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Abstract：Radiation-induced skin ulceration is a frequent complication of radiotherapy for cancer 
treatment. Stem cells from human exfoliated deciduous teeth (SHEDs) can regenerate various tissues. 
In this study, we investigated the impact of SHED-conditioned medium (SHED-CM) on radiation-
induced skin injury. Mouse necks were locally irradiated with a single dose of 15 Gy of radiation. A 
week after the irradiation, most of the wild-type mice generated ulcer surrounded by severe erythema. 
Intra-venous administration of SHED-CM effectively inhibited the ulcer formation. Histological 
examination revealed that SHED-CM treatment inhibited radiation-induced dermal thickness and 
epithelial hyperplasia. SHED-CM could be a useful treatment option for radiation-induced skin 
ulceration.

Introduction
　Radiotherapy is a tissue-perseverative treatment for many 
cancers; however, it damages healthy tissues surrounding 
cancer as well. One of the most common side effects of the 
radiation is an acute skin reaction (radiation-induced skin 
reaction; RISR1)) Radiotherapy is a treatment that takes 
advantage of the differences in sensitivity and responsiveness 
of normal and tumor tissues to radiation2).
　The keratinocytes in basal cell layer of skin epidermis, 
exhibiting the higher the frequency and number of cell 
division and undifferentiated properties, are highly sensitive 
to radiation. During early RISR, basal cells die and induce an 
inflammatory response, which recruits and activates various 
type of immune cells, such as eosinophils and neutrophils, 
leadings to self-perpetuating tissue damage and loss of 

protective barriers1). RISR can be distressing patients and 
can lead to treatment interruption. Currently, no satisfying 
therapeutic strategies for severe RISR has been developed.
　Stem cell therapy holds great promise for the establishment 
of effective treatments for RISR1, 3-5). It has been shown that 
the transplantation or infusion of adult mesenchymal stromal 
cells (MSCs) isolated from bone marrow (BMSCs) improved 
tissue destruction and fibrosis of RISR in animal model6-10) and 
clinical studies11, 12), primarily through paracrine mechanisms. 
However, for clinical applications, stem cell therapies must 
overcome serious hurdles, including tumorigenesis and strong 
immune reactions, as well as cost and time to prepare enough 
cell numbers. Stem cells secrete a broad repertoire of trophic 
and immuno-modulatory factors, which can be collected as 
serum-free conditioned medium (CM). CMs from various 
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stem cell types have been shown to exhibit considerable 
potential in treating myriad intractable diseases13). However, 
the therapeutic benefits of CMs derived from stem cell for 
RISR treatment are largely unknown. 
　Human adult dental pulp stem cells (DPSCs) and stem 
cells from human exfoliated deciduous teeth (SHEDs) are 
self-renewing MSCs residing within the perivascular niche 
of the dental pulp. These cells are thought to originate from 
the cranial neural crest, which expresses markers for both 
mesenchymal and neuro-ectodermal stem cells, as well many 
genes encoding extracellular and cell-surface proteins14). 
Studies of engrafted SHEDs or DPSCs in various animal 
models of disease, including myocardial infarction15), 
ischemic brain injury16), spinal cord injury14), liver fibrosis17), 
fulminant liver failure18), bleomycin-induced fibrotic lung 
injury19), autoimmune encephalomyelitis20), type I diabetes21), 
rheumatoid arthritis22) indicate that these cells can promote 
significant recovery through the activation of endogenous 
tissue-repairing activities. However, the therapeutic potential 
of tooth-derived stem cells for the treatment of RISR has 
not been examined. In the present study, we investigated the 
therapeutic effects of SHED-CM administration in a mouse 
RISR model. 

Material and methods
Preparation of SHED-CM
　SHEDs were isolated as described previously14). In brief, 
deciduous teeth from 6- to 12-year-old individuals were 
collected at Nagoya and Tokushima University Hospital. 
This study was approved by the Institutional Ethical 
Committee of Nagoya and Tokushima University Hospital and 
performed according to the principles of Helsinki Declaration 
(Permit No H-73 and No: 3268 for Nagoya and Tokushima 
University, respectively). After separation of the crown and 
root, the dental pulp was isolated and treated with 3 mg/ml 
collagenase type I and 4 mg/ml dispase for 1 hour at 37℃. 
Single-cell suspensions (1-2 × 104 cells/ml) were plated and 
cultured in Dulbecco's modified Eagle's Medium (DMEM, 
Sigma-Aldrich, Japan) with 10 % FBS. SHEDs at 70-80 % 
confluency was washed with PBS, and the culture medium 
was changed to serum-free DMEM. After 48 hours culture, 
the medium was collected and centrifuged for 10 minutes at 
2000 g and the supernatant were used as SHED-CM. 

Animals
　Female, ICR mice aged 7  weeks (25 g-28 g) were 
purchased from Charles River Laboratories (Yokohama, 
Japan). The mice were maintained under specific pathogen 
free conditions and fed ad libitum food pellets, CE-2 (CLEA 
Japan, Shizuoka, Japan) and sterile water. The animals were 

kept on a 12-12 h light-dark cycle. They were randomly 
divided into 4 groups (n = 19), including sham group (n 
= 5), irradiation group (RT group, n = 5), irradiation plus 
DMEM group (n = 4), irradiation plus SHED-CM group (n 
= 5). Under general anesthesia with intraperitoneal injection 
of three types of mixed anesthetic agents (medetomidine 
0.75 mg/kg + midazolam 2 mg/kg + butorphanol 2.5 mg/
kg). Necks were locally irradiated with a single dose of 15 
Gy of radiation, at a rate of 4 Gy/min and a distance of 150 
mm, using a MBR (Hitachi medical, Kashiwa, Japan). Before 
irradiation, the mice were shaved and protected except for the 
irradiated area by 2 mm filter of lead. The mice were housed 
individually to prevent gnawing of ulcers and other potentially 
damaging interactions. The irradiated mice were injected 
daily with SHED-CM (10 μl/g) into the tail vein immediately 
post irradiations to day 6. This study was approved by the 
Tokushima University Animal Care and Use Committee 
(Permission No. T28-92). 

Measurement of the dermatitis score and ulcer area
　Radiation-induced skin reaction (RISRs) were scored 
by Common Terminology Criteria for Adverse Events 5.0 
published from NIH at November 27, 2017. The damage 
of skin is classified on scales 1-5 based on the Common 
Terminology Criteria for Adverse Events v5.0. Grade 1 is 
a faint edema with dry desquamation; Grade 2 is an edema 
with restricted moist desquamation in skin fold; Grade 3 is an 
extensive moist desquamation; Grade 4 is a skin necrosis or 
ulceration of full thickness dermis with spontaneous bleeding; 
Grade 5 is death by radiation. Photographs of the ulcer 
area were taken and was used to trace the ulcer margin and 
measure the ulcer area with Image J, v. 1.52 (NIH, Bethesda, 
MD, USA). 

Histological analysis
　The mice were sacrificed with intraperitoneal injection 
by pentobarbital inhalation at 7 days post irradiation, and 
then the wounds were harvested with the surrounding tissue. 
Skin were fixed in 10 % formaldehyde in PBS at 4 C for 
24 hours, embedded in paraffin and 5 μm sections were 
generated with a HM 450 Sliding Microtome (Therrmo Fisher 
Scientific, Walldorf, Germany). The sections were stained 
with hematoxylin and eosin (Sakura finite, Tokyo Japan) and 
photographed using a BZ-9000 (Keyence, Osaka, Japan). 
Five different fields within the wound tissue were randomly 
selected from each section and counted. In addition, these 
sections were measured for dermal thickness length by BZ 
analyzer.
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Statistical Analysis
An unpaired two-tailed Student's t test was used to compare 
two groups. A p value < 0.05 was considered to be statistically 
significant.

Results
Intravenous injection of SHED-CM ameliorates the 
clinical symptoms of RISR
　To examine the therapeutic effects of SHED-CM for 
radiotherapy-induced adverse events, we used a mouse 
RISR model induced by a selective irradiation to neck. The 
irradiated mice were injected daily with SHED-CM into the 
tail vein immediately post irradiations to day 6 (Figure 1). 
After seven days from irradiation, RT group and DMEM 

group formed a large cutaneous ulceration surrounded by 
severe erythema, whereas mice received SHED-CM showed 
faint erythema or dry desquamation (Figure 2A). Seven days 
after the irradiation, the mean ulcer area of the RT group 
was 28.95 ± 3.83 mm2 and DMEM group was 27.57 ± 0.76 
mm2. In contrast, in the SHED-CM group, the area was 3.25 
± 1.41 mm2 (Figure 2B). The evaluation of the injury based 
on Common Terminology Criteria for adverse Events v5.0 
showed that phenotypic score of SHED-CM group (1.23 ± 
0.43) was significantly lower than RT group (3.75 ± 0.43) and 
DMEM group (3.00 ± 0.00) (Figure 2C). 

SHED-CM protects the cutaneous structure from RISR
　Histological examination revealed that the thickness of 

Fig. 1 Experiment design
The time points are indicated as follows: at day 0, mice were irradiated with a single dose of 
15 Gy of radiation and received daily intravenous administration of DMEM or SHED-CM 
for six consecutive days after irradiation. At day 7, the mice were sacrificed for analysis.

Fig. 2 Effects of SHED-CM on RISR
(A) Representative images of RISR in Sham group (n = 5), RT group (n = 5), DMEM group 
(n = 4) and SHED-CM group (n = 5). (B, C) Statistical analysis of CTCAE Grade (scored 
1-5, maximum score: 5), **p < 0.01.

C
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dermal layer of sham, RT and DMEM group, were 135.20 
± 12.5 μm, 196.00 ± 7.16 μm and 204.83 ± 7.88 μm, 
respectively. Notably irradiated skin of SHED-CM group 
showed modest thinking and epithelial hyperplasia (155.87 ± 
12.90 μm, p < 0.01 SHED-CM vs RT or DMEM: Figures 3A-
B). The infiltrating mononuclear immune cells in dermal layer 
was significantly reduced in SHED-CM group (346.1 ± 48.4/
mm2) when compared with the RT group (547.40 ± 65.0/mm2) 
and DMEM group (498.3 ± 74.8/mm2) (p < 0.01 SHED-CM 
vs RT, p < 0.05 SHED-CM vs DMEM; Figure 3C). 

Discussion
　Many studies have demonstrated that local or systemic 
administration of MSCs enhanced cutaneous wound 
healing after RISR. These preclinical studies claimed that 
engrafted stem cells promote tissue repair through both cell-

autonomous/cell-replacement and paracrine/trophic effects. 
In contrast, our current study demonstrated that systemic 
administrations of paracrine factors secreted from SHED, 
without SHED transplantation, exerted remarkable anti-RISR 
activities, suggesting that most of the tissue repairing activity 
of SHED could be mediated by a paracrine mechanism. 
Several mechanisms of the acceleration of wound healing 
by MSCs have been identified, including the enhancement 
of angiogenesis by secretion of pro-angiogenic factors and 
the differentiation into endothelial cells and/or pericytes, M2 
macrophages polarization, the recruitment of endogenous 
stem/progenitor cells, extracellular matrix production and 
remodeling, and immunosuppressive effects5, 23). 
　We have been characterized trophic factors of SHED-
CM, which contained 79 of the array proteins at levels that 
were more than 1.5-fold greater than those in the control 

Fig. 3 Hematoxylin and eosin staining of the irradiated skin
(A) Representative images of RISR stained with hematoxylin and eosin in Sham group (n = 5), RT group (n = 5), 
DMEM group (n = 4) and SHED-CM group. Notably, RT and DMEM group, but not SHED-CM, shows skin ulceration 
lacking epidermis and thickened dermis. The bottom images of each group are high magnification. Arrowheads indicate 
inflammatory cells. Scale bar in low and high magnification are 100 and 20 μm, respectively (B, C) Statistical analysis of 
dermis thickness (B) and the number of inflammatory cells (C). *p < 0.05, **p < 0.01. 
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DMEM sample24). Here, we carried out a cluster analysis of 
them and identified 11 of these proteins, which are known 
to exhibit functional properties that may be beneficial in 
treating RISR. Keratinocyte growth factor (KGF) suppresses 
apoptosis and promotes the proliferation of epithelial 
cells25). Hepatocyte growth factor (HGF) optimizes oral 
traumatic ulcer healing of mice by reducing inflammation26). 
Follistatin, and dickkopf (DKK) inhibit the tumor growth 
factor (TGF)-β-induced differentiation of fibroblasts into 
myofibroblasts27) and regulates epidermal homeostasis and 
wound repair28). IL-1 receptor antagonist (IL-1Ra) improves 
diabetic wound healing29). Stem cell factor (SCF), angiogenin 
and vascular endothelial growth factor (VEGF) promote neo-
vascularization30, 31). Monocyte chemoattractant protein-1 
(MCP-1) promotes healing in diabetic wounds by restoring 
the macrophage response32). Insulin-like growth factor-1 on 
promotes healing of skin ulcers in diabetic rats33). Secreted 
ectodomain of sialic acid-binding Ig-like lectin-9 and MCP-
1 promote recovery after rat spinal cord injury by altering 
macrophage polarity24). The concentrations of these factors 
in SHED-CM may be quite low; however, we believe that 
combinatorial effects of these factors in SHED-CM may 
provide therapeutic benefits for treating RISR. 
　Most of the tissue damages induced by the X rays for 
cancer therapy is due to radiolysis of water leading to the 
generation of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS). During acute phase of RISR, ROS 
and RNS damages DNA, lipids and proteins, which induce 
massive necrosis/necroptosis and apoptosis and activate pro-
inflammatory responses1, 34, 35). We found that SHED-CM 
treatment inhibited radiation-induced dermal thickening and 
epithelial hyperplasia and preserved cutaneous architecture 
similar to sham operated group. It has been reported that 
systemically administrated MSC into the mouse radiation-
induced damage model inhibited the expressions of oxidative 
stress indicators through the upregulation of antioxidant 
enzymes (hemeoxygenase-1 and catalase) and suppressed 
radiation-induced injury36). Local injections of MSC prevent 
cutaneous ulcer induced by ischemia-reperfusion through 
the inhibition of the ROS generation37). MSC alleviate 
oxidative stress-induced mitochondrial dysfunction in the 
airway epithelium38). MSC protect hippocampal neurons from 
oxidative stress and synapse damage induced by amyloid-β 
oligomers39). These previous studies raise the possibility that 
SHED-CM protect cutaneous structure after radiation through 
the direct suppression of the ROS as well as pro-inflammatory 
mediators' production. In future it will be required to clarify 
the anti-oxidative activity of SHED-CM and factors involved 
the process.
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