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Abstract

We aimed to assess the ability of deep learning (DL) and support vector machine (SVM) to

detect a nonperfusion area (NPA) caused by retinal vein occlusion (RVO) with optical coher-

ence tomography angiography (OCTA) images. The study included 322 OCTA images (nor-

mal: 148; NPA owing to RVO: 174 [128 branch RVO images and 46 central RVO images]).

Training to construct the DL model using deep convolutional neural network (DNN) algo-

rithms was provided using OCTA images. The SVM used a scikit-learn library with a radial

basis function kernel. The area under the curve (AUC), sensitivity and specificity for detect-

ing an NPA were examined. We compared the diagnostic ability (sensitivity, specificity and

average required time) between the DNN, SVM and seven ophthalmologists. Heat maps

were generated. With regard to the DNN, the mean AUC, sensitivity, specificity and average

required time for distinguishing RVO OCTA images with an NPA from normal OCTA images

were 0.986, 93.7%, 97.3% and 176.9 s, respectively. With regard to SVM, the mean AUC,

sensitivity, and specificity were 0.880, 79.3%, and 81.1%, respectively. With regard to the

seven ophthalmologists, the mean AUC, sensitivity, specificity and average required time

were 0.962, 90.8%, 89.2%, and 700.6 s, respectively. The DNN focused on the foveal avas-

cular zone and NPA in heat maps. The performance of the DNN was significantly better

than that of SVM in all parameters (p < 0.01, all) and that of the ophthalmologists in AUC

and specificity (p < 0.01, all). The combination of DL and OCTA images had high accuracy

for the detection of an NPA, and it might be useful in clinical practice and retinal screening.

Introduction

Retinal vein occlusion (RVO) is the second most common retinal vascular disease after dia-

betic retinopathy. Worldwide, the estimated number of RVO patients is 16.4 million [1], with

a prevalence of 2.1% in the general population over 40 years of age [2], and risk factors include
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hypertension, diabetes and hyperlipidemia. RVO is a common cause of visual reduction from

complications such as macular edema (ME), retinal bleeding and retinal ischemia [3,4]. RVO

is divided into the following two types according to the occlusion site: branch retinal vein

occlusion (BRVO) and central retinal vein occlusion (CRVO). Major vein occlusion of the reti-

nal circulation can cause increased intraluminal pressure, hemorrhage and ME [5]. In recent

years, intravitreal anti-VEGF agents have become the common clinical therapy for ME associ-

ated with BRVO and CRVO. In fact, numerous large-scale studies have reported that intravi-

treal injections of anti-VEGF agents significantly improve visual and anatomic outcomes for

BRVO and CRVO patients with ME [6–12]. Although ME is most commonly associated with

vision loss, thrombosis can result in engorged veins frequently accompanied by variable

amounts of retinal nonperfusion.

Previously, angiography, including fluorescein angiography, was essential for diagnosing

retinal vascular lesions. However, since angiography is an invasive examination, frequent

examination is difficult. Additionally, visualizing the fine structure at the capillary level is diffi-

cult in these angiography images. Moreover, these images are two-dimensional images and

cannot be assessed by stratification of the retina and choroid. In recent years, optical coherence

tomography angiography (OCTA) has been devised, which can noninvasively detect a moving

part of the fundus equivalent to red blood cells in the blood flow as a flow signal and visualize

it as a blood vessel [13–16]. OCTA can analyze the retina in detail by dividing it into superficial

capillary plexus (SCP) and deep capillary plexus (DCP) (Fig 1). Additionally, one report con-

sidered the foveal avascular zone (FAZ) and vessel density drawn from those images as a quan-

titative index [15]. Furthermore, the area of FAZ and visual acuity are reportedly inversely

correlated in RVO and diabetic retinopathy (Fig 2) [17].

Recently, an image processing technology using deep learning (DL) and support vector

machine (SVM), a machine-learning method, has been dramatically developed. According to

several studies, image processing technology has very high classification performance in medi-

cal imaging [18–28]. In the ophthalmology field, recent investigations have demonstrated the

application of image processing technology involving machine-learning algorithms in medical

imaging for various retinal diseases, including BRVO and CRVO, using fundus color photo-

graphs and ultra-widefield fundus ophthalmoscopy images [21,23–25,29–32]. In a recent

investigation, DL segmented the nonperfusion area (NPA) in OCTA images of diabetic reti-

nopathy [33].

However, to the best of our knowledge, no studies have focused on the automated diagnos-

tic accuracy of image processing technology involving DL and SVM for the NPA using OCTA

images of RVO.

Thus, the present study aimed to assess the ability of image processing technology involving

DL and SVM to detect an NPA owing to RVO using OCTA images. This study was performed

at Tsukazaki Hospital and Tokushima University Hospital.

Materials and methods

Data set

The OCTA images of normal eyes and eyes with NPA caused by RVO were extracted from the

clinical databases of the Ophthalmology departments of Tsukazaki Hospital and Tokushima

University Hospital. A retinal specialist reviewed and confirmed the presence of NPA by

assessing 3 × 3 mm OCTA images for the SCP and DCP. The OCTA images were then regis-

tered on a database for analysis. There were 322 OCTA images included in the current study.

With regard to BRVO, eyes without NPA in OCTA images were not included. NPA with

CRVO was present in all eyes. To assess OCTA image processing accuracy with DL for an
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NPA, we focused on the OCTA images of normal and NPA with acute RVO cases. We did not

include NPA cases with chronic RVO in which abnormal conditions, such as collateral vessels,

may exist in addition to NPA. Moreover, NPA cases with diabetic retinopathy were not

included in which other abnormal conditions, such as microaneurysms, must be considered.

These additional abnormalities may be confounders that make it difficult for DL to determine

the NPA.

In the current study, we used K-fold cross-validation (K = 8), which was previously

reported [34,35]. In brief, OCTA imaging data were divided into K groups. Then, (K−1)

groups were used for training, and one group were used for validation. This process was

repeated K times until each of the K groups reached the validation data set.

The OCTA images in the training data set were augmented with image transformation pro-

cesses such as brightness adjustment, gamma correction, histogram equalization, and noise

addition and inversion. The amount of training images approached 18 times the amount of

original training data. A deep convolutional neural network (DNN) model, as described

below, was created and trained with the augmented training data. These processes are

described in supplemental files (in data_augment.py).

Because of the retrospective and observational nature of the study, the need for written

informed consent was waived by the ethics committees. The data acquired in the course of the

data analysis were anonymized before we accessed them. This study adhered to the tenets of

the Declaration of Helsinki, and it was approved by the local ethics committees of Tsukazaki

Hospital and Tokushima University Hospital.

Deep-learning model and training

We implemented a DL model that uses a Visual Geometry Group (VGG)-16 DNN (Fig 3).

This DNN automatically learns local features of images and generates a classification model

Fig 1. Representative images of the normal macula obtained using optical coherence tomography angiography (OCTA). The left image is a

superficial capillary plexus OCTA image with a normal macula, and the right image is a deep capillary plexus OCTA image with a normal macula. The

arrowheads indicate the foveal avascular zone.

https://doi.org/10.1371/journal.pone.0223965.g001
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[36–38]. The input in this study was concatenated OCTA images of SCP and DCP images.

The size of the concatenated original OCTA images was 640 × 320 pixels. We converted the

size of the original input images to 256 × 192 pixels because of the reduction in the analysis

time. The RGB image input had a range of 0 to 255, and the input was first normalized to a

Fig 2. Representative retinal vein occlusion images of the macula obtained using optical coherence tomography angiography (OCTA). (A) The left

image is the superficial capillary plexus (SCP) OCTA image with branch retinal vein occlusion (BRVO), and the right image is the deep capillary plexus

(DCP) OCTA image with BRVO. The arrows indicate the foveal avascular zone and nonperfusion area with BRVO. (B) The left image is the SCP

OCTA image with central retinal vein occlusion (CRVO), and the right image is the DCP OCTA image with CRVO. In the SCP and DCP OCTA

images with CRVO, the foveal avascular zone and the nonperfusion area are observed throughout the cropped images.

https://doi.org/10.1371/journal.pone.0223965.g002
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range of 0 to 1 by dividing the values by 255. The shape of the input tensors used in this study

is 256 × 192 × 3.

The VGG-16 DNN included five blocks and three fully connected layers. Each block

included some convolutional layers followed by a max-pooling layer, which decreased posi-

tional sensitivity, improving generic recognition [39]. These convolutional layers capture only

the features of the image without shrinking because the strides of convolution layers were 1

and the padding of the layers were the “same”. We could avoid the vanishing gradient problem

because the activation function of the layers was ReLU [40]. The strides of max-pooling layers

were 2, so these layers compressed the information of the image. The output of block 5 was

flattened, and subsequently, two layers were fully connected. The first layer removed spatial

information from the extracted feature vectors, and the second layer was a classification layer

that used the feature vectors of the target images acquired in previous layers and the softmax

function for binary classification. To improve generalization performance, we carried out a

dropout process to mask the first fully connected layer with 25% probability. The output of the

neural network was the vector of order 2 representing probability for each class value (non-

RVO, RVO).

Fine tuning was applied to increase the learning speed for high performance achievement

even with limited data [41,42]. We used parameters from ImageNet as initial parameters of

blocks 1 to 5.

The layers were updated using the optimization momentum stochastic gradient descent

algorithm (learning rate = 0.0005, momentum coefficient = 0.9) [43,44]. Mini Bach size was

32. Among the 20 DL models obtained in 20 learning cycles, the model with the highest correct

answer rate for the available test data was selected as the final DL model in each split. To build

and evaluate the model, we ran Keras (https://keras.io/ja/) on TensorFlow (https://www.

tensorflow.org/), which was written in Python.

Support vector machine model

We used the soft-margin SVM implemented in the scikit-learn library using the radial basis

function kernel [45]. We reduced all images to 10 dimensions. Optimal values for cost parame-

ter “C” of the SVM algorithm and parameter “γ” of the radial basis function were determined

Fig 3. Overall architecture of the Visual Geometry Group (VGG)-16 model. A data set of resized optical coherence

tomography angiography images (256 × 192 pixels) is the input. VGG-16 includes five blocks and three fully connected

layers. Each block includes some convolutional layers followed by a max-pooling layer. The output of block 5 is

flattened, resulting in two fully connected layers. The first layer removes spatial information from the extracted feature

vectors, and the second layer is a classification layer that uses the feature vectors of the target images acquired in

previous layers and the softmax function for binary classification.

https://doi.org/10.1371/journal.pone.0223965.g003
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by grid search using quadrant cross-validation, and the combination with the highest accuracy

was selected in each split. The parameter values tested for C were 1, 10, 100, and 1000, and

those for γ were 0.0001, 0.001, 0.01, 0.1, and 1. The optimized parameter values of C and γ in

each split are described in S1 File.

Outcome

The area under the curve (AUC) of the receiver operating characteristic curve, sensitivity, and

specificity were determined from the concatenated OCTA images using the DNN and SVM

model described above.

Creation of the test application for ophthalmologist interpretation

We compared the diagnostic accuracy between the DNN and ophthalmologists. All 322

concatenated OCTA images were included. The sensitivity, specificity, and required time were

determined for the DNN and seven ophthalmologists. Details were shown in S2 File.

NPA assessment and required time

The seven ophthalmologists assessed the presence or absence of an NPA by reviewing the 322

concatenated OCTA images as indicated on the computer screen, without other images. Using

a Microsoft Excel-based response form, each of the seven ophthalmologists entered the integer

0 or 1 directly into a computer. Details were shown in S3 File.

Statistical analysis

With regard to background demographic data, Student’s t-test was used to compare age, and

Fisher’s exact test was used to compare the ratios of gender and left/right affected eyes between

patients and normal subjects. These statistical analyses were performed using Python Scipy

(https://www.scipy.org/), Python Statsmodels (http://www.statsmodels.org/stable/index.html)

and R pROC (https://cran.r-project.org/web/packages/pROC/pROC.pdf). A p value of<0.05

was considered statistically significant.

The 95% confidence interval (CI) of the AUC was obtained as follows. The OCTA images

judged to exceed a threshold were considered positive for RVO, and a receiver operating char-

acteristic (ROC) curve was created. For the AUC, the 95% CI was obtained by assuming a nor-

mal distribution and calculated in these equations [46].

95%CI of AUC ¼ AUCþ Zð0:05=2Þ � SEðAUCÞ

Z xð Þ ¼
1
ffiffiffiffiffiffi
2p
p e� x2

2

SE AUCð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AUC � ð1 � AUCÞ þ ðnp � 1Þ � ðQ1 � AUC2Þ þ ðnn � 1Þ � ðQ2 � AUC2Þ

np � nn

s

Q1 ¼
AUC

2 � AUC

Q2 ¼
2AUC2

1þ AUC

np . . . the number of RVO images, 174
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nn . . . the number of normal images, 148

In the RVO classification, in sensitivity and specificity image output by the neural network

higher than 0.5 was classified as RVO, and image output lower than 0.5 was classified as

normal. Additionally, regarding the sensitivity and specificity of seven ophthalmologists, if

four or more ophthalmologists considered OCTA images positive, these images were consid-

ered positive. The 95% CIs of sensitivity and specificity were calculated assuming a binomial

distribution. Fleiss’ kappa coefficients were used to assess the agreement rate among seven

ophthalmologists for NPA detection [47,48]. Fisher’s exact test was used to compare the sensi-

tivity and specificity between the DNN, SVM and ophthalmologists.

Heat map

Overlaying heatmap images of the DNN focus site were created using a gradient-weighted

class activation mapping (Grad-CAM) method on the corresponding RVO and non-RVO

OCTA images [49]. In the current study, we used the grad-CAM method to maximize the out-

puts of the second convolution layer in block 2. The function in the backpropagation steps for

modification of the loss function was a rectified linear unit, which propagated only positive

gradients. This process was performed using Python Keras-vis (https://raghakot.github.io/

keras-vis/).

Results

The study included 322 OCTA images. Of these images, 174 were of eyes with NPA owing to

RVO [170 patients (mean age: 71.4 ± 10.9 years); 90 eyes from men and 84 from women; 79

left and 95 right eyes; and 128 eyes with BRVO and 46 with CRVO], and 148 images were of

normal eyes [147 subjects (mean age: 70.4 ± 10.8 years); 75 eyes from men and 73 from

women; and 81 left and 67 right eyes]. No significant differences were detected between

these two groups with respect to age, gender ratio, and left-right eye image ratio (p = 0.401,

p = 0.911, and p = 0.117, respectively) (Table 1).

With regard to the detection of an NPA owing to RVO, the DNN had a sensitivity of 93.7%

(95% CI, 89.0–96.8%), specificity of 97.3% (95% CI, 93.2–99.3%), AUC of 0.986 (95% CI,

0.974–0.999) and average required time of 176.9 s (95% CI, 172.4–180.2 s). The SVM had a

sensitivity of 79.3% (95% CI, 72.5–85.1%), specificity of 81.1% (95% CI, 73.8–87.0%) and AUC

of 0.880 (95% CI, 0.843–0.918) (Fig 4). The ophthalmologists had a sensitivity of 90.8% (95%

CI, 85.5–94.7%), specificity of 89.2% (95% CI, 83.0–93.7%), AUC of 0.962 (95% CI, 0.942–

0.983) and average required time of 700.6 s (95% CI, 585.2–816.0 s) (Table 2). The mean kappa

Table 1. Comparison of demographic variables between the nonperfusion area owing to retinal vein occlusion

and normal groups.

NPA owing to RVO group Normal group P value

Number of images 174 148

Patients 170 147

Women (%) 84 (48.3) 73 (49.3) 0.911�

Mean age (SD) 71.4 (10.9) 70.4 (10.8) 0.401��

Left fundus (%) 79 (45.4) 81 (54.7) 0.117�

NPA, nonperfusion area; RVO, retinal vein occlusion; SD, standard deviation.

� Fisher’s exact test.

�� Student’s t-test.

https://doi.org/10.1371/journal.pone.0223965.t001
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coefficient among seven ophthalmologists for the detection of an NPA was 0.746 (95% CI,

0.725–0.766).

A composite image, comprising the fundus image superimposed with its corresponding

heat map, was created by the DNN, and these images showed that DNNs could accurately

identify crucial areas in the fundus images; a representative composite image is presented in

Fig 5. Blue indicates the strength of DNN-based identification, and an increase in color inten-

sity was observed in areas with the FAZ area and NPA at the fovea in SCP and DCP OCTA

images at the focal points. These results imply that the DNN might differentiate RVO eyes

from normal eyes by identifying and highlighting the NPA. Red indicates the strength of DNN

focus. The color intensity was high in the FAZ area and NPA in the SCP and DCP OCTA

images. Accumulation occurred in focal points.

Fig 4. The Receiver operating characteristic curves in the deep-learning model, support vector machine model

and ophthalmologists. The area under the curve is 0.986 in the deep-learning model, 0.880 in the support vector

machine model and 0.962 in the seven ophthalmologists.

https://doi.org/10.1371/journal.pone.0223965.g004

Table 2. Comparison of the abilities of the deep convolutional neural network, support vector machine and ophthalmologists (n = 7) to detect a nonperfusion area.

DL (95% CI) SVM (95% CI) Ophthalmologists (95% CI) P value

(DNN vs SVM)

P value

(DNN vs Ophthalmologists)

Sensitivity (%) 93.7 (89.0–96.8) 79.3 (72.5–85.1) 90.8 (85.5–94.7) <0.01� 0.42�

Specificity (%) 97.3 (93.2–99.3) 81.1 (73.8–87.0) 89.2 (83.0–93.7) <0.01� <0.01�

AUC 0.986 (0.974–0.999) 0.880 (0.843–0.918) 0.962 (0.942–0.983) <0.01� <0.01�

Average required time (sec) 176.9 (172.4–180.2) 700.6 (585.2–816.0) <0.01�

AUC, area under the curve; CI, confidence interval; DL, deep learning; SVM, support vector machine.

� Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0223965.t002
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Discussion

Generally, FA is considered the gold standard for diagnosing and delineating the extent of reti-

nal ischemia. However, the recent emergence of three-dimensional, noninvasive imaging

using OCTA has provided an opportunity to quantify vessel density in a defined retinal area

and to gage its loss over time, either physiologically with aging or through an underlying vas-

cular pathology [50–52]. Recent studies have identified measurable parameters, such as vessel

density, capillary length, intercapillary distance and FAZ area, to quantify the degree of retinal

ischemia and to longitudinally assess its progression [23,53–55].

With regard to the representation of the NPA and the FAZ area associated with RVO,

OCTA images are clearer than FA images, and the boundary in OCTA images is clear [15,16].

In the present study, the performance of the DNN was significantly better than that of SVM in

all parameters (p< 0.01) and that of ophthalmologists in the specificity, AUC and average

required time (p< 0.01). The combination of DL and OCTA images had high accuracy for the

detection of an NPA, and it might be useful in clinical practice and retinal screening. Recent

investigations have demonstrated a high AUC for detecting diabetic retinopathy on retinal

fundus photography [21,29] and rhegmatogenous retinal detachment on ultra-widefield

Fig 5. Representative images obtained using optical coherence tomography angiography (OCTA) and their heat

maps. (A) Normal superficial capillary plexus (SCP) OCTA image, (B) normal deep capillary plexus (DCP) OCTA

image, (C) heat map of the normal SCP OCTA image, (D) heat map of the normal DCP OCTA image, (E) SCP OCTA

image with a nonperfusion area (NPA) owing to branch retinal vein occlusion (BRVO), (F) DCP OCTA image with an

NPA owing to BRVO, (G) heat map of the SCP OCTA image with BRVO, (H) heat map of the DCP OCTA image with

BRVO, (I) SCP OCTA image with an NPA owing to central retinal vein occlusion (CRVO), (J) DCP OCTA image with

an NPA owing to CRVO, (K) heat map of the SCP OCTA image with CRVO and (L) heat map of the DCP OCTA

image with CRVO. Red is used to indicate the strength of deep convolutional neural network focus. The color intensity

is high at the area of the foveal avascular zone and NPA in SCP and DCP OCTA images; accumulation is noted at the

focal points. The deep convolutional neural network focused on the foveal avascular zone and NPA.

https://doi.org/10.1371/journal.pone.0223965.g005
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fundus ophthalmoscopy [30]. Moreover, in the radiological field, it has been proposed that

perfusion image quality is better and perfusion measurement is more accurate with convolu-

tional neural network techniques, such as a DL algorithm, than with the conventional averag-

ing method for the generation of arterial spin labeling images from pairwise subtraction

images [56]. In the present study, the AUC and required time for distinguishing between nor-

mal eyes and NPA owing to RVO eyes were better with the DNN than with ophthalmologist

assessment. Guo et al. [33] reported that the NPA in OCTA images of diabetic retinopathy was

segmented by DL. However, these authors detected NPA in OCTA images using a manually

segmented nonperfusion binary map. In our study, we did not use manual images to detect

NPA in OCTA images. The NPA in OCTA images was relatively clear as we used images with

a narrow angle of view, and DL easily distinguished NPA OCTA images from normal OCTA

images.

Retinal ischemia is a key prognostic factor in the management of various retinal diseases,

including RVO. Several studies have demonstrated that decreases in both the SCP and DCP

vessel density, fractal dimension and skeletal vessel density on OCTA are associated with RVO

severity [16,17,57]. In fact, according to the heat maps, the DNN focused on the FAZ area in

normal SCP and DCP OCTA images and the FAZ area and NPA in RVO SCP and DCP

OCTA images. Our results indicate that the DNN has a classification ability that is equivalent

to or greater than the ability of ophthalmologists. Therefore, the identification of an NPA

using DL and OCTA is considered highly useful and clinically significant. The ability of DL to

distinguish between RVO and normal eyes with high accuracy using automatically segmented

OCTA images suggests the possibility of automatic diagnosis of eye disease by artificial intelli-

gence in the future.

The present study had some limitations. First, we compared only OCTA images between

normal eyes and RVO eyes and did not include OCTA images of other retinal diseases. Further

studies involving other retinal diseases are required to confirm our findings. Additionally, for

extensive evaluation of the performance and versatility of DL for the detection of an NPA, it

will be necessary to use larger samples and include OCTA images of other retinal diseases. Sec-

ond, the scan area of 3 × 3 mm was not large enough to detect the entire NPA associated with

RVO. Wider ranges of examination areas may provide more conclusive evidence.

Conclusions

In conclusion, the combination of DL and OCTA images had high accuracy for the detection

of an NPA. DL was useful for detecting NPA in OCTA images. These findings suggest that fur-

ther investigations are required to develop artificial intelligence that detects retinal ischemic

disorders.
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