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The Differences in the Characteristics 
of Insulin-producing Cells Using 
Human Adipose-tissue Derived 
Mesenchymal Stem Cells from 
Subcutaneous and Visceral Tissues
Yuma Wada   , Tetsuya Ikemoto   , Yuji Morine, Satoru Imura, Yu Saito, Shinichiro Yamada & 
Mitsuo Shimada

The aim of this study was to investigate the characteristics of insulin producing cells (IPCs) 
differentiated from adipose-tissue derived stem cells (ADSCs) isolated from human subcutaneous and 
visceral adipose tissues and identify ADSCs suitable for differentiation into efficient and functional IPCs. 
Subcutaneous and visceral adipose tissues collected from four (4) patients who underwent digestive 
surgeries at The Tokushima University (000035546) were included in this study. The insulin secretion 
of the generated IPCs was investigated using surface markers by: fluorescence activated cell sorting 
(FACS) analysis; cytokine release; proliferation ability of ADSCs; in vitro (glucose-stimulated insulin 
secretion: (GSIS) test/in vivo (transplantation into streptozotocin-induced diabetic nude mice). The 
less fat-related inflammatory cytokines secretions were observed (P < 0.05), and the proliferation 
ability was higher in the subcutaneous ADSCs (P < 0.05). Insulin expression and GISI were higher in 
the subcutaneous IPCs (P < 0.01 and P < 0.05, respectively). The hyperglycaemic state of all mice 
that received IPCs from subcutaneous fat tissue converted into normo-glycaemia in thirty (30) days 
post-transplantation (4/4,100%). Transplanted IPCs were stained using anti-insulin and anti-human 
leukocyte antigen antibodies. The IPCs generated from the ADSCs freshly isolated from the human fat 
tissue had sufficient insulin secreting ability in vitro and in vivo.

Type 1 diabetes mellitus (T1DM) is a chronic auto-immune disorder characterized by the destruction of pan-
creatic β-cells due to insulitis and absolute insulin deficiency. Islet transplantation (ITx) is one of the treatment 
choices for freeing people with TIDM from a lifelong dependence on insulin injections and results in reducing 
the risk of hypoglycaemic events and other serious complications. However, it has been reported that ITx has a 
low insulin independent rate and there is difficulty in securing sufficient islets due to a severe donor shortage 
in some countries1,2. The possibility to resolve these urgent issues lies in the generation of insulin producing 
cells (IPCs) derived from mesenchymal stem cells (MSCs). Regarding the harvest location of MSCs, it has been 
reported that adipose-tissue derived stem cells (ADSCs) can be obtained by a less invasive procedure with lower 
ethical problems compared to other MSCs3–5. Thus, the focus of this study is on the ADSCs as a new cell source of 
MSCs6–8 and the establishment of a new 2-step protocol for the differentiation of IPCs from ADSCs with a short 
culture duration and functional efficiency9. Moreover, this 2-step protocol was modified into a xeno-antigen free 
and three-dimensional (3D) culture protocol10,11 which improved cell quality and function in vitro/in vivo and 
resulted in the normalization of diabetic nude mice blood glucose over 120 days12. In other words, this modified 
protocol is reaching the pre-clinical level of proof of a concept.

Accordingly, when considering the generation and clinical application of IPCs it is important to investigate 
optimal adipose tissue serving as the cell source. Therefore, this study currently focused on the procurement 
location of adipose tissue. The adipose tissue accumulates mainly in subcutaneous and visceral locations. It has 
already been reported that the microenvironments of adipose tissue such as immune-cells and various cytokines 
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secreted from them differ, depending on the location of the adipose tissue13–16. It is also reported that subcuta-
neous adipose cells are smaller in size and higher in differentiation and proliferation ability compared to visceral 
adipose cells13. In addition, compared with visceral adipose tissue, there are three (3) times or more B cells in 
subcutaneous adipose tissue and these B cells suppress the activity of CD8+ T cells via IL-10 secretion and M1 
macrophage which induce an inflammatory response16. Therefore, there must be various functional and cell-fatal 
differences depending on the location of the adipose tissue due to the differences in the microenvironment.

In this study IPCs generated from ADSCs isolated from fresh human subcutaneous and visceral adipose tis-
sues were characterized and the identification which ADSCs can achieve to differentiate into more efficient and 
functional IPCs was shown.

Results
The characteristic differences of isolated ADSCs.  For the isolated ADSCs there were no differences in 
morphology between those from the subcutaneous and the visceral adipose tissues (Fig. 1A). On the one hand, in 
the FACS analysis, the results of CD31−CD34−CD45−CD90+CD105−CD146− were the same in both the subcuta-
neous and visceral ADSCs. On the other hand, the results were CD31−CD34−CD45−CD90+CD105+CD146− for 
the commercially available ADSCs, showing a difference between the two in only the CD105 component (Fig. 1B).

The cytokine release pattern was different between the ADSCs from the subcutaneous and visceral adipose tissues.
Next, the cytokine release of each of the ADSCs was examined using the supernatants of the culture con-

ditioned medium (Fig. 2A). There were differences in some cytokines between the subcutaneous and visceral 
ADSCs such as angiogenesis and inflammatory cytokines. These cytokines were: Angiogenesis; Chitinase 3-like 
1 (CHI3LI); Interleukin-1β (IL-1β); Epidermal growth factor (EGF); Monocyte chemoattractant protein-1 
(MCP-1); Cystatin C (CST3); Interleukin-6 (IL-6); Interleukin-8 (IL-8); Pentraxin 3 (PTX3); Transforming 
growth factor-β (TGF-β); Plasminogen activator urokinase receptor (PLAUR); and Tumour necrosis factor-α 
(TNF-α) (Fig. 2B). These cytokines’ secretions were decreased in the supernatants of the ADSCs conditioned 
medium from the subcutaneous adipose tissue compared to that from the visceral adipose tissue (p < 0.05, 
Mann-Whitney U test, Fig. 2B). Moreover, we measured the days until 10 cm dish is confluent as the proliferation 
ability. It was higher in the subcutaneous ADSCs than that of the visceral ADSCs (3.3 days vs. 5.8 days, p = 0.04, 
Mann-Whitney U test, Fig. 2C). In terms of the growth rate, the subcutaneous ADSCs proliferated 1.75 times 
faster than the visceral ADSCs.

Figure 1.  The characteristic differences of isolated ADSCs. (A) There were no differences for isolated 
ADSCs in morphology. Scale bar; 300 µm. (B) In FACS analysis, the expressions of the ADSCs were 
CDCD31−CD34−CD45−CD90+CD105−CD146− in both the subcutaneous and visceral ADSCs. The 
expressions of the commercially provided ADSCs were CD31−CD34−CD45−CD90+CD105+CD146−, showing 
a difference between the two in CD105 only. Red line: antibody, black line: isotype.
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The cell qualities of the generated IPCs.  There were no differences for the induced IPCs in mor-
phology between those from the subcutaneous and the visceral adipose tissues (Fig. 3A). In insulin and 4′, 
6-diamidino-2-phenylindole (DAPI) immunofluorescence, the cytoplasm of the generated IPCs was well stained 
on day twenty-one (21) (Fig. 3B). To estimate the number of generated IPCs the DAPI positive cells when counted 
showed an average count (n = 3) of 163. Thus it was calculated that there were 1.6 × 104 cells in one IPC when an 
IPC was assumed to have a 300 μm diameter globular shape (Fig. 3C). As well, the number of cells was estimated 
by the quantity of the DNA of the ADSCs which was 88.4% preserved in the generated IPCs (from 3.2 × 106 μg/
mL/plate to 2.8 × 106 μg/mL/plate, the average of three (3) independent plates, Fig. 3D). Thus it was calculated 
that, theoretically, 1.8 × 104 cells existed in one IPC. Comparing generated IPCs from fat tissue procurement cites, 
there was a difference between the numbers of strongly insulin positive cells in the IPCs derived from the subcu-
taneous and from the visceral ADSCs (43.0 vs. 5.0/high power field, P = 0.01, Mann-Whitney U test, Fig. 3E,F). 
In these generated IPCs the cytoplasm of many of the cells was well stained by C-peptide and PDX-1 antibodies 
on day twenty-one (21) (Fig. 3G,H).

The difference of generated IPCs for glucose stimulation.  Next, the differences between the IPCs 
generated from the ADSCs isolated from the subcutaneous and the visceral adipose tissues were examined. A 
glucose stimulation test of the IPCs at day twenty-one (21) showed the insulin secretion capacity was higher in 
the subcutaneous IPCs than the visceral IPCs (subcutaneous IPC: 4.81, 3.84, 4.67, 1.86; visceral IPCs: 0.90, 1.86, 
1.34, 2.02; median SI values of subcutaneous IPC vs visceral 3.8 vs. 1.5; P = 0.02, Mann-Whitney U test, Fig. 4).

In vivo functional assessment of the IPCs.  From the results above, the in vivo function of IPCs derived 
from the ADSCs isolated from subcutaneous fat tissue was investigated. The non-fasting blood glucose levels of 
the recipients (n = 4) are shown in Fig. 5A. In the sham group (n = 4), the blood glucose levels only increased and 
were never marked below 400 mg/dl throughout the experiment. In contrast, the blood glucose levels decreased 
gradually in the IPC group to below 200 mg/dl by day nine (9) after transplantation and stayed around 100 mg/dl 
up to thirty (30) days after transplantation (4/4, 100%).

Pathology of the transplanted IPCs.  The transplanted IPCs were observed under the kidney capsule on 
day thirty (30) post-transplantation. RCP pieces were still observed in these clusters (Fig. 5B, upper). These clus-
ters were well stained by anti-insulin and anti-human leukocyte antigen (HLA) class I (Fig. 5B, lower).

Figure 2.  The differences in the cytokine release patterns between the ADSCs from the subcutaneous and 
visceral adipose tissues. (A) There were differences in some cytokines between the subcutaneous and visceral 
ADSCs using a cytokine assay kit. (B) These cytokines were angiogenesis-related, such as: CHI3LI; IL-1β; EGF; 
MCP-1; CST3; IL-6; IL-8; PTX3; TGF-β; PLAUR; and TNF-α. These cytokines’ secretions were smaller in the 
supernatants of the ADSC conditioned medium from subcutaneous adipose tissue. We analysed pixel density 
in each spot of the array (*P < 0.05, Mann-Whitney U test). (C) The cell proliferation speed was faster in the 
subcutaneous ADSCs than in the visceral ADSCs (3.3 vs. 5.8 days, *P = 0.04. Mann-Whitney U test).
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Discussion
ITx is potentially a curative treatment for people with TIDM. However, it currently requires multi-donors to 
secure enough islets to transplant into one recipient to achieve a successful outcome. Thus, the generation of 
IPCs has the possibility to resolve these urgent issues and ADSCs can be obtained by a less invasive procurement 
method with lower ethical problems. As the location to harvest ADSCs, this study focused on subcutaneous adi-
pose tissue because of the safety and simplicity of procurement. It can be collected by local anaesthesia and can 
be often used from the disposal waste of plastic surgery (as stromal vascular fraction). Also, it is reported ADSCs 
derived from subcutaneous adipose tissue can be regenerated and used by dermatology and in plastic surgery17,18. 
However, abdominal surgeons generally use omentum (visceral adipose tissue) for the repair of gastrointestinal 
perforations19,20. The authors have also experienced that these perforative points were completely replaced with 
regenerated tissues by an omental patch, thus digestive surgeons often have the impression that omentum has 
superior self-renewal ability. Moreover, it has also been reported that omental ADSCs promote angiogenesis 
and cell proliferation21. Therefore, a major question focused on in this study was whether isolated ADSCs from 
subcutaneous adipose tissue are better than visceral fat tissue for generating superior functioning IPCs. At first, 
the surface markers of the ADSCs isolated from subcutaneous and visceral fat tissue were the same, even though 
CD105 was negative compared to the commercially available ADSCs. It is reported that CD105 is a co-receptor 
for transforming the growth factor beta (TGFβ) receptor that antagonizes TGFβ signalling and is also a marker 
for vascular endothelial cells22. Moreover, it is also reported that freshly isolated ADSC contains various cell 
types, and homogeneous CD105+ cells only remain after many passages on plastic dishes23. However, CD105+ 
and CD105− MSC subpopulations varied in their differentiation and immune-regulatory properties24. According 
to this report, CD105− MSCs were more prone to differentiate and suppress the proliferation of CD4+ T cells 
compared to CD105+ MSCs. Moreover, the CD105− cells showed superior differentiation potential in chondroid 

Figure 3.  The characteristic differences of induced IPCs. (A) There were no differences for induced IPCs 
in morphology. Dithizone staining. Scale bar; 30 µm. (B) Insulin positive cells were confirmed using 
immunofluorescence staining. Immunofluorescence staining: Insulin (red, upper left); nucleus (blue, DAPI, 
upper right), merged image (lower left). R: RCP γ piece. The white square corresponded to a larger image 
(lower right). White arrowheads showed positive staining of insulin in the cytoplasm of cells. Scale bar; 50 µm. 
(C) The schema of methods for the calculation of cell numbers in IPCs. DAPI positive cells on 4 µm thickness 
were counted for using immunofluorescence images. Assuming that an IPC was a globular shape, that cell 
density was homogeneous and that the cutting plane was a perfect circle with the radius of z µm, the estimated 
IPC cell numbers can be found using this formula. A cell count on the cutting plane estimated the IPC cell 
numbers = z2π × 4: 4/3π × (average IPC diameter)3. (D) DNA quantity of cells on day zero (0) (ADSC) and day 
twenty-one (21) (IPC). Three independents experiments. (E) Insulin immunofluorescence (red: insulin, blue: 
DAPI, R: RCP γ piece, white arrowheads: positive staining of insulin in cytoplasm of cells). Scale bar; 5 µm. (F) 
Insulin staining positive cell numbers in random three high power fields were increased in the subcutaneous 
IPCs (43.0 vs. 5.0/high power field, *P = 0.01, Mann-Whitney U test). Cytoplasm of many cells in IPCs were 
strongly stained by C-peptide (G) and PDX-1(G). R: RCP γ piece, white arrowheads: positive staining of cells, 
Scale bar; 10 µm.
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lesions compared to the CD105+ cells25. Thus, the finding in this study may suggest that CD105−ADSCs could 
affect the differentiation potential toward IPCs, even though investigations should continue regarding the fate and 
cytokine secretory ability of CD105−ADSCs.

Regarding to cytokines, subcutaneous ADSCs were found to secret less fat-tissue related inflammatory 
cytokines and had better proliferation abilities. On the one hand, the IPCs from subcutaneous ADSCs showed 
better insulin secretive function and expressed more insulin levels in vitro, and converted the hyperglycaemic 
state of STZ-induced diabetic nude mice into normo-glycaemia in vivo. Originally, IPCs should be induced for 
each harvest location, and performed in-vivo functional test to compare the function. However, IPCs derived 
from the visceral adipose tissue still had a low SI level on day 21 and we considered that IPCs (Day 21) derived 
from them are not suitable for transplantation experiments because of immature condition (we previously exam-
ined that IPCs less than SI 3 is not resulted in normalizing blood glucose after transplantation, data not shown). 
So, we showed only transplantation results of IPCs derived from Sham and subcutaneous adipose tissue.

On the other hand, the visceral ADSCs were exposed to more inflammatory cytokines and the IPCs generated 
from them showed poor insulin secretion. Regarding characteristic differences, subcutaneous adipocytes secrete 
adiponectin and leptin which are regarded as low-density cholesterol, while visceral adipocytes secrete inflam-
matory cytokines such as: IL-6; TNF-α; MCP-1; PAI-1; and angiotensin II26. It was reported that transforming 
growth factor-β (TGF-β) secreted from MSCs caused a decrease in cell viability and differentiation potential27,28. 
In addition, multiple signalling cascades stimulated by interleukin-1β (IL-1β), interferon-γ (IFN-γ), and tumour 
necrosis factor-α (TNF-α) incited inducible nitric oxide synthase (iNOS) and resulted in apoptosis and inhib-
ited functionality29,30. This defect in cell activity is typically characteristic of impaired insulin biosynthesis and 
secretion, usually accompanied by oxidative and endoplasmic reticulum (ER) stress31–34. In summary, the ADSCs 
derived from visceral adipose tissue secret more inflammatory cytokines and possible exposure to more oxidative 
and ER stress. The IPCs generated from them showed poor differentiation and insulin secretion.

Moreover, when considering the proper transplantation site, it is proposed that the intra-mesentery trans-
plantation identified in a previous study is one reasonable and less-invasive transplantation site12. As professional 
hepato-biliary-pancreatic and transplant surgeons, the authors routinely undergo high-risk laparoscopic surger-
ies35–37. Thus it may be safe and easy for both recipients and surgeons to introduce intra-mesentery IPC trans-
plantation as a Phase I/II study after considering the number of cells administered because the injection of a small 
amount into the mesentery is an easy technique when commercially available laparoscopic instruments are used.

Taken together, this study showed the possibility of an innovation to create IPCs from subcutaneous adipose 
tissue which was proved to have a more rapid differentiation rate and better functional efficiency compared to 
visceral adipose tissue. Moreover, that might be completely in agreement with the authors’ future research. That 
is: the intention to obtain 1.0 cm3 of adipose tissue from T1DM patients; to isolate and passage ADSCs from this 
tissue (approximately 1.0 × 107 cells); to differentiate the cells into IPCs (approximately 88% cell numbers main-
tained) using the modified protocol identified in this study; and culture them without any genetic modifications. 
The generated IPCs would then be auto-transplanted into the patients’ mesentery laparoscopically. Within such 
concepts, these results may concretize a strategy for the clinical application of IPCs.

Figure 4.  GSIS test of IPCs. The insulin secretion capacity as a glucose stimulation test was higher in the 
subcutaneous IPCs than the visceral IPCs (3.8 vs. 1.5, *P = 0.02, Mann-Whitney U test).
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Materials and Methods
Research settings.  Four (4) patients who had undergone digestive surgeries at The Tokushima University 
from 2018 to 2019 were included in this study. Both subcutaneous and visceral adipose tissues were collected 
and disposed as not necessary during the surgeries. This study was authorized in advance by the Institutional 
Review Board of the Tokushima University Hospital (the approved ID number: 3090) and the University Hospital 
Medical Information Network (the approved ID number: 000035546), was performed in accordance with rele-
vant guidelines/regulations. All patients provided written informed consents.

Cell preparation.  0.1 gram of adipose tissue was harvested from each patient’s subcutaneous tissue and 
hepatic round ligament in the sterile environment during operation. ADSCs were obtained two (2) weeks later 
using a adipose stem cell isolation kit (Funakoshi Co, Tokyo, Japan) and passaged with ADSCs basal medium mix-
ture of MesenPROTM RS (Gibco, Carlsbad, CA) and GlutaMAXTM-I (Gibco). After three (3) passages, the ADSCs 
were counted and mixed with recombinant peptide micro-pieces (RCP μ-pieces, FUJIFILM, Tokyo, Japan), and 
injected into all of the wells in a Nunchlon Sphera 96U Bottom Plate (Thermo fisher scientific, Waltham, MA) 
as a 3D culture. The protocol for induction of IPCs was modified from the authors’ previous reported protocol9. 
Specifically, the contents of the differentiation cocktail were changed to recombinant human activin-A, hepatocyte 
growth factor and human albumin. The ADSCs were cultured using the Step-1 (from day 0 to day 7) medium 
containing: Dulbecco’s modified Eagle’s medium/F12 (Gibco); 1% recombinant human albumin (Wako, Osaka, 
Japan); exendin-4 (Sigma-Aldrich, St. Louis, MO); 1% N2 supplements (Gibco); 1% B27 supplements (Gibco); 
and 50 ng/mL recombinant human activin-A (PeproTech Inc., Rocky Hill, NJ). Step-2 (from day 8 to day 21) was 
prepared the same way as Step-1 medium with the addition of: 50 ng/mL recombinant human hepatocyte growth 
factor (PeproTech Inc.); valproic acid (Wako); and 10 mM nicotinamide (Sigma-Aldrich). The culture medium was 
changed and supernatant was collected every two (2) days. STEMPROTM Human Adipose-Derived Stem Cells 
(Invitrogen, Grand Island, NY) was purchased and used for fluorescence activated cell sorting (FACS) analysis.

Figure 5.  In vivo functional test. (A) Ninety-six (96) IPCs generated from the ADSCs and isolated from the 
subcutaneous adipose tissue were transplanted under the kidney capsule of streptozotocin-induced diabetic 
nude mice (n = 4, each mouse received IPCs from a different patient). In the sham group (n = 4), the blood 
glucose level remained at a high level. However, in the IPC-Tx group, the non-fasting blood glucose level 
decreased gradually after transplantation and remained normal. (B) Transplanted IPCs were observed under 
the kidney capsule on day thirty (30) post-transplantation (HE stains, upper left, yellow arrowheads). RCP 
pieces were still observed in these clusters (HE stains, upper left, white arrows). These clusters were well stained 
by anti-insulin antibody (lower left) and anti-human leukocyte antigen (HLA) class I (lower right). Scale bar; 
30 µm.
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FACS analysis.  2.0 × 106 ADSCs were washed twice with Phosphate Buffered Saline (PBS) (SANTA CRUZ 
Bio., Dallas, TX) and added to 100 μL of FACS buffer and 5 μL of each antibody: CD31 (Thermo fisher scientific); 
CD34 (Thermo fisher scientific); CD45 (BioLegend, San Diego, CA); CD90 (Thermo fisher scientific); CD105 
(Thermo fisher scientific); and CD146 (BioLegend). After thirty (30) minutes in a dark room, the cells were ana-
lysed using FACSVerse and BD FACSuite software (BD Biosciences, San Paulo, Brazil).

Glucose-stimulated insulin secretion (GSIS) test.  To determine the in vitro potency of the IPCs, the 
insulin secretory response to glucose was measured using a modified method previously described38–40. Briefly, 
10 IPCs were randomly transferred to a cell culture insert with: Krebs buffer (115 mM NaCl; 5.0 mM KCl; 2.3 mM 
CaCl2; 1.0 mM MgCl; 1.2 mM KH2PO4; 25 mM NaHCO3; pH 7.4); 25 mM HEPES (Gibco); and 0.1% BSA frac-
tion V (Sigma-Aldrich) containing 2.8 mM glucose and incubated at 37 °C for one (1) hour as pre-incubation. 
Thereafter, the IPCs were suspended three (3) times for one (1) hour at 37 °C in Krebs buffer with the addition of 
various glucose concentrations (basal I: 2.8 mM, stimulation: 22 mM, respectively). The insulin level was meas-
ured using an Insulin Enzyme-Linked Immunosorbent Assay Kit (AKRIN-011T, Wako Shibayagi Corporation, 
Gunma, Japan).

Immunofluorescence and confocal microscopy.  The IPCs in the culture medium were fixed with iP 
gel® (Nippon Genetics Corporation, Tokyo, Japan) and 10% formalin (Gibco), embedded in optical cutting 
temperature compound and frozen. Then 4-µm-thick sections were cut, rinsed in PBS and 5% BSA, and incu-
bated with Universal Blocker Reagent for thirty (30) minutes in a humidified chamber at room temperature. 
Thereafter, sections were incubated with primary antibodies, anti-insulin (1:100 dilution; 4590, Cell Signaling 
Technology, Tokyo, Japan) overnight at 4 °C in a humidified chamber. After being washed with PBS and 4′, 
6-diamidino-2-phenylindole (DAPI; Invitrogen Corp, Carlsbad, CA) the sections were applied to the slides and 
incubated at room temperature for two (2) hours in the dark. The cellular composition was determined by manu-
ally counting the stained cells using a fluorescent microscope (Keyence, Keyence Corp, Chicago, IL).

Cell number estimation of IPCs by DNA quantity.  DNA quantity was measured using a DNA Quantity 
kit (Cosmo Bio, Tokyo, Japan) according to the manufacturer’s protocol. Briefly, ADSCs and IPCs were washed 
with phosphate-buffered saline (PBS) and homogenized ultrasonically after a 0.5 ml buffer was added to each well. 
Then absorbance at 450 nm was measured using a plate reader (SpectraMax i3; Molecular Devices, Tokyo, Japan) 
at a correction wavelength of 540 nm.

Cell count of IPCs (mathematically).  DAPI positive cells on 4 µm thickness were counted for using 
immunofluorescence images. Assuming that an IPC was a globular shape, that cell density was homogeneous and 
that the cutting plane was a perfect circle with the radius of z µm, the estimated IPC cell numbers can be found 
using this formula. A cell count on the cutting plane: estimated the IPC cell numbers = z2π × 4: 4/3π × (average 
IPC diameter)3.

Dithizone staining.  The cultured cells were stained using a dithizone solution. The dithizone solution con-
sisted of 50 mg dithizone (Wako) per 5 mL dimethyl sulfoxide (Wako). The IPCs were incubated in dithizone 
solution under 37 °C and 5% CO2 conditions after being washed by PBS three (3) times. Stained samples were 
investigated using a multi-purpose microscope BZ-X710 (KEYENCE Engineering, Japan) and BZ-X analyser 
(KEYENCE Software, Japan).

Cytokine assay.  A Human XL Cytokine Array Kit (R&D SYSTEMS., Minneapolis, MN) was used to meas-
ure each cytokine secretion of the ADSC’s conditioned medium. The ADSCs were confluented and harvested in 
each conditioned medium. The procedure used was in accordance with the cytokine assay protocol. Briefly, each 
membrane was placed in a separate well and incubated with the array buffer for one (1) hour. Samples were pre-
pared by diluting the desired quantity with the array buffer. After aspirating the array buffer and adding prepared 
samples, they were incubated overnight at 2–8 °C on a rocking platform shaker. Each membrane was washed and 
added to the diluted detection antibody cocktail then incubated for one (1) hour. After incubation, the prepared 
Chemi Reagent Mix was inserted onto each membrane. The membrane was exposed to X-ray film and analysed 
pixel density in each spot of the array.

IPCs transplantation.  Eight (8) week-old male BALB/c nu-nu mice (Charles River Laboratories, Kanagawa, 
Japan) were used as the recipients (n = 4). The mice were allowed free access to water and standard laboratory 
food and were housed at a temperature of 22 ± 2 °C, relative humidity of 55 ± 5%, and a twelve (12) hour light: 
twelve (12) hour dark cycle with lights. The present study was conducted in compliance with the Division for 
Animal Research Resources, Graduate School of Biomedical Sciences, Tokushima University (approved num-
ber: T29-29). The experiments and procedures were approved by the Animal Care and Use Committee of 
the University of Tokushima and were performed in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals.

To induce a diabetic state in the mice, 200 mg/kg streptozotocin (STZ, Sigma-Aldrich) was administered 
intra-peritoneal as a single injection. The diabetic states were defined after two (2) consecutive measurements of 
blood glucose over 350 mg/dl or one (1) measurement over 400 mg/dl with a glucometer (Terumo Corporation, 
Tokyo, Japan). Then, ninety-six (96) IPCs were carefully hand-picked and transplanted under the kidney capsule 
of the streptozotocin-induced diabetic nude mice (n = 4, each mouse received IPCs from a different patient). 
The non-fasted glucose levels of all the mice were measured from the tail vein every one (1) or two (2) days after 
surgery.
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Immunohistochemical staining.  Generated cells and extirpated organs were prepared and stained by 
methods already reported12. Briefly, generated IPCs were fixed using a cell fixing kit (Funakoshi), recipient mice 
were sacrificed and IPCs bearing kidneys were extirpated. 4 μm thick paraffin embedded sections were incubated 
with primary antibodies against insulin (aa287–299, LS-B129; LSBio) at a dilution of 1:100 in phosphate-buffered 
saline (PBS), anti-HLA class I (ab70328; abcam) 1:100 in PBS, C-peptide (bs-0274R, Funakoshi) 1:100 in PBS and 
pancreatic and duodenal homeobox 1 (PDX-1, ab47308;abcam) 1:200 in PBS for 1 h at room temperature after 
deparaffinization and antigen retrieval. Slides were then incubated with biotinylated secondary antibody, fol-
lowed by treatment with a streptavidin-biotin-horseradish peroxidase complex. Positive staining was visualized 
with diaminobenzidine and cell nuclei were counterstained with Mayer’s haematoxylin.

Statistical analysis.  The data analysis was performed with statistical software (JMP software, version 13; 
SAS Campus Drive, Cary, NC). Comparisons between the two (2) groups were performed by Mann-Whitney U 
test. The One-way ANOVA with Turkey-Kramer’s test was used to compare in vivo functional test. In the figures, 
the median values (75th and 25th percentiles) and median ± standard deviation (SD) are given, respectively. A 
value of p < 0.05 was considered to indicate statistical significance.

Data Availability
The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable 
request.
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