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Abstract: We propose a visualization method called the directional coloring for chaotic attrac-
tors in planer discrete systems. A color in the hue circle is assigned to the argument determined
by the current point and its n-th mapped point. Some unstable n-periodic points embedded
in the chaotic attractor become visible as radiation points and they can be accurately detected
by combination of this coloring and the Newton’s method. For a chaotic attractor in a non-
invertible map, we find out invariant patterns around the fixed point and detect its nearest
unstable n-periodic point. The computed results of their locations show a fractal property of
the system.
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1. Introduction
If we obtain a good mathematical model to describe dynamical behavior of the object with appropriate
ways [1], we can extract much information from nonlinear phenomena emerged in the model, such as
local and global bifurcations of singular points [2], chaos [3], and synchronization of oscillations [4],
and so on. While, even for a chaos observed in a low-dimensional dynamical system, many problems
still remain unsolved [5]. For example, computation of locations of unstable periodic orbits embedded
in the chaos, identification of saddles causing crises, relationship among manifolds of saddles and
chaos are still challenging problems.

While, thanks to progression of computers, simulations of a given mathematical model is easily
performed by fast numerical computations [6, 7]. We can observe the chaotic behavior in a computer
display quickly, in addition, examine dependency of initial values and parameters within a reasonable
time. Conventionally a chaotic attractor is visualized by plotting the solution orbit into a plane as a
set of dots (for continuous-time systems, taking Poincaré mapping). To include statistical/dynamical
information of chaos to these dots in a color display, one tries to put different color to each dot by
the location, histogram of hitting [8], Lyapunov exponents [9], and so on.

In this paper, we consider utilizing of the direction held by a current point and its n-time mapped
point, i.e., an argument defined by these two points is interpreted as a color. This can depict a
transitional orientation of an orbit within the chaotic attractor. For some numbers for n, we find out
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unique patterns reflected from own nonlinearity. By this method, embedded unstable periodic points
in a chaos attractor become visible. Although it is difficult to distinguish the locations of unstable
periodic points embedded in chaotic attractors visually by the conventional methods, the proposed
method can specify them as distinguishable points. Next we consider a related visualization using
the brute-force method to reduce the computation time for the directional coloring. Finally, as an
application, we propose an unstable periodic point detector by using the directional coloring results.
Some evidences of the fractal nature about location of periodic points. With these information, an
analytic formula giving the location of periodic points is derived.

2. Conventional visualization of chaotic attractor
Consider a two-dimensional discrete dynamical system

xk+1 = f(xk), (1)

where, xk ∈ R2 is a state, and f : R2 → R2 is a nonlinear function. With an appropriate initial
value x0, a series of the solution forms an orbit such as {x0,x1, . . . , }. On a computer display, an
appropriate local region L ⊂ R2 are mapped into a screen region S ∈ I × I composed by pixels,
and a pixel determines the resolution of this screen. Let us adopt the top-left corner of a pixel as a
representative coordinate value of the pixel. Then the orbit xk can be rendered as a pixel in S. If the
system is dissipative and chaotic, the orbit may not hit each pixel uniformly in the attractor as the
system iterates. In general, the orbits tend to hit around unstable periodic points or their manifolds
because of the ergodic property of the chaotic attractor. The histogram of each pixel is utilized for
coloring [8] i.e., color clearly indicates the points on the attractor which are most likely to be hit
during the iteration process.

Let us consider the following chaotic map as a concrete example through this paper [10–12]:{
xk+1 = yk + axk

yk+1 = −x2
k + b.

(2)

Fig. 1. Colored attractor for Eq. (2). a = 0.4, b = −1.24.

This map is a case of the general quadratic map family [13], and depending on parameter values a
and b, it has typical bifurcations such as period-doubling, tangent, and Neimark-Sacker bifurcations.
In case that a = 0.4, b = −1.24 it gives a chaotic attractor. By using the conventional visualization
mentioned above, some points colored by white are distributed along invariant sets determined by
the right hand of Eq. (2). In this figure, one recognizes not only the whole structure of the strange
attractor, but also an ergodic property of the orbit. This visualization, however, only shows spatial
average properties of the attractor, in fact, information about the time is discarded.

3. Directional coloring
Now we reflect information of a movement of an orbit into the visualization. Suppose the current
state is given by xk and n ≥ 1 is an integer, then measure an argument θk(n) given by xk and an
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n-iterated point xk+n in the polar coordinate. Since the argument θk(n) is 2π modulo, it has the
correspondence with the hue circle. Each iteration, evaluate θk(n) by solving Eq. (1) directly and put
a corresponding color for θk(n) into xk. We call this color assignment method the directional coloring.
Figure 2(a) shows the definition of the polar coordinate attached to xk and the hue circle. With this
method, a chaotic attractor is visualized like Fig. 2(b). The attractor may be segmented by several
sets of colors, and any points in each of them share one direction given by fn, e.g., a red-colored
region suggests that current points in this region will relatively move to the right after n iterations.

Fig. 2. Definition of the directional coloring. (a): the hue circle and the
argument, (b): a rough coloring sketch. Arrows show partial directions of fn.

Fig. 3. Directional coloring of the chaotic attractor observed in Eq. (2), a =
0.4, b = −1.24 with 1,000,000 iterations. A radiation center point is clearly
visible in (a)–(d).
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Figures 3 show results of the directional coloring for each n iterated map written by Eq. (2) with a
hundred million iterations. The parameter values are the same as ones used in Fig. 1. To retain clear
visibility, we ignore the histogram information, i.e., the intensity of the color is fixed with a constant
value. There are radiation points whose neighborhood forms a radial hue circle. Figure 4(a) depicts a
magnification of Fig. 3(a). In the center, there is the radiation point. This point is actually a source,
the location is x∗ ≈ (−0.85,−0.51), and its multipliers are 0.2± i1.29. This source is obtained by the
Neimark-Sacker bifurcation for a sink, therefore, the local space around the point retains a rotational
property and causes the radial distribution of colors. One of features of the directional coloring is
visualization of unstable periodic points for a specific period n as a radiation point. For other types
of unstable periodic points, it can be assumed that they also form such radiation points caused by
changing directions of the local flows around the periodic points.

For n ≥ 5, we have isolated single-colored islands. As n increases further, the number of islands are
also increased. and many n-periodic repellers (including repellers whose period is a common divisor of
n) are found as fixed points having a hue circle. Note that information of points xk+j , j = 1, . . . , n−1
are discarded for the coloring.

Figure 3(f) shows the case n = 20. Many islands are confirmed in the attractor, however the
macroscopical structure seems to be invariant to Fig. 3(e). It resembles the fractal process given by
an iterated functional system.

In cases n = 2, 3, 4, the figures are not changed much. There is a radiation point at the same
position since the fixed point x∗ can be also an n-periodic point. Each colored region is distorted
one by one as n increases. For n = 5, new radiation points are suddenly emerged. Figure 4(b) also
shows a magnification of Fig. 3(e). There are multiple radiation points indicated by arrows, in fact
as discussed later, they are actually sources. More precisely, these sources are classified as unstable
foci or unstable nodes, but there is no distinguishable fact between them.

A saddle type periodic point also forms a radiation point since the stable or unstable manifolds
intersects at this periodic point therefore they definitely form four angles whose total is 2π. At least a
local region just on the manifold moves along this manifold, thus keeps a certain direction. Thus there
exists a hue circle around saddles. Although we compute transition of colors around them, there is
no distinctive difference between a saddle and source as a radiation point of the directional coloring.
For n = 6, in fact, there is a tuple of 6-periodic saddle points, and its multipliers are −0.92548 and
−4.59298 and they are also depicted in Fig. 3(f).

For n = 7, n = 8, we cannot recognize radiation points except for x∗. This fact suggests that this
chaos attractor does not include these periodic points. It is noteworthy that there are isolated islands
filled by a single color without connecting periodic point. This is related with features of this kind of
non-invertible maps [11, 12].

For n = 9 to n = 20, gradually the structure becomes complicated, but a certain fundamental
pattern is unchanged, e.g, locations of some radiation points and isolated islands. This progression
can be regarded as fractal. If n has divisors, radiation points of them also appeared in the directional
coloring. In the case of n = 20, it can contain 2, 4, 5, 10, 20 periodic points.

Finally n = 30, above pattern is invisible in the large, but by ignoring small structures, the whole
coloring result rather looks like the case n = 2. This color distribution inform us a statistical predic-
tion, e.g., many the current right-bottom (green–cyan) orbits will stay at the left-half portion after
30 iteration. For further n > 30, this tendency retains until n = 50, and gradually all colors are
mixed. This process show a sensitivity for initial values. Similar results are obtained with the other
parameter values, see Figs. 5.

With another set of parameter values; a = −0.1, b = −1.7, the direction coloring also exhibits
distinct patterns, see Figs. 5.

For one dimensional discrete systems xk+1 = f(xk), we visually tell where the periodic points are,
indeed, the crossing points of the graph of fn and xk+1 = xk indicate them. Our method gives similar
intuitive information about unstable periodic points in planer systems.
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Fig. 4. Magnification of Figs. 3(a) and (e).

Fig. 5. Directional coloring of the chaotic attractor observed in Eq. (2), a =
−0.1, b = −1.7.

4. Directional coloring by brute force computation

Figures 3 and 5 are obtained by a huge number of iterations since it cannot be expected always
that the chaotic orbit hits region S uniformly because of the ergodic property. To fill out a region
uniformly, the computation wastes much time. In addition, if a small region inside of the attractor is
selected for visualization, the computation time increases too much because the probability of hitting
for such small area is rare.

Now we consider a reduction of this computation. Let us put initial points on all pixels in the
region corresponding to S. Then evaluate the directional coloring of all pixels in S with these initial
points and their n-iterated points. Inside of a chaotic attractor region, this brute-force coloring gives
a topologically same result with the coloring using solution orbits.

Figures 6(a)–(i) show coloring results by the brute-force method. The outer-shape of the strange
attractor is not visualized (only in Fig. 6(a), the shape of the attractor is shown as a dashed line by an
off-line work), however, if these results are trimmed along the outer-shape of the chaos attractor, the
exactly same results for Figs. 3 will be obtained. Indeed, the computation time is drastically reduced
because the brute-force coloring requires only {f(xk+1),f(xk+2), . . . ,f(xk+n)} are computed for each
pixel. Table I shows a comparison between two methods.

It is noteworthy that some periodic points out of the chaos attractor are visualized as radiation
points, e.g., a fixed point at the right-upper position in Fig. 6(a), two 2-periodic points at the left-
upper and right-lower in Fig. 6(b), and so on.

Table I. Comparison with two methods. For Eq. (2), a = 0.4, b = −1.24.
The resolution is 500 × 500. Computer specifications are: Intel Pentium 4,
2.6GHz, 1 GB memory, with Linux 2.4.22.

n by solutions [sec] by brute-force [sec]
1 8.26 0.17
2 9.80 0.21
5 13.63 0.34
10 19.76 0.48
20 32.38 0.97
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Fig. 6. Directional coloring with the brute-force method.

5. Unstable periodic point detector

Theoretically, any periodic point is unstable inside a chaos attractor, i.e., any periodic point is a
saddle, unstable node, or unstable focus. Detecting unstable periodic points has been studied for
a long time, and many efficient methods have been proposed [14]. Literatures on recent works of
detection of unstable periodic orbits in chaotic attractors are listed in [15].

As mentioned above, these periodic orbits are expressed visibly as radiation points in the directional
coloring. As far as we examined, in Hénon map, and other chaotic maps, saddles embedded in a chaotic
attractor can be recognized as a radiation points for a small numbers of n with the directional coloring.

As an application, we propose a simple method which can detect n-periodic unstable periodic
points in a given attractor. Let us assume any radiation point can be an unstable n-periodic point.
For trimming of a sufficiently enlarged region S, firstly we seek some candidate pixels whose eight
surrounding pixels form a turn in the hue circle in S. This scheme is a simple image processing, thus
there are no technical difficulties. Next we send candidate points to Newton’s method. The condition
of the periodic points is:

fn(x) − x = 0. (3)

The Jacobian matrix is obtained by solving the variational equation of Eq. (1). Newton’s ensures
improve accuracy of locations of the unstable periodic points from the candidates. Note that this
method detects also periodic points whose period is a divisor of n.

Figure 7(a) shows a complicated structure by the directional coloring for n = 37 about the
fixed point x∗. By scaling this area, a simple structure is obtained, see, Fig. 7(b). One can
easily confirm the positions of periodic points visually. The first-guess supplier also can detect
candidate points accurately. In the case n = 79, the initial guess obtained from the image is
(−0.85325626090,−0.51195375578), indicated as c in Fig. 8. With three times iteration of Newton’s
method, an accurate location of 79-periodic point (−0.85325626092671,−0.51195375577927) is ob-
tained with a 10−15 error, within 3 iterations. By iterating Eq. (2) with this solution c directly, we
have the rest 78 points. They are unstable nodes since the multipliers are 3.4 × 108 and −1.4 × 109.
Furthermore, they are properly 79-periodic points since n is a prime number. Note also that the
repellers in this system cannot be obtained by inverse time simulation since this map is not invertible.
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Fig. 7. Directional coloring for Eq. (2) with n = 37. (a): around the fixed
point, (b): an magnification of (a).

Fig. 8. Directional coloring for Eq. (2) with n = 79. This figure shows an
invariant pattern. Many unstable periodic points are visualized.

6. Invariant pattern of fractal and locating UPPs

One may notice that coloring patterns of Fig. 7(b) and Fig. 8 are similar, in fact, if one of them is
rotated π radian about x∗ and rescaled a bit, their shapes are almost coincident. Thus some invariance
is preserved for the directional coloring with iterations.

In this section, we model this invariance as a formula, i.e., periodic point c is expressed by a function
of the number of iterations. With this formula, we could get accurate location of c without doing any
shooting method. This formula features a kind of fractal nature of the map.

Let us define the distance between ck and x∗ as

εk = ||ck − x∗||2.

Fig. 9. The definition of εk and θk.

Let us also define θk as an angle determined by εk+1 and εk, see Fig. 9. With our trial-and-error
searching basis functions, and thanks to the the Marquardt-Levenberg algorithm (nonlinear least
square estimation), we could obtain the following formulas to fit the computed values of ε:

c̃n = x∗ + σn

(
cosSθn

sinSθn

)
, Sθn = ψ +

n−1∑
i=0

θi. (4)

where, ψ is the absolute angle between x∗ and c1. Then σn and θn are given as follows:

σn = 10an+b+(−1)nA sin(ω1n−η1)

θn = (−1)nB sin(ω2n+ η2) + d,
(5)
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These functions can specify accurate locations of UPPs c̃n by only substitution of n.

6.1 Example 1
Suppose we fix the parameter values for Eq. (2) as a = 0.4, b = −1.24, then we obtain the following
parameters by using fitting method: a = −0.1156, b = 0.4, A = 0.07, ω1 = 0.312, η1 = 0.16π and
B = 0.31, ω2 = 0.306, η2 = −0.572π, d = 1.418. Figure 10 shows matching of c̃k and ck. The error
between them is invisible.

It it noteworthy that the frequency components ω1 and ω2 are independent for the multiplier
(eigenvalues) of the fixed point x∗.

(a) (b)

Fig. 10. Relationship between n and εn for Example 1. Plotted points indi-
cate numerical values of ε.

Both εk and θk are affected by sinusoidal functions of k, but they are not synchronized each other.
We once tried an amplitude modulated wave for εk and θk models, but it failed. Two alternative
(anti-phase) sinusoidal functions are essential.

Now we obtain an analytic formula that gives UPPs in the chaos attractor. If we want to know the
location of ck, the formula resulting the accurate location with specifying only k is very useful.

Figure 11 shows locations of UPPs. In this simulation, we use θ40 instead of ψ. Each vertex of the
red line show the location of ck whose accuracy is guaranteed by Newton’s method. While vertices
on the black line are locations c̃k. Please note that these lines do not show the part of the solution
orbit, but demonstrate a fractal nature of the chaotic attractor. In fact, a line in Fig. 11 forms a
logarithmic spiral given by Eq. (5), i.e., εk and θk surely keep a certain scale. Note also that ψ in
Eq. (4) is initialized by the value of c40 for this case.

Fig. 11. ck (vertices of the red line) and c̃k (vertices of the black line).

6.2 Example 2
When we fix the parameters as a = −0.1, b = −1.7, a different invariant pattern of the directional
coloring is shown in a chaotic attractor. Figure 13 depicts invariant patterns with n = 34 and n = 35
of the directional coloring around a UPP x∗ = (−0.865097,−0.951606). The nearest radical point cn

is also an unstable n-periodic point.

504



Fig. 12. An enlargement of Fig. 11. cn, 95 < n < 130 are visualized.

For this example, Eq. (5) also acts reasonable. We have a very good fitting between c̃n and cn

with this model. The fitting parameters are as follows: a = −0.1185, b = 0.41, A = −0.07, ω1 = 0.08,
η1 = 0.477π, B = 0.27, ω2 = 0.08, η2 = 0.0, d = 1.61.

Fig. 13. A directional coloring result for Eq. (2) with a = −0.1, b = −1.7.
(a): n = 34, (b): n = 35.

(a) (b)

Fig. 14. Relationship between n and εn for Example 2. Plotted points indi-
cate numerical values of ε.

Figure 14 expresses agreement between c̃k and ck. The error between them is invisible. Figure 15
shows estimation errors defined as follows:

eε = log10 εn − log10 ε̃n
eθ = |θn| − |θ̃n|. (6)
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where, ε̃n = ||c̃n −x∗||, and θ̃n is an angle determined by c̃n and c̃n+1. Note that eε shows a relative
error with the logarithm scale, thus actual error between cn and c̃n becomes exponentially small as
n increases. Actually −14 in logarithm scale approaches the limitation of the double precision data
length.

The mismatch between θn and θ̃n can be evaluated good, that is, it is confirmed that the approxi-
mated analytic equation Eq. (5) describes almost correct locations of UPPs. The error included in c̃k

seems to be modeling errors in Eqs. (4) and (5), however, the oscillation behavior in Fig. 15 implies
existence of one or more frequency components. We should add more sinusoidal terms in Eq. (5).

(a) (b)

Fig. 15. Estimation errors eε and eθ.

7. Conclusion
We have proposed a method to visualize the direction of fn inside a chaotic attractor. The method
reveals an invariant pattern hidden in the chaotic attractor. With this method, UPPs with the
specific number of period are visualized. As an application, a detection scheme of these UPPs is
shown. Although we fix parameter values for visualization in this work, existence of n-periodic points,
movement of locations of UPPs are confirmed by the directional coloring with changing parameters.
Such information can be utilized for bifurcation analysis of UPPs. As the future works, reasons for
organization of the invariant patterns should be investigated [16].
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