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Abstract 

Two dimensional (2D) temperature and concentration distribution plays an important role for the 

combustion structure and the combustor efficiency in engines, burners, gas turbines and so on. 

Recently, as a multi-species measurement technique with high sensitivity and high response, 

tunable diode laser spectroscopy (TDLAS) has been developed and applied to the actual engine 

combustions. With these engineering developments, transient phenomena such as start-ups and 

load changes in engines have been gradually elucidated in various conditions. In this study, the 

theoretical and experimental research has been conducted in order to develop the non-contact 

and fast response 2D temperature and concentration distribution measurement method. The 

method is based on a computed tomography (CT) using absorption spectra of water vapor at 

1388 nm. The computed tomography tunable diode laser spectroscopy (CT-TDLAS) method was 

employed in engine exhausts to measure 2D temperature distribution. The measured 2D 

temperature shows a good agreement with the temperature measured by a thermocouple. The 

temporal and spatial resolutions of this method have also been discussed to demonstrate its 

applicability to various types of combustor. 

Keywords: Measurement and instrumentation; Combustion; IC engines; 2D temperature 

measurement; Tunable diode laser absorption spectroscopy (TDLAS); CT  



 
 

1. Introduction 

It is necessary to make efforts to protect natural ecosystems and effectively utilize fossil fuels in 

various fields. Combustion is widely used for energy conversion technique in the world. The 

emission standards of harmful substances such as NOx, CO and particles from cars as well as 

several types of commercial thermal plants are strictly regulated for environmental preservation. 

In engines, for example, exhaust gas temperature distribution is an important factor in NOx, 

THC and PM emissions. Conventionally a thermocouple has been widely used as a temperature 

measurement device. However it is intrinsically a point measurement method and it is difficult to 

measure gas temperature distribution inside the combustion chamber and exhaust with sufficient 

time resolution. Compared to the point measurement, combustion chamber designs and fuelling 

strategies can be efficiently evaluated by visualizing two dimensional(2D) temperature and 

concentration distributions, which have effects on complex phenomena such as knocking, 

combustion instability and production of pollutants in combustors. Therefore, 2D temperature 

and concentration distribution plays an important role for the combustion structure, the 

combustion efficiency and reduction of pollutants including NOx, CO and particles in engines, 

burners, gas turbines and so on.  

Recently, as a multi-species measurement technique with high sensitivity and high response, 

tunable diode laser absorption spectroscopy (TDLAS) has been developed and applied to the 

actual engine combustions [1-5]. With these engineering developments, transient phenomena 

such as start-ups and load changes in engines have been gradually elucidated in various 

conditions [6-12]. In this study, the theoretical and experimental research has been conducted in 

order to develop the non-contact and fast response 2D temperature and concentration distribution 

measurement method. The method is based on a computed tomography (CT) using absorption 

spectra of water vapor at 1388 nm. The CT-TDLAS method was applied to engine exhausts to 

measure 2D temperature distribution. The temporal and spatial resolutions of this method have 

also been discussed to demonstrate its applicability for various types of combustor. 

  



 
 

2. Theory 

Gas temperature and species concentration can be determined by measuring molecular 

absorbance at multiple wavelengths. Tunable diode laser absorption spectroscopy was used in 

this research. It is possible to continuously scan laser wavelengths and measure absorption 

spectra. Principle of TDLAS is based on Lambert Beer's law. When light permeates an 

absorption medium, the strength of the permeated light is related to absorber concentration 

according to Lambert Beer's law. TDLAS uses this basic law to measure temperature and species 

concentration. The number density of the measured species n is related to the amount of light 

absorbed as in the following formula [1, 2]: 

  (1) 

Here, Iλ0 is the incident light intensity, Iλ the transmitted light intensity, Aλ the absorbance, ni the 

number density of species i, L the path length, Si,j the temperature dependent absorption line 

strength of the absorption line j, and Gvi,j the line broadening function.  

Theoretical H2O absorption spectra using the HITRAN database [13] are shown in Fig. 1. In this 

study three absorption lines located at 1388.135 nm (#1), 1388.326 nm (#2), and 1388.454 nm 

(#3) were used to measure temperature and H2O concentration. It is important to use several 

absorption lines with different temperature dependence to reduce the temperature error induced 

by a CT algorism.  

Absorption of transmitted light through absorption medium occurs on the optical path. The 

absorption signal strength becomes an integrated value of the optical path. In this study, several 

optical paths are intersected to each other to form the analysis grids, reconstructing the 2D 

temperature distribution by a computed tomography method [14-17]. Concept of analysis grids 

and laser beam paths are shown in Fig. 2. The integrated absorbance in the path p is given by [14, 

15]. 
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(a) 300K, 0.1MPa                                                 (b) 600K, 0.1MPa 

  

(c) Temperature dependence of  three               (d) Temperature dependence of intensity ratio                      

absorption lines                                                  of two absorption lines  

 

Fig.1 Theoretical H2O absorption spectra. (#1:1388.135nm, #2:1388.326nm, #3:1388.454nm) 

Because the integrated absorbance is dependent on both temperature and concentration, the 

temperature distribution has to be calculated by more than two different absorbance values. 

Temperature and H2O concentration at each analysis grid were determined using a multifunction 

minimization method to minimize the spectral fitting error at 1338.0-1338.6 nm.  
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A set of measured H2O absorption spectra was compared to the theoretical spectra to minimize 

the mean squared errors. Sets of H2O densities and temperatures at analysis grids were 

determined separately by each minimization procedure shown in Fig. 3. A polynomial noise 

reduction technique [15,16] was also used to reduce noises such as the effect of laser beam 

steering.  

 

Fig. 2  CT grid and laser path. 

 

 

Fig. 3  CT –algorism. 



 
 

3. Experimental apparatus 

Fig. 4 shows the outline of an experimental apparatus used in this study. DFB lasers (NTT 

Electronics Co., NLK1E5GAAA) at 1388 nm with scanning range of 0.6 nm were used to 

measure water vapor absorption spectra. The lasers were scanned at 1 kHz and these outputs 

were mixed using a fiber combiner. Absorption spectra were simultaneously measured to 

calculate the instant 2D temperature using 16 path measurement cells shown in Fig. 4. Laser 

beam was separated by an optical fiber splitter (OPNETI CO., SMF-28e 1310 nm SWBC 1×16) 

and the separated laser beams were irradiated into the target area by 16 collimators (THORLABS 

Co., 50-1310-APC). The transmitted light intensities were detected by photodiodes (Hamamatsu 

Photonics and G8370-01), and taken into the recorder (HIOKI E.E. Co., 8861 Memory Highcoda 

HD Analog16). The data acquisition rate was 500 kHz (500 data points on every 1 scan of 

absorption spectra). Temperature in the measurement region was also measured by chromel-

alumel thermocouples with a diameter of 100 μm (KMT-100-100-120).  

Two types of experiment were performed using a Bunsen-type burner and a gasoline engine 

(FUJI HEAVY INDUSTRIES, Inc., EX13) as shown in Fig. 5. The laser paths were set at the 

position 95.5 mm above the burner and at the outlet of the engine exhaust pipes. The diameter of 

16 path measurement cell was 70 mm. The diameter of the engine exhaust pipe is 22 mm with 

thickness of 3.5 mm and the pipe length was 160 mm.  

 

Fig. 4  16 path CT-TDLAS measurement cell. 



 
 

 

(a) Burner experiment 

 

(b) Engine experiment 

Fig. 5 Experimental apparatus. 



 
 

4. Results and Discussion 

4.1 Burner measurement results 

2D temperature was measured by CT-TDLAS using the 16 path measurement cell shown in Fig. 

4. In this experiment, 1388.135 nm (#1), 1388.326 nm (#2), and 1388.454 nm (#3) absorption 

lines were used to measure temperature. The 16 path cell was used in this experiment and 576 

(24×24) points of temperature were analyzed using a multi-function minimization method. Fig. 6 

shows the measurement results of temperature of the burner flame. Fig. 6(a) shows the results of 

temperature distribution measured by thermocouple. The burner was located at the center of the 

measurement cell (X=0, Y=0). The temperature was measured with interval of 2 mm by moving 

the thermocouple along the laser path surface. It shows that the highest temperature was about 

1000 K and temperature became to the room temperature at X=20 mm. Fig. 6(b) shows the 2D 

temperature measured by CT-TDLAS.  

              

(a) Thermocouple                                                        (b) CT-TDLAS 

Fig. 6  2D temperature distributions measured by CT-TDLAS and thermocouple 

(Bunsen burner : D=8mm, CH4=1.2x10-5 (m3/s) , Air=5.7x10-5 (m3/s)). 

 



 
 

The grid size was an important factor to reconstruct the precise temperature and concentration 

distribution. Comparison of measured temperature between thermocouple and CT-TDLAS at 

Y=0 mm, -4 mm, -8 mm is shown in Fig. 7. Measured temperatures are in a good agreement 

with each other in Fig. 7 (b) and (c). It means that the set of reconstructed temperature and H2O 

concentration given by CT algorithm is valid. In Fig. 7(a), temperature distribution measured by 

thermocouple and CT-TDLAS shows the difference of temperature between X= -5 mm and 5 

mm. The modification of CT grid, HITRAN database and selected absorption lines is necessary 

for more accurate 2D temperature measurement above 1000 K.  

    

            (a) Temperature distribution at Y=0mm           (b) Temperature distribution at Y=-4mm 

 

(c) Temperature distribution at Y=-8mm 

Fig. 7 Comparison of temperature distributions measured by thermocouple and CT-TDLAS. 

 



 
 

4.2 Engine measurement results  

The center of an exhaust outlet was set at the center of the CT measurement cell. Exhaust gas 

temperature distribution was measured by CT-TDLAS. In this experiment, 1388.135 nm (#1), 

1388.326 nm (#2), and 1388.454 nm (#3) absorption lines were used to measure temperature. 

Temperature was simultaneously measured by a thermocouple simultaneously. Exhaust gas 

temperature distribution was measured using the 16 path measurement cell. Fig. 8  show the 2D 

temperature measurement results at the engine revolution of 2400rpm. Better spatial resolution 

was achieved using the 16 laser paths compared with the results of 8 or 12 laser paths [17, 18]. 

The spatial resolution of CT-TDLAS can be easily improved to 2-3 mm by adding laser paths to 

the measurement area.  

 

Fig. 8 2D temperature measurement results in engine exhausts using 16 path measurement cell. 

 

4.3 Accuracy evaluation 

Fig. 9 shows the comparison of measured temperature between CT-TDLAS and thermocouple. 

1388.135 nm (#1), 1388.326 nm (#2), and 1388.454 nm (#3) absorption lines were used for the 

temperature measurement by CT-TDLAS. The linear relation between the measured 

temperatures by CT-TDLAS and thermocouple is confirmed under 800 K condition. On the other 



 
 

hand, the results measured by CT-TDLAS show lower temperature compared with those by 

thermocouple. The reasons for this discrepancy are uncertainties of the spectroscopic database 

used in this experiment and the spatial resolution of CT-TDLAS. The revision of these 

spectroscopic data to match the measurement results can lead to better measurement accuracy. 

In high temperature (1000-2000 K) and pressure (1-5 MPa) fields such as the combustion 

chamber of an  standard vehicle engine, expansion of the wavelength sweep width becomes 

important to cover the broadened absorption spectra. At high pressure conditions collisional 

broadening becomes predominant. There is also a need to revise spectroscopic data at high 

temperature and pressure conditions to measure accurate temperature and species concentration.  

 

Fig. 9 Comparison of measured temperature between CT-TDLAS and thermocouple. 

 

5. Conclusion 

The 2D temperature measurement method using CT-TDLAS was developed and successfully 

demonstrated to measure 2D temperature distribution in combustion gas using 16 path 

measurement cell. Two types of experiment were performed using a Bunsen-type flame burner 

and a gasoline engine. 2D temperature distribution in Bunsen-type flame burner was measured 



 
 

by the CT-TDLAS method. The 2D temperature results of CT method were compared with the 

thermocouple measurements to evaluate quantitative measurements of temperature. The linear 

relation between the measured temperatures by CT-TDLAS and thermocouple was confirmed 

under 800 K condition. On the other hand, the results measured by CT-TDLAS show lower 

temperature compared with those by thermocouple. Considering the space averaged 

characteristics of the CT method, the results show a good agreement with the measurement 

results using the thermocouple. CT-TDLAS has a potential of the kHz response time and the 

method enables the real-time 2D temperature and species concentration measurement to be 

applicable in various fields.  
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