, and a mean absolute percentage error 
of approximately 10% for EF from the apical 2-chamber 
view, and 20% for EF from the apical 4-chamber view. The 
correlation is good; however, their dataset did not include 
a wide range of LVEF. In addition, EF values were evalu-
ated after segmentation of the LV, so may include segmen-
tation errors. We believe that a direct evaluation of EF 
with larger training sets that include extremes of LV range 
will be needed for training and validation.

AI for Wall Motion Abnormality
One of the most important assessments in echocardiography 
is evaluating regional wall motion abnormalities (RWMAs) 
for the management of ischemic coronary artery disease 
(CAD). Assessment of RWMAs is a Class I recommendation 
in the guidelines by trained echocardiographic technicians 
for patients with chest pain in the emergency department.33–35 
Conventional assessment of RWMAs, which is based on 
visual interpretation of endocardial excursion and myocar-
dial thickening, is subjective and experience-dependent.36 
A useful method for reducing the misreading of RWMAs 
is required.37–39 Machine-learning models have been evalu-
ated to identify and quantify RWMAs.18,25 A convolu-
tional neural network provided good models with high 
sensitivity for diagnosis of CAD. Recently, our laboratory 
investigated building models of automated diagnosis for 
myocardial infarction using a deep learning algorithm 
(Figure 5).17 For detection of the presence of RWMA, the 
area under the receiver-operating characteristic curve 
(AUC) by deep learning algorithm was similar to that for 
a reading by cardiologist/sonographer, and significantly 

analysis still depends on image quality, its degree becomes 
obviously smaller than with current semi-automated soft-
ware. The number of datasets for training also affects mea-
surement accuracy. The current adaptive analytics algorithm 
does not work very well in patients with distorted LV 
shape, such as LV aneurysms and apical hypertrophic 
cardiomyopathy because of the limited number of datasets 
for machine learning.

These limitations also exist for deep learning in echocar-
diography. Deep learning algorithms require a high-quality 
database to provide a sound estimation model with a small 
sample size. Zhang et al proposed a pipeline based on a 
deep learning approach for a fully automated analysis of 
echocardiographic data.16 They proposed to train a U-net 

Figure 3.    Variety of echocardio-
graphic images needed to be rec-
ognized by artificial intelligence 
systems.

Figure 4.    Representative fully automated analysis software, 
HeartModel.
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disease states. In the echocardiographic field, speckle-
tracking imaging is widely used in cases of cardiomyopa-
thy. Clinical reports on speckle-tracking imaging show 
significant differences in regional strain in several cardio-
myopathies, even in the absence of ischemia. Knowledge 
of the characteristic LV strain distribution pattern might 
facilitate diagnosis of constrictive pericarditis, cardiac 
amyloidosis, hypertrophic cardiomyopathy, hypertensive 
heart disease, tachycardia-induced cardiomyopathy, and 
aortic stenosis (Figure 6).40–46 On the other hand, recent 
American and European consensus paper describe reginal 
longitudinal strain assessment by speckle-tracking analysis 
as still too immature to adopt in the clinical setting.47 The 

higher than the AUC for resident readers. Interestingly, 
deep learning had relatively low ratios of misclassification 
of the right coronary artery, left circumflex coronary artery, 
and control groups except for the left anterior descending 
coronary artery (LAD). It seems to reflect the real-world 
assessment (e.g., overdiagnoses in ischemic groups by 
human observers or importance of LAD in the clinical set-
ting). The results of a deep learning model in echocardiog-
raphy might provide new insights in the medical field.

AI for Diagnosis of Cardiovascular Diseases
Several techniques have been applied to identify clinical 

Figure 5.    An example of a convolutional neural network model for detection of coronary artery disease. LAD, left anterior descend-
ing coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery.

Figure 6.    Examples of strain distribution in amyloidosis, constrictive pericarditis and hypertrophic cardiomyopathy.
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limitation should be overcome in the future. Recently, 
machine-learning algorithms have revealed clinical disease 
conditions and new futures. Sengupta et al applied a cogni-
tive machine-learning algorithm to differentiate constric-
tive pericarditis from restrictive cardiomyopathy with 
multimodality imaging and pathology.22 The same group 
showed a machine-learning approach to assessing the 
potential role diagnosing hypertrophy in athletes and 
hypertrophic cardiomyopathy.21 Sanchez-Martinez et al19 
and Tabassian et al20 showed that machine learning using 
echocardiographic data, including strain imaging at rest 
and during exercise, may improve diagnosis and under-
standing of heart failure with preserved EF. In this field, 
investigators try to not only assess the accuracy of diagno-
sis, but also discover new findings in cardiovascular dis-
ease. Zhang et al proposed a model based on a deep 
learning approach for differentiating cardiomyopathy and 
pulmonary hypertension from the parasternal long-axis 
views.16 Unlike other machine-learning approaches, the 
deep learning approach may automatically encode optimal 
features from data beyond human recognition. Big data 
have the potential to lead to precise diagnosis and discov-
ering important features from the echocardiographic 
images. In the future, AI may aid physicians in accurate 
diagnosis without requiring pathological samples.

Future of AI in Echocardiography
Cardiologists will determine the capability of AI in diag-
nosis, and they will be responsible for the final decisions. 
Thus, cardiologists will be required to have the capacity e 
to manage AI and advanced knowledge. Some recent stud-
ies have been concerned about adversarial examples in the 
medical imaging field.48 Adversarial examples are inputs to 
learning models that an attacker has intentionally designed 
to cause the model to make a mistake; they are like optical 
illusions for machines. In echocardiography, data are just 
pixel images, not structured data. Echocardiographic imag-
ing systems may be vulnerable to adversarial attacks. For 
example, insurance companies will use a deep learning 
system that receives images as part of a claim to verify that 
heart surgery would be necessary in the future. An adver-
sarial example may be used to deceive the insurance com-
pany’s system. In these cases, cardiologists should have 
adequate and solid knowledge in this field. The era of AI 
is almost here.

Conclusions
From our comprehensive review, we believe AI has the 
potential to improve accuracy of diagnosis, clinical man-
agement, and patient care. Although there are several con-
cerns about the required large dataset and “black box” 
algorithm, AI seems able to provide satisfactory results in 
this field. In the future, it will be necessary for cardiologists 
to incorporate this new horizon of AI in echocardiography 
into their daily practice.
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