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Image reconstruction in computed tomography can be treated as an inverse problem, namely, obtaining pixel values of
a tomographic image from measured projections. However, a seriously degraded image with artifacts is produced when
a certain part of the projections is inaccurate or missing. A novel method for simultaneously obtaining a reconstructed
image and an estimated projection by solving an initial-value problem of differential equations is proposed. A system
of differential equations is constructed on the basis of optimizing a cost function of unknown variables for an image
and a projection. Three systems described by nonlinear differential equations are constructed, and the stability of a
set of equilibria corresponding to an optimized solution for each system is proved by using the Lyapunov stability
theorem. To validate the theoretical result given by the proposed method, metal artifact reduction was numerically
performed.

1. Introduction

In the field of computed tomography (CT) [1–4], image
reconstruction is generally considered an inverse problem,
namely, obtaining pixel values of an image from measured
projections and a known projection operator. In X-ray CT,
however, an image is seriously degraded by, for example,
metal and ring artifacts [5–7] when a certain part of the
projections received by the detector is inaccurate or miss-
ing. Interpolation projection is a well-known method for
reducing such artifacts [5, 7]; that is, inaccurate projections
are interpolated from their neighboring data and replaced
by synthesized values. Another method for reducing metal
artifacts completes inaccurate projections by subtracting the
projections that cause the artifacts [6, 7]; in particular, the
subtraction process uses synthesized projections reprojected

as an image including an estimated and corrected metal
portion.

As for formulating the inverse problem, 𝑝 ∈ 𝑅𝐼+ and 𝐴 ∈𝑅𝐼×𝐽+ denote, respectively, projection data and a projection
operator, where 𝑅+ represents a set of non-negative real
numbers and 𝐼 and 𝐽 respectively indicate the numbers of
projections and pixels in a reconstructed image. Here, the
case in which a part of projection 𝑝 is given by inaccurate
or missing measurements (for example, due to the existence
of a metal object in the X-ray CT scan) is considered. It is
assumed that, without loss of generality, the elements of 𝑝 are
sorted and divided into two parts as follows:

𝑝 = (𝑞𝑟) , (1)
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where 𝑞 ∈ 𝑅𝑀+ and 𝑟 ∈ 𝑅𝐼−𝑀+ correspond to the inaccurate
(𝐼 > 𝑀 > 0) and the accurate projection data, respectively. It
is also assumed that 𝐴 = (𝐵𝐶) , (2)

where 𝐵 ∈ 𝑅𝑀×𝐽+ and 𝐶 ∈ 𝑅(𝐼−𝑀)×𝐽+ with rows corresponding
to elements of 𝑝.

To reconstruct an image with pixel values and to estimate
certain parts of projections instead of inaccurate part 𝑞,
unknown variables 𝑥 ∈ 𝑅𝐽+ and 𝑦 ∈ 𝑅𝑀+ are treated, respec-
tively. It is assumed that pixel values correspond to, for
example, in the case of X-ray CT, actual values of attenuation
coefficients, including the minimum value zero correspond-
ing to attenuation by air. It is also assumed that some elements
of vector 𝑥 satisfying 𝑟 = 𝐶𝑥 are undetermined because
rank𝐶 < 𝐽 due to missing measurements. Accordingly, the
undetermined elements should be permitted to have arbitrary
values. The problem considered in this paper is therefore
defined as follows:

Definition 1. The tomographic inverse problem with an inac-
curate projection is consistent if the set

E = {𝑒 ∈ 𝑅𝐽+ : 𝑟 = 𝐶𝑒} (3)

is not empty.

It follows that the problem is to obtain unknown variables𝑥 and𝑦 byminimizing an appropriate cost function that takes
zero at 𝑥 = 𝑒 and 𝑦 = 𝐵𝑒 for some 𝑒 ∈ E, respectively. To
solve this problem, the following cost function of 𝑥 ∈ 𝑅𝐽+ and𝑦 ∈ 𝑅𝑀+ with 𝑒 ∈ E is considered:𝑉 (𝑥, 𝑦) = 𝐽∑

𝑗=1

𝜆−1𝑗 KL (𝑒𝑗, 𝑥𝑗) + 𝛼−1KL (𝐵𝑒, 𝑦)
= 𝐽∑
𝑗=1

𝜆−1𝑗 (𝑒𝑗 log 𝑒𝑗𝑥𝑗 + 𝑥𝑗 − 𝑒𝑗)+ 𝛼−1 𝑀∑
𝑖=1

(𝐵𝑒)𝑖 log (𝐵𝑒)𝑖𝑦𝑖 + 𝑦𝑖 − (𝐵𝑒)𝑖
(4)

where 𝛼 > 0 is a weight parameter, (V)ℓ denotes theℓth element of vector V, KL indicates the generalized
Kullback–Leibler divergence [8, 9], and 𝜆𝑗 is defined as

𝜆𝑗 = ( 𝐼∑
𝑖=1

𝐴 𝑖𝑗)−1 (5)

for 𝑗 = 1, 2, . . . , 𝐽. Note that the function in Eq. (4) is
nonnegative for arbitrary 𝑥 ∈ 𝑅𝐽+ and 𝑦 ∈ 𝑅𝑀+ and zero if
and only if 𝑥 = 𝑒 and 𝑦 = 𝐵𝑒.

This paper is organized as follows. In Section 2, a novel
method of simultaneously obtaining a reconstructed image
and an estimated projection is proposed. It solves an initial-
value problem of differential equations consisting of state

variables including parts of projections as well as image
pixel values. A system of differential equations based on an
extension of dynamical methods [10–20] is constructed. It
is an approach that optimizes a cost function of unknown
variables consisting of an image and a projection. Three
systems described by nonlinear differential equations with
different vector fields among each other are presented. In
Section 3, for each system, the stability of a set of equilibria
corresponding to an optimized solution is proved by using the
Lyapunov stability theorem [21]. In Section 4, the intention
of the proposed dynamical system is described in detail,
and how it works is shown by using a simple toy model.
Additionally, to validate the theoretical results given by the
proposed method in comparison with results obtained by
linear interpolation and a reduced system, reduction of metal
artifacts is numerically simulated by using a large-sized
model.

2. Dynamical Systems

Three kinds of continuous-time dynamical systems with state
variables (𝑥⊤, 𝑦⊤)⊤ ∈ 𝑅𝐾++ are proposed, where 𝐾 fl 𝐽 + 𝑀
and 𝑅++ denotes the set of positive real numbers. In these
systems, 𝑉(𝑥(𝑡), 𝑦(𝑡)) is expected to decrease in time 𝑡 along
their solutions. The three dynamical systems are described by
autonomous nonlinear differential equations.The first system
is defined as𝑑𝑥𝑑𝑡 = 𝑋Λ𝐵⊤ (𝑦 − 𝐵𝑥) + 𝑋Λ𝐶⊤ (𝑟 − 𝐶𝑥) ,𝑑𝑦𝑑𝑡 = 𝛼𝑌 (𝐵𝑥 − 𝑦) , (6)

with initial states 𝑥(0) = 𝑥0 ∈ 𝑅𝐽++ and 𝑦(0) = 𝑦0 ∈𝑅𝑀++, where 𝑋, 𝑌, and Λ indicate the diagonal matrices of
vectors 𝑥, 𝑦, and 𝜆 consisting of 𝜆𝑗 in Eq. (5), respectively.
Note that variables 𝑥(𝑡) and 𝑦(𝑡) are mutually coupled in the
vector field. The derivative 𝑑𝑥/𝑑𝑡 for the dynamics of image
reconstruction in the case 𝑀 = 0 has the same form as the
continuous-time image reconstruction system presented in
Ref. [17].

The second and third systems, which are respectively
inspired by continuous analogs [19, 22] of the multiplica-
tive algebraic reconstruction technique [23, 24] and the
maximum-likelihood expectation-maximization [3, 25] algo-
rithm, are given by𝑑𝑥𝑑𝑡 = 𝑋Λ𝐵⊤ (Log (𝑦) − Log (𝐵𝑥))+ 𝑋Λ𝐶⊤ (Log (𝑟) − Log (𝐶𝑥)) ,𝑑𝑦𝑑𝑡 = 𝛼𝑌 (Log (𝐵𝑥) − Log (𝑦)) ,

(7)

and 𝑑𝑥𝑑𝑡 = 𝑋 Log (Λ𝐵⊤Exp (Log (𝑦) − Log (𝐵𝑥))



Mathematical Problems in Engineering 3+ Λ𝐶⊤Exp (Log (𝑟) − Log (𝐶𝑥))) ,𝑑𝑦𝑑𝑡 = 𝛼𝑌 (Log (𝐵𝑥) − Log (𝑦)) ,
(8)

with the same initial states as in Eq. (6). Here, Log(𝛽) and
Exp(𝛽) denote vector-valued functions Log(𝛽) fl (log(𝛽1),
log(𝛽2), . . . , log(𝛽𝐿))⊤ and Exp(𝛽) fl (exp(𝛽1), exp(𝛽2),. . . , exp(𝛽𝐿))⊤ of each element in vector 𝛽 = (𝛽1, 𝛽2,. . . , 𝛽𝐿)⊤, respectively.
3. Theoretical Analysis

Theoretical results for the common behavior of the solutions
to the three dynamical systems are presented hereafter. It
is first shown that any solution to each dynamical system
is positive regardless of whether the inverse problem is
consistent or not.

Proposition2. If initial value (𝑥0⊤, 𝑦0⊤)⊤ ∈ 𝑅𝐾++ in each of the
dynamical systems described by Eqs. (6), (7), and (8) is taken,
solution 𝜑(𝑡, 𝑥0, 𝑦0) stays in 𝑅𝐾++ for all 𝑡 > 0.
Proof. Since the dynamics of the 𝑘th elements of 𝑤 fl(𝑥⊤, 𝑦⊤)⊤ can be written as 𝑑𝑤𝑘/𝑑𝑡 = 𝑤𝑘𝑓𝑘(𝑤) with a
function 𝑓𝑘, it follows that, on the subspace restricted to𝑤𝑘 =0, the solution satisfies 𝑑𝜑𝑘/𝑑𝑡 ≡ 0 for any 𝑘 = 1, 2, . . . , 𝐾.
Therefore, according to the uniqueness of solutions for the
initial value problem [26], the subspace is invariant and
trajectories cannot pass through every invariant subspace.
This restriction leads to any solution 𝜑(𝑡, 𝑥0, 𝑦0) of any system
with initial value (𝑥0⊤, 𝑦0⊤)⊤ ∈ 𝑅𝐾++ at 𝑡 = 0 being in 𝑅𝐾++ for
all 𝑡 > 0.

Under the assumption that the tomographic inverse
problem minimizing cost function 𝑉 in Eq. (4) is consistent,
equilibrium (𝑒⊤, (𝐵𝑒)⊤)⊤ ∈ 𝑅𝐾++ for each of the differential
equations in Eqs. (6), (7), and (8) is asymptotically stable
according to the Lyapunov theorem [21].

Theorem 3. If the set E in Eq. (3) is not empty, the solution(𝑥⊤, 𝑦⊤)⊤ to the dynamical system described by Eq. (6) with
positive initial values asymptotically converges to (𝑒⊤, (𝐵𝑒)⊤)⊤
for some 𝑒 ∈ E. 
e same property holds for the dynamical
systems in Eqs. (7) and (8).

Proof. Consider the function 𝑉(𝑥, 𝑦) ≥ 0 in Eq. (4)
as a Lyapunov-candidate-function, which is well-defined
because, fromProposition 2, the state variable (𝑥(𝑡)⊤, 𝑦(𝑡)⊤)⊤
of the dynamical system in Eq. (6) belongs to𝑅𝑀++ for any 𝑡 by
choosing positive initial values.The function can be rewritten
as 𝑉 (𝑥, 𝑦) = 𝐽∑

𝑗=1

𝜆−1𝑗 ∫𝑥𝑗
𝑒𝑗

𝑢 − 𝑒𝑗𝑢 𝑑𝑢
+ 𝛼−1 𝑀∑
𝑖=1

∫𝑦𝑖
(𝐵𝑒)𝑖

V − (𝐵𝑒)𝑖
V

𝑑V, (9)

so the derivative along the solution to the system in Eq. (6) is
given by𝑑𝑑𝑡𝑉 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(6) = − 𝐽∑𝑗=1 (𝑥𝑗 − 𝑒𝑗) (𝐵⊤)𝑗 (𝐵𝑥 − 𝑦)− 𝐽∑

𝑗=1

(𝑥𝑗 − 𝑒𝑗) (𝐶⊤)𝑗 (𝐶𝑥 − 𝑟)
− 𝑀∑
𝑖=1

(𝑦𝑖 − (𝐵𝑒)𝑖) (𝑦𝑖 − (𝐵𝑥)𝑖)= − (𝐵𝑥 − 𝐵𝑒)⊤ (𝐵𝑥 − 𝑦)− (𝐶𝑥 − 𝑟)⊤ (𝐶𝑥 − 𝑟)− (𝐵𝑒 − 𝑦)⊤ (𝐵𝑥 − 𝑦)= − {‖𝐶𝑥 − 𝑟‖22 + 󵄩󵄩󵄩󵄩B𝑥 − 𝑦󵄩󵄩󵄩󵄩22} ≤ 0,

(10)

with equality if and only if 𝑥 = 𝑒 and 𝑦 = 𝐵𝑒. Thus,
the asymptotic convergence of solutions to some 𝑒 in E is
guaranteed by using the Lyapunov theorem.

In the same way, we see that 𝑉 is also Lyapunov functions
for the systems described by Eqs. (7) and (8) according to𝑑𝑑𝑡𝑉 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(7)= − 𝐽∑

𝑗=1

(𝑥𝑗 − 𝑒𝑗) (𝐵⊤)𝑗 (Log (𝐵𝑥) − Log (𝑦))
− 𝐽∑
𝑗=1

(𝑥𝑗 − 𝑒𝑗) (𝐶⊤)𝑗 (Log (𝐶𝑥) − Log (𝑟))
− 𝑀∑
𝑖=1

(𝑦𝑖 − (𝐵𝑒)𝑖) (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) = − (𝐵𝑥− 𝐵𝑒)⊤ (Log (𝐵𝑥) − Log (𝑦)) − (𝐶𝑥 − 𝑟)⊤ (Log (𝐶𝑥)− Log (𝑟)) − (𝐵𝑒 − 𝑦)⊤ (Log (𝐵𝑥) − Log (𝑦))= − {KL (𝐶𝑥, 𝑟) + KL (𝑟, 𝐶𝑥) + KL (𝐵𝑥, 𝑦)+ KL (𝑦, 𝐵𝑥)} ≤ 0,

(11)

and 𝑑𝑑𝑡𝑉 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(8) = − 𝐽∑𝑗=1 (𝑒𝑗 − 𝑥𝑗) 𝜆−1𝑗⋅ log (𝜆𝑗 (𝐵⊤)𝑗 Exp (Log (𝑦) − Log (𝐵𝑥))+ 𝜆𝑗 (𝐶⊤)𝑗 Exp (Log (𝑟) − Log (𝐶𝑥))) − 𝑀∑
𝑖=1

(𝑦𝑖
− (𝐵𝑒)𝑖) (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) ≤ − 𝐽∑

𝑗=1

𝑒𝑗 (𝐵⊤)𝑗
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⋅ (Log (𝑦) − Log (𝐵𝑥)) − 𝐽∑
𝑗=1

𝑒𝑗 (𝐶⊤)𝑗 (Log (𝑟)
− Log (𝐶𝑥)) + 𝐽∑

𝑗=1

𝑥𝑗 (𝐵⊤)𝑗 (Exp (Log (𝑦)
− Log (𝐵𝑥)) − 𝑢) + 𝐽∑

𝑗=1

𝑥𝑗 (𝐶⊤)𝑗 (Exp (Log (𝑟)
− Log (𝐶𝑥)) − V) − 𝑀∑

𝑖=1

𝑦𝑖 (log (𝑦𝑖) − log ((𝐵𝑥)𝑖))
+ 𝑀∑
𝑖=1

(𝐵𝑒)𝑖 (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) = − 𝐽∑
𝑗=1

𝑒𝑗 (𝐶⊤)𝑗⋅ (Log (𝑟) − Log (𝐶𝑥))+ 𝐽∑
𝑗=1

𝑥𝑗 (𝐶⊤)𝑗 (Exp (Log (𝑟) − Log (𝐶𝑥)) − V)
− 𝑀∑
𝑖=1

𝑦𝑖 (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) + 𝑀∑
𝑖=1

(𝐵𝑥)𝑖
⋅ (exp (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) − 1) ≤ −𝐼−𝑀∑

𝑖=1

𝑟𝑖 (1
− exp (log ((𝐶𝑥)𝑖) − log (𝑟𝑖))) + 𝐼−𝑀∑

𝑖=1

(𝐶𝑥)𝑖
⋅ (exp (log (𝑟𝑖) − log ((𝐶𝑥)𝑖)) − 1) − 𝑀∑

𝑖=1

𝑦𝑖 (1
− exp (log ((𝐵𝑥)𝑖) − log (𝑦𝑖))) + 𝑀∑

𝑖=1

(𝐵𝑥)𝑖⋅ (exp (log (𝑦𝑖) − log ((𝐵𝑥)𝑖)) − 1) = 0,
(12)

respectively, where 𝑢 = (1, 1, . . . , 1)⊤ ∈ 𝑅𝑀++ and V =(1, 1, . . . , 1)⊤ ∈ 𝑅𝐼−𝑀++ . The derivatives are zero if and only if𝑥 = 𝑒 and 𝑦 = 𝐵𝑒. Therefore, the solutions to the dynamical
systems in Eqs. (7) and (8) also asymptotically converge to
some 𝑒 ∈ E.
4. Application

Numerical experiments were performed to illustrate the effi-
ciency of the proposed method in applications for reducing
metal artifacts.

4.1. Experimental Method. The systems of differential equa-
tions described by Eqs. (6), (7), and (8) with initial states𝑥(0) = 𝑥0 ∈ 𝑅𝐽++ and 𝑦(0) = 𝑦0 ∈ 𝑅𝑀++ were used for

the numerical experiments. In the experiments, sinograms
consisting of projections described as

𝑝∗ = (𝑞∗𝑟 ) , (13)

which resulted in the effects of beam hardening and sever
attenuation of the X-ray beam caused by the metal hardware
[27–29], were synthesized. Here, 𝑞∗ ∈ 𝑅𝑀+ was obtained by
the following procedure. Let inaccurate projections be the
outer neighborhood of the metal affected projections that
are identified by thresholding [7, 28, 30]. The inaccurate
measured projections, 𝑞, in Eq. (1) were linearly interpolated
from their neighboring projections in 𝑟 at each common pro-
jection angle and replaced by synthesized values, 𝑞∗. Because
the main feature of the proposed method is that inaccurate
projections are considered as variables of optimization, the
synthesized sinogram is treated as an initial value for the
proposed dynamical system and as a fixed projection value
for the system to be compared. Then, initial state (𝑥0⊤, 𝑦0⊤)⊤
of the proposed system is chosen as 𝑥0𝑗 = 𝑥0∗ > 0 for𝑗 = 1, 2, . . . , 𝐽, and 𝑦0 = 𝑞∗. However, the system described
by the following differential equations is defined as a linear-
interpolated system compared to the proposed system in Eq.
(6): 𝑑𝑥𝑑𝑡 = 𝑋Λ𝐴⊤ (𝑝∗ − 𝐴𝑥)= 𝑋Λ𝐵⊤ (𝑞∗ − 𝐵𝑥) + 𝑋Λ𝐶⊤ (𝑟 − 𝐶𝑥) (14)

with initial state 𝑥(0) = 𝑥0. Note that both solutions to
the differential equation in Eq. (14) with 𝑥(0) = 𝑥0 and to
the equations in Eq (6), in which the time derivative of 𝑦 is
replaced with 𝑑𝑦/𝑑𝑡 = 0, with 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑞∗ are
equivalent because 𝑦(𝑡) ≡ 𝑞∗, for all 𝑡 ≥ 0, satisfies in regard
to the latter system. An ODE solver ode113 in MATLAB
(MathWorks, Natick, USA) was used for solving the initial-
value problem of the differential equations in Eqs. (6) and
(14).

For comparison with the proposed system, another sys-
tem, called a reduced system, is established. Namely, for
reconstructing image 𝑧 ∈ 𝑅𝐽++ subject to minimizing‖𝑟 − 𝐶𝑧‖2 , an iterative formula by a projected Landweber
algorithm [31] is defined as𝑧 (𝑛 + 1) = (𝑔 (𝑧 (𝑛)))+ , 𝑛 = 0, 1, 2, . . . (15)

with 𝑧(0) = 𝑥0, where𝑔 (𝑧 (𝑛)) fl 𝑧 (𝑛) + 𝜌−1𝐶⊤ (𝑟 − 𝐶𝑧 (𝑛)) (16)

with 𝜌 denoting the largest eigenvalue of matrix 𝐶⊤𝐶 and
vector-valued function (𝛽)+ of vector 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝐿)⊤
indicating (𝛽)+ fl (max{0, 𝛽1},max{0, 𝛽2}, . . . ,max{0, 𝛽𝐿})⊤.
Relaxation parameter 𝜌−1 is set according to Theorem 3.1 in
Ref. [32] so that the iterative sequence converges to a solution
closest to 𝑒 ∈ E.
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Figure 1: (a) Phantom image and (b) sinogram.
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Figure 2: Reconstructed images using (a) proposed, (b) linear-interpolated, and (c) reduced systems.

To evaluate the quality of the images quantitatively, a
distance measure is defined by the 𝐿1-norm as

𝑈 (𝑥) = 𝐽∑
𝑗=1
𝑗∉M

󵄨󵄨󵄨󵄨󵄨𝑥𝑗 − 𝑒∗𝑗 󵄨󵄨󵄨󵄨󵄨 (17)

where M ⊂ {1, 2, . . . , 𝐽} denotes the set of indices corre-
sponding to the metal position in the true image 𝑒∗ ∈ 𝑅𝐽+.
4.2. Simple Model. To explain how the proposed system
works, a simple toy model is considered as follows. In the
model, true image 𝑒∗ ∈ 𝑅9+ is defined as𝑒∗ = (0.9, 1, 0, 0, 0, 0, 0.7, 0, 0)⊤ . (18)

A graphical image of 3×3 pixels corresponding to 𝑒∗ is shown
in Figure 1(a). It is assumed that ametal object in the phantom
is located at the two pixels colored in white. Although the
pixel values are undetermined, due to the high attenuation of
metal in X-ray CT-scan imaging, for convenience, the values
of 𝑒∗5 and 𝑒∗6 were both set to zero. A sinogram obtained by
taking samples at every 120 degrees in the range of 360 and
7 detector bins per projection angle is shown in Figure 1(b).
The white regions in the 3 × 7-sized sinogram indicate
an inaccurate part 𝑞 ∈ 𝑅8+. The correspondence relation
between elements 𝑝 and (𝑞⊤, 𝑟⊤)⊤ in Eq. (1) is described by

the following format, which corresponds to the sinogram in
Figure 1(b).

(𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13 𝑝14𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝑝20 𝑝21)
= (𝑟1 𝑟2 𝑞1 𝑞2 𝑟3 𝑟4 𝑟5𝑟6 𝑞3 𝑞4 𝑞5 𝑟7 𝑟8 𝑟9𝑟10 𝑟11 𝑞6 𝑞7 𝑞8 𝑟12 𝑟13) š(𝑆(𝑞)1𝑆 (𝑞)2𝑆 (𝑞)3)= 𝑆 (𝑞) ∈ 𝑅3×7+ .

(19)

When using this notation, in the case of proposed system, the
elements of measured projection 𝑟 and estimated projection𝑦(𝑡), 𝑡 ≥ 0, instead of 𝑞, can be arranged as matrix 𝑆(𝑦(𝑡)) in
the same format.

Images were reconstructed by using solutions of three
systems described by Eqs. (6), (14), and (15). The parameter𝛼 used for the proposed system, uniform initial pixel values𝑥0∗, integration time 𝜏, and iteration number ] were set to0.1, 0.5, 105, and 105, respectively, unless otherwise specified.
An example of reconstructed images is shown in Figure 2.
Values of distance measures 𝑈(𝑥(𝜏)) and 𝑈(𝑧(])) defined in
Eq. (17) with M = {5, 6} for reconstructed images (a), (b),
and (c) in Figure 2 are 0.2887, 1.3773, and 2.4881, respectively.
It can be seen that the proposed reconstruction has better
image quality. Moreover, as indicted in Table 1, compared to
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Table 1: 𝑈(𝑥(𝜏)) and 𝑈(𝑧(])) for images reconstructed using the
proposedmethodwith𝛼 = 0.01 and 0.1, linear-interpolatedmethod,
and reduced method with variation of initial pixel values.𝑥0∗ proposed method interpolated reduced𝛼 = 0.01 𝛼 = 0.1 method method0.1 0.2255 0.2300 1.3773 0.72270.5 0.2308 0.2887 1.3773 2.48811 0.2331 0.3200 1.3773 5.0240

the reduced method, the proposedmethod gives more robust
performance in terms of the variation of initial values.

For each of the proposed and reduced systems, it was
numerically confirmed that the distance between 𝑟 and𝐶𝑥(𝜏)

(or 𝐶𝑧(])) is zero; that is, convergent values 𝑥(𝜏) and 𝑧(])
belong to set E in Eq. (3). An explicit description of this set
is introduced as follows. Neglecting any trivial element 𝑟𝑖 of𝑟 ∈ 𝑅13+ and the corresponding row 𝐶𝑖 of 𝐶 ∈ 𝑅13×9+ such that𝑟𝑖 = 0 and 𝐶𝑖𝑗 = 0 for any 𝑗 (excluding the case that 𝑟𝑖 = 0,
but 𝐶𝑖𝑗 ̸= 0 for some 𝑗) obtains

(𝑟2𝑟6𝑟7𝑟12)=(0.54860.141300.2573) (20)

and

𝐶∗ fl(𝐶2𝐶6𝐶7𝐶12)=(0.3429 0 0 0.3429 0 0 0.3429 0 00.1066 0.0453 0.0075 0 0 0 0 0 00 0 0 0 0 0 0 0 0.00430.0573 0 0 0.1887 0 0 0.2940 0.0131 0 ). (21)

The set defined in Eq. (3) can therefore be explicitly described
as

E = {𝑒∗ + 𝑁𝑠 : 𝑠 ∈ 𝑅5} (22)

where 𝑁 is the matrix whose column vectors are the
orthonormal basis for the null space of matrix 𝐶∗, i.e.,

𝑁 =
(((((((((((((
(

0 0 −0.2766 −0.0011 0.03820 0 0.6562 0.0039 0.07400 0 −0.0302 −0.0080 −0.99180 0 0.6068 0.1247 −0.08491 0 0 0 00 1 0 0 00 0 −0.3302 −0.1236 0.04670 0 −0.1215 0.9844 0.00820 0 0 0 0

)))))))))))))
)

. (23)

Approximate values of coefficients 𝑠 in Eq. (22) used for the
proposed and reduced systems are respectively given as

((
(

0.00440.1407−0.01630.0014−0.1194
))
)

and ((
(

0.50000.50000.07610.5737−0.5958
))
)

. (24)

It is clear that the convergent value obtained by the proposed
system gives smaller absolute values of 𝑠3, 𝑠4, and 𝑠5.

A graph of the distance measures 𝑈(𝑥(𝜏)) and 𝑈(𝑧(]))
for comparing the three methods is shown in Figure 3. The
distance given by the proposed method varies with different
values of 𝛼. The figure shows that there exists a range of 𝛼
at least in interval (0, 0.1] in which the quantitative measure
has a minimum value. Note that the system of Eq. (6) as 𝛼
tends to zero is similar to the interpolated system of Eq. (14).
A smaller value of 𝛼 results in not only a larger weight of
term KL(𝐵𝑒, 𝑦) in Eq. (4) but also a slower dynamics of state
variable 𝑦(𝑡). On the other hand, when parameter 𝛼 tends
to infinity, the system of Eq. (6) is equivalent to a reduced
system optimizing the function ∑𝐽𝑗=1 𝜆−1𝑗 KL(𝑒𝑗, 𝑥𝑗), which is
a part of the cost function 𝑉 in Eq. (4), without information
about 𝑞∗. The dynamics of solutions to the proposed system
are explained as follows. In Figure 4, the dynamics expressed
by the time evolution of state variables obtained by the three
dynamical systems is illustrated. With regard to the proposed
system, the behavior of 𝐵𝑥(𝑡) is restricted by the dynamics of𝑦(𝑡) emanating from interpolated value 𝑞∗ and converges to
coincide with 𝑦(𝑡) after the passage of time. However, in the
interpolated and reduced systems, 𝐵𝑥(𝑡) attempts to reach 𝑞∗
without reaching it and is independent of 𝑞∗ , respectively.The
mutual dynamical coupling of 𝐵𝑥(𝑡) and 𝑦(𝑡) in the proposed
system gives rise to a better convergence performance of
the state 𝑥(𝑡) in regard to approaching ideal value 𝑒∗. The
dynamics of 𝑦(𝑡) that eventually converges to a limit set in
the neighborhood of 𝑞∗ in the state space is effective for
estimating the inaccurate projection and produces a better
quality image through 𝐵𝑥(𝑡), which converges to 𝑦(𝑡).
4.3. Large-Sized Model. The proposed method was exper-
imentally demonstrated by applying it to reducing metal
artifacts by using a larger sized model. A phantom image with



Mathematical Problems in Engineering 7

0 0.10.080.060.040.02
0.2

0.5

1

2

U
(x

(
))

U
(z
(]
))

{0} ∪ 

Figure 3: Distances (at 𝜏 = 105 and ] = 105) for the proposed method with variation of 𝛼, interpolatedmethod, and reduced method, which
is independent of 𝛼, indicated by blue points, a green point, and a magenta line, respectively.
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Figure 4: Time evolution of state variable for pixel values 𝑥 (upper panel), and projection values (lower panel) obtained by using (a) proposed,
(b) linear-interpolated, and (c) reduced systems. In the upper graph, trajectories 𝑥𝑗 and 𝑧𝑗 with lines and 𝑒∗𝑗 marked with colored dots at the
right edge are indicated by the same color as the corresponding pixel in the phantom image. In the lower graph, blue andmagenta lines denote𝑦 (or 𝑞∗) and 𝐵𝑥 (or 𝐵𝑧), respectively.
192 × 192 pixels, so 𝐽 = 36, 864, was simulated as shown
in Figure 5(a). An image was reconstructed by using 275
detector bins per projection angle and 360-degree scanning
with sampling every two degrees, which corresponds to
number of projections 𝐼 = 49, 500. For simulating reduction
of metal artifacts, it was assumed that three small metal
objects exist in the phantom. The white regions in the gray-
scaled sinogram shown inFigure 5(b) indicate inaccurate part𝑞 in the sinogram or projection 𝑝 in Eq. (1).

The experimental results obtained by using the proposed
system described by Eq. (6) with 𝛼 = 0.01, the linear-
interpolated system described by Eq. (14), and the reduced
system described by Eq. (15) are presented as follows. Recon-
structed images obtained from solutions 𝑥(𝜏) at 𝜏 = 100
for the continuous-time system and 𝑧(]) at ] = 3, 500
for the discrete-time system, which are emanating from the
initial value with 𝑥0∗ = 0.5, are shown in Figure 6. The
values of 𝜏 and ] for adjusting the difference between the
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Figure 5: (a) Phantom image with three metal positions (small black regions) indicated by white arrows and (b) its sinogram.
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Figure 6: Reconstructed images by (a) proposed, (b) interpolated, and (c) reduced methods.
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Figure 7: Time evolutions of objective function by the proposed,
interpolated, and reduced methods indicated by blue, green, and
magenta lines, respectively.

continuous-time and discrete-time systems describing the
proposed and reduced methods, respectively, were chosen so
that the values of objective functions defined by ‖𝑟 − 𝐶𝑥(𝑡)‖1
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Figure 8: Distances (at 𝜏 = 100 and ] = 3, 500) for the
proposed method with variation of 𝛼 and the reduced method
being independent of 𝛼 indicated by blue points and magenta lines,
respectively.

and ‖𝑟 − 𝐶𝑧(𝑛)‖1 coincide at 35𝜏 = ] as shown in Figure 7.
Under the same conditions for reconstruction, a qualitative
reduction of artifacts in the reconstructed image obtained by
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Figure 9: Distances (at ] = 3, 500) for proposed method given (a) by Eq. (25) and (b) Eq. (26) with variation of 𝛼 along with reducedmethod
being independent of 𝛼 indicated by blue points and magenta lines, respectively.

the proposed method was compared with that by the other
two methods. From Figure 8, which compares quantitative
measures 𝑈(𝑥(𝜏)) for the proposed method and 𝑈(𝑧(])) for
the reduced method in addition to the observation of the
measure 830.6 for the interpolated method, it is clear that
the proposed method with 𝛼 ∈ [0.002, 0.1] has the smallest
measure. The advantage of the proposed method is due to
the simultaneous dynamical behavior of a pair of variables,𝑥(𝑡) and 𝑦(𝑡), which is based on mutual dynamical coupling
described by Eq. (6).

Discretization of the differential equations is required
for low-cost computation in practical use. Iterative formulae
derived from a multiplicative Euler discretization [33] of
differential equations in Eqs. (7) and (8) are, respectively,
given by

𝑧 (𝑛 + 1) = 𝑍 (𝑛)⋅ Exp (Λ𝐵⊤ (Log (𝑤 (𝑛)) − Log (𝐵𝑧 (𝑛)))+ Λ𝐶⊤ (Log (𝑟) − Log (𝐶𝑧 (𝑛)))) ,𝑤 (𝑛 + 1) = 𝑊 (𝑛)Exp (𝛼 (Log (𝐵𝑧 (𝑛))− Log (𝑤 (𝑛)))) ,
(25)

and 𝑧 (𝑛 + 1) = 𝑍 (𝑛)⋅ (Λ𝐵⊤Exp (Log (𝑤 (𝑛)) − Log (𝐵𝑧 (𝑛)))+ Λ𝐶⊤Exp (Log (𝑟) − Log (𝐶𝑧 (𝑛)))) ,𝑤 (𝑛 + 1) = 𝑊 (𝑛)⋅ Exp (𝛼 (Log (𝐵𝑧 (𝑛)) − Log (𝑤 (𝑛)))) ,
(26)

for 𝑛 = 0, 1, 2, . . ., with initial states (𝑧(0)⊤, 𝑤(0)⊤)⊤ =(𝑥0⊤, 𝑦0⊤)⊤, where 𝑍 and 𝑊 indicate the diagonal matrices
of 𝑧 and 𝑤, respectively. Graphs of the distances measured by𝑈(𝑧) for reconstructed images obtained after 3, 500 iterations
of the proposed systems in Eqs. (25) and (26) and the reduced
system in Eq. (15) are shown in Figure 9. The multiplicative
Euler discretization approximates solutions to the differential
equations of Eqs. (7) and (8) at the discrete points with a step
size equal to one. It is noted that the course of the distances
with variation 𝛼 for the proposed method given by Eqs. (25)
and (26) as well as Eq. (6) is qualitatively consistent and the
values of these distances, in the range of 𝛼, are lower than that
given by the reduced method. The system of Eq. (25) yields
the best performance with respect to minimizing distance𝑈(𝑧), under the same conditions.

5. Conclusion

An image-reconstruction method for optimizing a cost
function of unknown variables corresponding to missing
projections as well as image densities was proposed. Three
dynamical systems described by nonlinear differential equa-
tions were constructed, and the stability of their equilibria
was proved by using the Lyapunov theorem. The efficiency
of the proposed method was evaluated through numerical
experiments simulating the reduction of metal artifacts.
Qualitative and quantitative evaluations using image quality
and a distance measure indicate that the proposed method
performs better than the conventional linear-interpolation
and reduced methods. This paper shows a novel approach to
optimizing the cost function of unknown variables consisting
of both image and projection. However, not only further
analysis of convergence rates and investigation on the influ-
ence of measured noise, but also experimental evaluation
and detailed comparison with other existing methods [7, 29]
of artifact reduction are required to extend the proposed
approach for practical use.
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