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Abstract
To synthesize nucleoside and oligosaccharide derivatives, we often use a glycosylation reaction to form a glycoside bond. Cou-

pling reactions between a nucleobase and a sugar donor in the former case, and the reaction between an acceptor and a sugar donor

of in the latter are carried out in the presence of an appropriate activator. As an activator of the glycosylation, a combination of a

Lewis acid catalyst and a hypervalent iodine was developed for synthesizing 4’-thionucleosides, which could be applied for the syn-

thesis of 4’-selenonucleosides as well. The extension of hypervalent iodine-mediated glycosylation allowed us to couple a nucleo-

base with cyclic allylsilanes and glycal derivatives to yield carbocyclic nucleosides and 2’,3’-unsaturated nucleosides, respectively.

In addition, the combination of hypervalent iodine and Lewis acid could be used for the glycosylation of glycals and thioglycosides

to produce disaccharides. In this paper, we review the use of hypervalent iodine-mediated glycosylation reactions for the synthesis

of nucleosides and oligosaccharide derivatives.
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Introduction
Nucleic acids and oligosaccharides are both mandatory poly-

mers for the maintenance of life and cell growth. The former

exists in nuclei and codes genetic information, which is trans-

formed into proteins through a transcription process known as

the “central dogma” (i.e., DNA makes RNA makes proteins).

The latter make up the cell walls of microorganisms and also

play a role in transmitting information on the cell surface,

whose interactions with proteins are a starting point for signal

transduction into cells [1]. Since both types of polymers are

essential for cell viability, their biological synthesis, including

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Figure 1: Design of potential antineoplastic nucleosides.

the synthesis of their monomer units, e.g., nucleotides, is highly

regulated. Damage to these vital molecules often results in

congenital disease with ultimately fatal consequences [2,3]. Ac-

cordingly, the study of polymers and their biosynthesis is quite

important, and informs the development of new drugs for

diseases including cancers and infectious diseases caused by

viruses [4-7]. Indeed, many drugs related to nucleic acids and

oligosaccharides have been developed and used in clinical

fields. Synthetic chemists have contributed to the studies by

supplying biological tools for the analyses of these polymers,

as well as by synthesizing effective drug candidates for the

diseases mentioned above [4,8-14].

To synthesize nucleoside and oligosaccharide derivatives,

glycosylation reactions are often used to form a glycoside bond.

In the case of nucleoside synthesis, a coupling reaction be-

tween a persilylated nucleobase and a sugar donor is typically

used [15-17]. On the other hand, the reaction between an

acceptor and sugar donor is carried out in the presence of an

appropriate activator for oligosaccharide synthesis [18,19]. In

both cases, a Lewis acid is generally used as an activator for

sugar donors. Our previous review focused on the development

of glycosylation reactions and their application to the synthesis

of nucleoside derivatives [17]. In this review, we showed our

glycosylation reactions under oxidative conditions. These were

quite useful and the conceptually similar reactions were widely

used for synthesizing nucleoside derivatives. Recently, a combi-

nation of a Lewis acid catalyst and hypervalent iodine was de-

veloped for synthesizing 4’-thionucleosides, which was based

on a Pummerer-type reaction coupled with oxidation. The

concept of the oxidative glycosylation reaction was successful-

ly applied to the synthesis of other nucleoside derivatives, in-

cluding 4’-selenonucleosides and carbocyclic nucleosides. The

hypervalent iodine-mediated glycosylation has also been used

for oligosaccharide synthesis employing glycals and thioglyco-

sides as sugar donors. In this review, we survey the synthesis of

nucleoside and disaccharide derivatives under oxidative condi-

tions mostly based on the hypervalent iodine-mediated glyco-

sylation reactions.

Review
Synthesis of 4’-thionucleosides
Over the last decade, we have steadily pursued the identifica-

tion of novel antitumor and antiviral nucleoside derivatives

[17,20-22]. Matsuda and co-workers reported a 2’-substituted

cytidine derivative, DMDC (1), with potent antitumor activity

[23,24]. In other reports, Walker [25] and Secrist [26] indepen-

dently described the potent antiherpesvirus activity of 2’-deoxy-

4’-thionucleoside 2, in which sulfur was introduced in place of

the sugar ring oxygen of 2’-deoxynucleoside. The results for

2’-substituted nucleosides and 2’-deoxy-4’-thionucleosides

strongly suggested that 2’-substituted 4’-thionucleosides would

be promising candidates for novel antitumor agents. Thus, we

designed a novel 2’-substituted 4’-thiocytidine, 4’-thioDMDC

(3), as our target molecule for potential antitumor agents

[27,28] (Figure 1).

At the time we started our project, there had been no reports

regarding the synthesis of even 2-substituted 4-thiosugar deriva-

tives. We thus developed the first synthetic route accessing the

4-thiosugar derivative by way of bicyclic intermediate 8 from

diacetoneglucose (5). Construction of the bicyclic ring of 8 was

achieved by consecutive inter-/intramolecular SN2 reactions of

the dimesylate derivative 7 obtained by manipulations of 5.

After acetal hydrolysis and the subsequent hydride reduction,

4-thioarabinose derivative 9 was obtained in good yield. Intro-

duction of a TBDPS group at the primary hydroxy group of 9,

oxidation and Wittig reaction, followed by deprotection of the

benzyl group, gave allyl alcohol 11.

The most popular method to form a glycosyl bond between the

sugar moiety and the base of a nucleoside is a Vorbrüggen reac-

tion [15,16], in which a silylated base and sugar donor, e.g.,

1-acetoxy sugar, are condensed by a Lewis acid catalyst. It was

clear that this reaction could also be used in the synthesis of

4’-thionucleosides as well as normal “4’-oxy” nucleosides.

However, for reasons which will be described later, we decided

to develop an alternative method to build the glycosyl bond of

4’-thionucleosides by using a direct coupling of a 4-thiosugar
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Scheme 1: Synthesis of 4’-thioDMDC.

sulfoxide and a silylated base under sila-Pummerer conditions

[29,30]. We found that treatment of 12, obtained by oxidation

of 11, with excess persilylated N4-acetylcytosine in the pres-

ence of TMSOTf as a Lewis acid gave an inseparable mixture

of α- and β-anomers of 4’-thioDMDC derivatives 15 in good

yield. Based on the study of the sila-Pummerer reaction by Kita,

it was plausible that the reaction proceeded via the formation of

sulfenium ion 14 which was formed by β-elimination of sily-

lated sulfoxide 13. The 4’-thioDMDC derivative 15 was depro-

tected and the resulting anomeric mixture was separated to

furnish 4’-thioDMDC (3) and its α-anomer [27,28] (Scheme 1).

After we reported the synthesis of 4’-thioDMDC using a

Pummerer-type glycosylation reaction, Minakawa and Matsuda

applied the reaction to the syntheses of 4’-thioribonucleosides.

Applying the synthetic scheme of 2’-deoxy-4’-thionucleoside

by Walker to a ribo derivative, 2-dimethoxybenzoate 20 was

prepared from tribenzylated ribose 16. Introduction of a

dimethoxybenzoyl (DMBz) group at the 2-position and dia-

stereoselective formation of sulfoxide 20, favored in Pummerer-

type glycosylation reactions and cases where the approach of

the nucleophile is restricted, were the key strategies for their

synthesis of 4’-thioribonucleosides. Under optimized condi-

tions, the desired 4’-thiouridine derivative 21 was the sole prod-

uct and it was obtained in excellent yield (Scheme 2). Using the

method developed, they succeeded in preparing all four kinds of

4’-thioribonucleosides [31].

We also synthesized 4’-thioribonucleosides constructing the

skeleton of the 4-thioribose via a ring-contraction reaction

under reductive conditions [32] from 2-mesylate 23, which was

obtained from 22. As shown in Scheme 3, the reaction first

started to form an episulfonium ion 24 triggered by intramolec-

ular SN2 reaction at the 5-position by sulfur atom. Secondary,

ring contraction from thiopyranose to thiofuranose occurred to

produce 5-aldehyde 26. Finally, hydride reduction of 26 gave

the 4-thiofuranose derivative 27. The Pummerer-type glycosyla-

tion reaction of 5-O-silylated sulfoxide 28, by treating with 2,4-

bis(trimethylsilyl)uracil (29) and excess diisopropylethylamine

(DIPEA) in the presence of TMSOTf, gave 4’-thiouridine

derivative 30 in a good yield. The reaction stereoselectively

proceeded and resulted the predominant formation of the

β-anomer due to steric hindrance of the 2,3-di-O-isopropyli-

dene group.

Before our reports regarding the Pummerer-type glycosylation,

the synthesis of 4’-thionucleosides was based on the known

chemistry: typically, a 1-acetoxy-4-thiosugar or its synthetic

equivalent was obtained from natural sugars and subjected to

the Vorbrüggen reaction as in the case of 2’-deoxy-4’-thionu-

cleosides [25,26]. When synthesizing 4’-thionucleosides by the

way of a sulfide derivative 31, the known chemistry should lead

us to use a classical Pummerer reaction to produce 1-acetoxy

derivative 33 after converting 31 to the corresponding sulf-

oxide 32. Even though this scheme should be promising
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Scheme 2: Synthesis of 4’-thioribonucleosides by Minakawa and Matsuda.

Scheme 3: Synthesis of 4’-thioribonucleosides by Yoshimura.

enough, we intended to introduce an additional synthetic idea

based on the fact that both of the reaction intermediate of the

Vorbrüggen reaction [15,16] of 33 and the sila-Pummerer reac-

tion developed by Kita [29,30] involving sulfoxide 32 would be

the same sulfenium ion 34. This new glycosylation reaction was

unique and attractive since it was capable of skipping a step. In

other words, the reaction could directly access sulfenium ion 34

from sulfoxide 32. Thus we developed the Pummerer-type

glycosylation as mentioned above. From these results it can be

deduced that the expected sulfenium ion had formed and that

the concept of the Pummerer-type glycosylation was actually

effective for the formation of the glycosyl bond of 4’-thionucle-

osides. After we had reported our synthesis of 4’-thioDMDC,

the method was widely adopted for the synthesis of 4’-thionu-

cleoside derivatives by other groups and became a standard ap-

proach for the glycosylation [33-37]. On the other hand, the

conversion from the sulfide to 4’-thionucleoside using the

Pummerer-type glycosylation included an oxidation step. If the

oxidation of sulfide 31 and the Pummerer-type glycosylation of

the sulfoxide 32 could be performed in the same flask, the reac-

tion could bypass two of the reaction steps and would directly

produce 4’-thionucleoside 35 from 31. Indeed, the utilization of

hypervalent iodine would have enabled this short-cut reaction

(Figure 2).

Hypervalent iodine reagents have been widely used in organic

synthesis [38]. Although originally used as oxidative agents,

their use has spread to coupling reactions, including those for

the formation of C–C bonds [39-43]. In the case of C–N bond

formation, introduction of an azido group using PhI=O and

TMSN3 was reported by Kita and co-workers [44]. Their paper

prompted Nishizono et al. to study the glycosylation reaction
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Figure 2: Concept of the Pummerer-type glycosylation and hypervalent iodine-mediated glycosylation.

Scheme 4: Oxidative glycosylation of 4-thioribose mediated by hypervalent iodine.

for 4’-thionucleosides using hypervalent iodine reagents. As a

4-thiosugar donor, 2-p-methoxybenzoate derivative 36 was pre-

pared following Matsuda’s method as shown in Scheme 2, and

then was subjected to the Pummerer-type glycosylation medi-

ated by hypervalent iodine. Treatment of 36 with bis(trifluoro-

acetoxy)iodobenzene (PIFA) and uracil in the presence of tri-

methylsilyl trifluoromethanesulfonate (TMSOTf) and triethyl-

amine gave a 5:1 mixture of 4’-thiouridine derivative 37 in 55%

yield. The reaction of 36 with iodosylbenzene (PhI=O)

proceeded stereoselectively and gave only the β-anomer of 37

in 53% yield [45] (Scheme 4).

The mechanism of hypervalent iodine-mediated glycosylation

can be expressed as shown in Figure 3. The activated hyperva-

lent iodine reagents in the presence of TMSOTf reacted a sulfur

atom of 36 to give 38, in which elimination of iodobenzene

and HX might subsequently occur to generate a sulfenium ion

40 (path a). The nucleophilic attack of the silylated base to

the sulfenium ion 40 favored approaching from the β-face to

give only the β-anomer 37 as in the case of Minakawa and

Matsuda’s synthesis described above.

Nishizono considered that the difference between the stereose-

lectivities of the coupling reactions in methods A and B was

caused by the existence of another reaction path of the sulfo-

nium salt (38 or 39). In path b, the 4-thiosugar 41 was gener-

ated and reacted with a nucleobase, giving a mixture of α- and

β-anomers since the reaction might occur by the simple SN2

reaction. Thus, the reaction proceeded through both paths a and

b in method A, but path a was predominant in the reaction of

method B [45] (Figure 3).

Nishizono et al. applied the hypervalent iodine-mediated glyco-

sylation to purine 4’-thionucleosides [46]. However, the reac-

tion of 36 with 6-chloropurine resulted in the formation of a

regioisomer reacting at the 4-position without any formation of

the desired purine 4’-thionucleoside. The result should relate to

the acidity of the α hydrogen adjacent to a sulfur atom, which

affects the regioselectivity of the reaction. To study the effects

of a protecting group on the reaction, the regioselectivity of the

reaction was examined using 42 and 43, which were obtained

from 27. When the 5-hydroxy group was protected with a

benzoyl group, the coupling reaction of 42 occurred at the 4-po-
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Figure 3: Speculated mechanism of oxidative glycosylation mediated by hypervalent iodine.

Scheme 5: Synthesis of purine 4’-thioribonucleosides using hypervalent iodine-mediated glycosylation.

sition, as in the case mentioned above, to give 46 in 44% yield

along with the desired product and its N7 isomer. In contrast,

switching the protecting group of 27 at the 5-position to TBS

resulted in the exclusive formation of 45 reacted at the 1-posi-

tion (28%) along with the N7 stereoisomer (10%). These results

support the above-mentioned hypothesis. Finally, 4'-thioadeno-

sine (49) was synthesized by treating 45 with TFA followed by

methanolic ammonia [46] (Scheme 5).

The same group attempted to apply the oxidative coupling reac-

tion to the synthesis of thietane nucleosides [47]. The substrate

of the coupling reaction was prepared as shown in Scheme 6

starting from benzyloxyacetaldehyde (50). When a hypervalent

iodine reagent was used for glycosylation with a diastereomeric

mixture of sulfide 53, the reaction stereoselectively gave the

ring-expanded nucleoside 54 in 30% yield, but did not give the

desired thietane nucleoside at all (Scheme 6).
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Scheme 6: Unexpected glycosylation of a thietanose derivative.

Scheme 7: Speculated mechanism of the ring expansion of a thietanose derivative.

Considered that the ring-expansion occurred in the absence of

the hypervalent iodine reagent, the Nishizono and co-workers

speculated that the reaction mechanism was as shown in

Scheme 7. First, the Lewis acid catalyzed the intramolecular

SN2 reaction of sulfur to form the epi-sulfonium ion 55, which

proceeded only from the cis-isomer due to the steric require-

ment. The subsequent nucleophilic attack leaving the benzoate

anion resulted in the formation of a ring-expanded product 56,

which became a substrate of the hypervalent iodine-mediated

glycosylation. As a result, 4’-thiofurano nucleoside 54 was

stereoselectively obtained with the assistance of the neigh-

boring benzoyl group as in 58.

The desired thietanonucleosides 62 and 63 with an anomeric

hydroxymethyl group were synthesized by the Pummerer-type

glycosylation reaction of trans-cyclobutane sulfoxide 59. The

authors concluded that the stereochemistry of the sulfoxide and

the nature of the protecting groups had no significant effect on

the yield of the Pummerer-type glycosylation [47] (Scheme 8).

Pummerer-type glycosylation, which was developed by our

group, improved the synthesis of 4’-thionucleosides. It greatly

contributed to search new biological active nucleoside deriva-

tives. The use of hypervalent iodine reagents helped to further

improve their synthesis by saving reaction steps to improve syn-

thetic efficiency.

Synthesis of 4’-selenonucleosides
The unique biological activity of 4’-thionucleosides triggered

the synthesis of their chalcogen isosters, 4’-selenonucleosides,

the activity of which were reported. The first synthesis of

4’-selenonucleosides was reported by Jeong and co-workers in

2008 [48,49].

As in the case of the 4’-thioribonucleoside described in

Scheme 3, Jeong et al. chose a 2,3-di-O-isopropylidene-pro-

tected intermediate as a donor of glycosylation, which was syn-

thesized based on their method developed for 4’-thionucleo-

sides. Starting from compound 64, which was obtained from
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Scheme 8: Synthesis of thietanonucleosides using the Pummerer-type glycosylation.

Scheme 9: First synthesis of 4’-selenonucleosides.

D-gulonic γ-lactone, dimesylate 66 was prepared. The consecu-

tive inter-/intramolecular SN2 reactions of 66 by selenide anion

gave a 4-seleno sugar 67 in an excellent yield. After converting

67 to the corresponding selenoxide, the resulting 68 was imme-

diately treated with uracil or N4-benzoylcytosine under the same

conditions for Pummerer-type glycosylation to give the desired

4’-selenouridine and 4’-selenocytidine derivatives in moderate

yields. Deprotection of the nucleoside derivatives afforded

4’-selenouridine and 4’-selenocytidine, respectively [48]

(Scheme 9). In the year in which the first synthesis of

4’-selenonucleoside was reported, Jayakanthan et al. used the

same strategy to synthesize 4’-selenonucleosides, including

4’-selenoadenosine [50].

After successful application of the Pummerer-type glycosyla-

tion to the synthesis of 4’-selenonucleosides, Jeong’s group re-

ported various 4’-selenonucleoside derivatives by using the

same method [51-58]. Minakawa and his group attempted to

synthesize 4’-selenonucleosides based on their method de-

scribed in Scheme 2 [59]. However, the Pummerer-type glyco-

sylation of selenoxide 74 obtained from 73 gave the desired

4’-selenonucleoside in low yield along with the formation of

diselenide 76 and deoxygenated 73 (Scheme 10). One of the

reasons for the unsatisfactory result was the instability of

selenoxide 74. Jeong et al. faced the same problem and

suppressed decomposition by the immediate reaction after

synthesizing the corresponding selenoxide [48].

To overcome these problems, Minakawa decided to use hyper-

valent iodine for the glycosylation reaction [59] as in Nishi-

zono’s synthesis of 4’-thionucleosides [45]. First, they opti-

mized the reaction conditions by examining the reaction of 73

with uracil in the presence of hypervalent iodine reagents. None

of the desired pyrimidine nucleoside 75 was formed when the

reaction was performed by treatment with iodosylbenzene,

TMSOTf and triethylamine in the presence of the silylated

uracil (Table 1, entry 1). Instead of trimethylamine, 2,6-lutidine

was employed to give 75 in 48% yield together with selenoxide
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Scheme 10: The Pummerer-type glycosylation of 4-selenoxide 74.

Table 1: The Pummerer-like glycosylation reaction mediated by hypervalent iodine.

Conditions Yield (%)

Entry Hypervalent iodine (1.2 equiv) Base (8 equiv) Solvent Temp (°C) Time (h) 75 74 73

1 PhIO Et3N CH2Cl2 0 4.5 0 0 33
2 PhIO 2,6-lutidine CH2Cl2 rt 17 48 20 8
3 PhI(OCOCF3)2 2,6-lutidine CH2Cl2 rt 3 38 0 40
4 PhI(OAc)2 2,6-lutidine CH2Cl2 rt 5 25 0 20
5 PhIO 2,6-lutidine ClCH2CH2Cl 50 1.5 64 0 13

74 (20%) and starting 73 (8%) (Table 1, entry 2). The use of

more reactive hypervalent iodine agents (PIFA and diace-

toxyiodobenzene) did not improve the chemical yield of 75 (Ta-

ble 1, entries 3 and 4). When 73 was treated with iodosylben-

zene, TMSOTf, 2,6-lutidine and the silylated uracil in dichloro-

ethane at 50 °C, the reaction gave 75 in 64% yield while sup-

pressing the formation of 74 (Table 1, entry 5).

Minakawa’s group attempted to apply the aforementioned reac-

tion to the synthesis of purine derivatives [60]. Based on the

reports by Jeong et al., who synthesized 4’-selenoadenosine

using the Vorbrüggen reaction [53], they conceived that the

hypervalent iodine-mediated reaction of “disarmed” sugar

donor 73 bearing an electron-withdrawing group at the 2-posi-

tion would not readily yield the desired purine derivative.

Therefore, they decided to use “armed” seleno sugar 67 as a

donor for the hypervalent iodine-mediated glycosylation reac-

tion as in Jeong’s synthesis.

The reaction of 67 was performed by treating with silylated

6-chloropurine, iodosylbenzene, TMSOTf and 2,6-lutidine in

dichloroethane at 85 °C for 2.5 h to give the desired N9-isomer

78 in 39% yield along with the formation of the N7-isomer 77

(31%) and the α-isomer (8%, N7/N9 mixture). On the other

hand, consumption of 67 required longer times and subsequent

isomerization to 78 was insufficient at 50 °C, giving 78 in 31%

yield with the predominant formation of 77 (40%). The separat-

ed N7 isomer 77 was successfully isomerized to the desired N9

isomer 78 in 53% yield upon treatment with TMSOTf in tolu-

ene at 90 °C. Under similar conditions, the hypervalent iodine-

mediated glycosylation reaction of 67 in the presence of 2,6-

dichloropurine was conducted. The coupling reaction proceeded

to give an inseparable mixture of N7-isomer 80 and N9-isomer

81 in 64% yield (80:81 = 1:1). To isomerize the undesired

N7-isomer to the desired product as in the case of 2,6-dichloro-

purine, the subsequent treatment of the resulting mixture with

TMSOTf in toluene at 90 °C gave rise to exclusive formation of
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Scheme 11: Synthesis of purine 4’-selenonucleosides using hypervalent iodine-mediated glycosylation.

Figure 4: Concept of the oxidative coupling reaction applicable to the synthesis of carbocyclic nucleosides.

the desired N9-isomer 81 in 62% yield. Finally, 81 was con-

verted to the desired guanosine derivative 82 [60] (Scheme 11).

As in the case of 4’-thionucleosides, the use of hypervalent

iodine greatly improved the glycosylation reaction with 4-seleo-

sugars by skipping the preparation of unstable selenoxide deriv-

atives.

Synthesis of carbocyclic nucleosides
As described above, in the hypervalent iodine-mediated glyco-

sylation, a thiosugar donor 83 was oxidized to a cationic inter-

mediate 84 with the assistance of a Lewis acid (TMSOTf) and a

base and the subsequent nucleophilic attack of silylated base to

84 gave the desired nucleoside 85. The success of the hyperva-

lent iodine-mediated glycosylation led us to apply the reaction

to the synthesis of carbocyclic nucleosides. In addition, we were

also encouraged by the study of Ochiai, who developed the

Friedel–Crafts reaction via umpolung of allylsilanes using

hypervalent-iodine reagents [61] and the pioneering work on

C–N bond formation using hypervalent iodine by Kita [62].

Thus, we envisioned the use of allylsilanes as a pseudosugar

donor for the synthesis of carbocyclic nucleosides. We ex-

pected to couple a cyclic allylsilane 86, which could act as a

pseudosugar donor for carbocyclic nucleosides 88, with a persi-

lylated nucleobase by using a combination of hypervalent

iodine and an appropriate Lewis acid (Figure 4).
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As shown in Scheme 12, an oxidative coupling reaction was ex-

amined using a model reaction [63]. Cycloalkenylsilanes 89a,b

and 90a,b were prepared by hydrosilylation of cyclopentadiene

and cyclohexadiene. Using TMSOTf as a Lewis acid, the hyper-

valent iodine-mediated coupling reaction of 89a,b and 90a,b

with silylated uracil 29 was examined and the results are

summarized in Table 2. Our first attempt to couple triethoxy-

silanes 89a,b with 29 in the presence of diacetoxyiodobenzene

gave cycloalkenyluracil 91a and 91b in 45% and 49% yields re-

spectively (Table 2, entries 1 and 2). On the other hand, the use

of trialkylsilanes 90a and 90b successfully improved the chemi-

cal yield of 91a and 91b (Table 2, entries 3 and 4). In contrast,

the reactions using PIFA, iodosylbenzene, and [hydroxyl(tosyl-

oxy)iodo]benzene (PhI(OH)OTs) resulted in a decrease of the

reaction yield (Table 2, entries 5–7).

Scheme 12: Oxidative coupling reaction mediated by hypervalent
iodine.

Table 2: Summary of the oxidative coupling reaction using hyperva-
lent iodine.

entry comp I(III) Time (h) yield (%)

1 89a PhI(OAc)2 15 91a: 45
2 89b PhI(OAc)2 15 91b: 49
3 90a PhI(OAc)2 1 91a: 65
4 90b PhI(OAc)2 1 91b: 65
5 90b PhI(O2CCF3)2 1 91b: 55
6 90b PhIO 1 91b: 57
7 90b PhI(OH)OTs 1 91b: 29

To prove the usefulness of the oxidative coupling reaction

mediated by hypervalent iodine, the reaction was applied to the

synthesis of a carbocyclic nucleoside derivative designed as a

potential anti-HIV agent.

As a target, cyclohexenylcytosine 99 was designed and was

planned to synthesize using the oxidative coupling reaction. To

prepare the substrate of the coupling reaction, cyclohexenylsi-

lane 96 was synthesized using the Diels–Alder reaction of

trimethylsilylbutadiene 92 and dimethyl fumarate (93), which

gave cyclohexene diester 94 (1:1 mixture of diastereomers)

[64]. Reduction and subsequent separation by silica gel column

chromatography gave diols 95a and 95b, the hydroxy groups of

which were protected to give di-TBDPS derivatives 96a and

96b. The resulting cyclohexenylsilanes 96a and 96b were sub-

jected to the oxidative coupling reaction with 2,4-bis(trimethyl-

silyl)uracil (29) using diacetoxyiodobenzene, respectively, and

the results are shown in Table 3. The reaction of 96a gave an

inseparable mixture containing 4 stereoisomers of 97a–d with a

ratio of 6:10:2:1.5, which was determined based on the analysis

of its 1H NMR spectrum. The reaction of 96b also gave a simi-

lar result. In both reactions, the formation of cyclohexadiene 98

was observed. These results strongly supported that the reac-

tion proceeded through the carbocation intermediate, as ex-

pected and depicted in Figure 4, since 98 was considered to be

formed by E1 elimination of the allyl cation intermediate. The

fact that 96a and 96b showed different reactivities could be ex-

plained by the steric interaction between the substituents on the

cyclohexene ring and the nucleobase approaching. Compounds

97a–d were converted to the corresponding cytosine analogues

[63]. During the course of conversion, all the stereoisomers

were separated. Among them, only the cytosine derivative 99

showed weak anti-HIV activity (Scheme 13 and Table 3).

Table 3: Summary of the oxidative coupling reactions of 96a and 96b.

comp time yield (%) ratio

97a–d 98 recov. 97a:97b:97c:97d

96a 1 h 60 18 0 6:10:2.0:1.5
96b 24 h 50 11 20 3:10:2.5:0.5

An oxidative coupling reaction for synthesizing carbocyclic

nucleosides mediated by hypervalent iodine was developed.

Since the Friedel–Crafts type reaction involved carbocation

intermediate, the reaction always gave a mixture of products.

Unfortunately, the reaction was not efficient. However, it is

worthy that the oxidative coupling reaction contains a novel

type of C–N bond formation and would help to synthesize new

carbocyclic nucleosides.

Synthesis of dihydropyranonucleosides
The success of the oxidative coupling reaction for constructing

a carbocyclic nucleoside skeleton led us to develop a glycosyla-

tion reaction applicable to glycal derivatives. Since an electron-

rich enol ether unit of glycal could react with oxidative agents,

it was expected to form a cationic intermediate as in the case of

allylsilanes described above. A direct coupling of glycals with

nucleobases is challenging, since it is formally a C–N bond-
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Scheme 13: Synthesis of cyclohexenyl nucleosides using an oxidative coupling reaction.

Figure 5: Concept of the oxidative coupling reaction of glycal deriva-
tives.

forming reaction with cleaving of the inactive C–H bond at the

γ-position. Actually, the C–N bond-forming reactions using

hypervalent iodine agents have attracted much attention [62,65-

68]. In the case of the hypervalent iodine-catalyzed coupling

reaction with allylsilanes (Figure 5), the reaction involves the

following 2 steps: 1) the generation of allyl cation 87 by the ox-

idation of an allylsilane 86 with PhI(OAc)2 and TMSOTf, and

2) the subsequent nucleophilic attack of the persilylated base to

87 as shown in Figure 5. Therefore, we expected that subjecting

the electron-rich glycal 100 to the hypervalent iodine-mediated

reaction described above would generate an oxocarbenium ion

101 to serve as an intermediate, giving a nucleoside 102.

First, we attempted model reactions of the oxidative coupling to

enol ether using a TMSOTf/PhI(OAc)2 system. After several

attempts, we found that the reaction of 3,4-dihydro-2H-pyran

(DHP, 103) with PhI(OAc)2 and TMSOTf, starting at −40 °C

and then gradually raised to room temperature, gave a dihy-

dropyranyluracil derivative 104 in 31% yield [69]. We also

found that when Cu(OTf)2 was used as a catalyst in place of

TMSOTf, the reaction gave 104 in 24% yield (Scheme 14).

We speculated that the mechanism of the oxidative coupling

reaction was as shown in Scheme 15. DHP (103) was reacted

with PhI(OAc)2 to produce an acetoxyiodobenzene derivative

105 with the assistance of TMSOTf. With respect to the path-

way from the intermediate 105 to the N1-substituted uracil 104,

there were two plausible routes. In path a, a nucleophilic attack

of 2,4-bis(trimethylsilyl)uracil (29) occurs prior to an elimina-

tion. In path b, on the other hand, an allylic carbocation 110

formed from 108 reacts with 29. From the result that the reac-

tion of 2,3-dihydrofuran gave side products generated from an
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Scheme 14: Oxidative coupling reaction of silylated uracil and DHP using hypervalent iodine.

Scheme 15: Proposed mechanism of the oxidative coupling reaction mediated by hypervalent iodine.

Figure 6: Synthesis of 2’,3’-unsaturated nucleosides using hypervalent iodine and a co-catalyst.

intermediate resembling 107 (data not shown), it was strongly

suggested that the oxidative coupling reaction preferred path a

rather than path b (Scheme 15).

Because further optimization of the oxidative coupling reaction

was not successful, we decided to examine the effect of adding

a co-catalyst. The speculated reaction mechanism depicted in

Scheme 15 suggested that the instability of the intermediates

105 and 106 might have caused the low yield of the oxidative

coupling. Based on this idea, we intended to use (PhSe)2 as a

co-catalyst, since it might prevent the formation of unstable 105

and 106 and yield 102 in one step (Figure 6).

We examined the effect of (PhSe)2 as an additive by the reac-

tion of various glycals and their chemical equivalents [69] and

the results are summarized in Table 4. The reaction of 103 and

29 was performed by treatment with PhI(OAc)2 and (PhSe)2 in

the presence of catalytic amounts of TMSOTf to selectively

yield a trans-isomer of 1-(3-phenylselanyltetrahydropyran-2-

yl)uracil (116) in 73% yield (Table 4, entry 1). Although this

result was unexpected, it was important, since the reaction

appeared to be applicable to access various nucleoside deriva-

tives, including 2’-deoxynucleosides. More importantly, we

could avoid the use of unstable reagents such as PhSeBr. In

other words, the reaction using hypervalent iodine and stable
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Table 4: Summary of the oxidative coupling reaction of bis(trimethylsilyl)uracil 29 with enol ethers using the TMSOTf/PhI(OAc)2/(PhSe)2 system.

entry enol ether product yield (%)

1

103
116

73

2
112

117

31

3
113

118

69

4

114

80
(α:β=1:2)

(PhSe)2 in the presence of a Lewis acid would be expected to

yield the same products as the reaction using PhSeBr. The reac-

tion with dihydrofuran (112) furnished 1-(3-phenylselanylte-

trahydrofuran-2-yl)uracil (117) in 31% yield (Table 4, entry 2).

The reaction of 113 with 29 at −5 °C afforded 118 in 69% yield

(Table 4, entry 3). The reaction of 114 gave an anomeric mix-

ture of 119 in 80% yield with the predominant formation of the

β-nucleoside (Table 4, entry 4). In contrast, the oxidative glyco-

sylation reaction of D-glucal 115 gave a 1:1 mixture of α-120

and β-120 in 64% yield (Table 4, entry 5). From these data, the

oxidative coupling reaction mediated by hypervalent iodine of

glycal derivatives can clearly be regarded as a new glycosyla-

tion reaction that is applicable to the synthesis of 2’-deoxy- and

2’,3’-dideoxydidehydronucleosides, some of which are known

to have anti-HIV activity (Table 4).

To reveal the scope of this reaction, we designed a new dihy-

dropyranonucleoside as a potential anti-HIV agent and

attempted to synthesize it by using the oxidative coupling reac-

tion [70]. First, the PMB-protected epoxide 121 was converted

to diene 122. The dihydropyran ring of 123 was constructed by

RCM of 122 catalyzed by a Grubbs 1st generation catalyst. The
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Table 4: Summary of the oxidative coupling reaction of bis(trimethylsilyl)uracil 29 with enol ethers using the TMSOTf/PhI(OAc)2/(PhSe)2 system.
(continued)

5

115

64
(α:β=1:1)

Scheme 16: Synthesis of dihydropyranonucleoside.

isomerization of the double bond in 123 by treatment with a

Wilkinson catalyst under basic conditions afforded glycal 124

(Scheme 16).

The hypervalent iodine-mediated glycosylation of 2,4-bis(tri-

methylsilyl)uracil (29) with glycal 124 gave an inseparable mix-

ture of α- and β-anomers 125 (α:β = 1:2) in 51% yield as we ex-

pected. Compound 125 was then oxidized by treatment with

mCPBA, followed by elimination of the resulting selenoxide to

give 126. After the separation of anomers, the major β-anomer

was converted into a cytosine derivative 127 [70]. However,

127 did not show any activity against HIV whereas its 5’-thio

counterpart did show anti-HIV activity (Scheme 16).

The reaction mediated by hypervalent iodine provides an alter-

native method for constructing glycosidic bonds of nucleoside

derivatives by using a glycal as sugar donor. Its usefulness was

proved by applying the reaction to synthesize new nucleoside

derivatives as mentioned above.

Synthesis of acyclic nucleosides
It is known that the oxidative C–C bond cleavage of glycols,

epoxides, and olefins takes place by the action of hypervalent

iodine [38,71,72]. For example, Havare and Plattner reported

the oxidative cleavage of α-aryl aldehydes using iodosylben-

zene to give chain-shortened carbonyl compounds and form-

aldehyde [71]. In the field of carbohydrate chemistry, similar

deformylation by action of hypervalent iodine has also been

demonstrated: the β-fragmentation reaction of an anomeric

alkoxy radical of carbohydrates was mediated by a hypervalent

iodine reagent [73]. The reaction results in the formation of

carbohydrates with a reduction of one carbon. From the view-

point of the synthetic method, the reaction would be useful for

dehomologation of aldoses and preparation of chiral synthons
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Scheme 17: Synthesis of acetoxyacetals using hypervalent iodine and addition of silylated base.

deriving from sugars. The reaction procedure involves the

initial formation of an alkoxy anomeric radical by a hyperva-

lent iodine reagent in the presence of iodine, which triggers the

β-fragmentation of the C1–C2 bond. As a result, a C2 radical is

generated and is further oxidized to a carbocation that is reacted

with nucleophilic agents to give the desired products.

Boto et al. applied the reaction to the one-pot synthesis of

acyclic nucleosides that belong to an important class of nucleo-

sides with antiviral activity [74]. First, they tried to synthesize

acyclic nucleosides in a stepwise manner. The substrates 128

and 129 for the fragmentation reaction were synthesized from

ribose in a few steps by the conventional method. The oxida-

tive scission of 128 and 129 was carried out by treatment with

diacetoxyiodobenzene and iodine under irradiation with visible

light to give acetoxy acetals 130 and 131 in good yields with

high stereoselectivities. As shown in Scheme 17, the reaction

was expected to proceed via the formation of anomeric alkoxyl

radicals, which underwent fragmentation to produce radical

132. The radical 132 could be trapped with iodine, giving iodide

133. The oxycarbenium ion 134 generated by the extrusion of

iodide from 133 reacted with the acetoxy ion to furnish the re-

sulting acetate derivatives. The acetates 130 and 131 were then

treated with silylated thymine or N4-benzoylcytosine in the

presence of a Lewis acid to give the desired acyclic nucleosides

135 and 136 in excellent yields. The results revealed that the

nucleophilic attack of the nucleobase selectively occurred from

the less hindered side of the oxycarbenium ion intermediates,

giving 1’,2’-trans isomers as major products (Scheme 17).

Based on the conditions for the stepwise fragmentation and

glycosylation procedure, Boto et al. explored the one-pot

version of the reaction [74]. When the β-fragmentation, the first

step of oxidative glycosylation, was carried out in CH2Cl2 and

then the Lewis acid and the silylated base were added, the

acyclic nucleosides were obtained in low yields. Boto and

co-workers overcame this problem by replacing the solvent

before glycosylation. After the fragmentation reaction was

finished, the solvent (CH2Cl2) was removed and replaced with

acetonitrile. The resulting mixture was treated with TMSOTf

and the silylated base. Under the optimized conditions, the reac-

tions of ribose derivative 128, mannose derivative 137, and

rhamnose derivative 138 gave the desired acyclic nucleosides

in excellent yields as shown in Scheme 18. It is worth noting

that the overall yields for the one-pot process are comparable

or superior to those obtained with the two-step procedure

(Scheme 18).

Synthesis of disaccharides
Classically, carbohydrates have been considered primarily an

energy source for life – as in the cases of glucose, fructose and

their oligosaccharides, e.g., starch. However, more recently it

has been revealed that oligosaccharides and glycoconjugates

also play important roles in various biological processes, as

mentioned earlier. As a result, the increasing significance of

oligosaccharides in biological events has led to a strong demand

for synthetic routes towards oligosaccharides, which would also

contribute to the identification and development of drug candi-

dates. For example, cancer immunotherapy based on vaccines
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Scheme 18: One-pot fragmentation-nucleophilic additions mediated by hypervalent iodine.

Figure 7: The reaction of thioglycoside with hypervalent iodine in the presence of Lewis acids.

derived from carbohydrate antigen–adjuvant combinations has

received much attention in recent years [75-77]. However, the

difficulties associated with the isolation of tumor-associated

carbohydrate antigens from natural sources have impeded ex-

tensive research. Thus, the most promising approach to the

supply of these antigens is to develop a suitable method for

their chemical synthesis.

To date, various glycosylation reactions capable of construct-

ing oligosaccharides with high stereoselectivities have been re-

ported [18,19]. Thioglycosides are often used as a sugar donor

in these reactions due to their stability under various conditions

and specific activation with thiophilic agents. For example, one

of the typical conditions used for the construction of oligosac-

charides is the combination of Lewis acids and iodine or its

chemical equivalents. Fukase and co-workers reported a glyco-

sylation reaction with thioglycoside using hypervalent iodine

reagents in the 1990s [78,79]. The outline and postulated mech-

anism of the reaction are shown in Figure 7. The reaction of

iodosylbenzene and electrophiles, e.g., triflic anhydride or

Lewis acids, should generate a potent thiophile 143 that reacts

with thioglycoside 144 to form an oxocarbenium ion 145. The

resulting oxocarbenium ion 145 should in turn react with a

sugar acceptor to give the glycosylated product 147 (Figure 7).
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Scheme 19: Synthesis of disaccharides employing thioglycosides under an oxidative coupling reaction mediated by hypervalent iodine.

By this reaction, Fukase et al. reported the glycosylation of

methyl thioglycoside 148 as a sugar donor to give disaccha-

rides 150 and 152 in high chemical yields as depicted in

Scheme 19. As mentioned above, not only triflic anhydride, but

various Lewis acids (TMSOTf, Sn(OTf)2, Yb(OTf)3) and a

Brønsted acid (TfOH) were proven useful as activators, by

which the reaction finished in a short time and gave the prod-

ucts with high stereoselectivity [79].

Recently, the reaction was revisited by Kajimoto et al., who

sought a glycosylation reaction that could be applied to

disarmed thioglycosides using hypervalent iodine reagents

[80,81]. One of the reactions they examined was the glycosyla-

tion reaction of methyl 2-phthalimidothioglucopyranoside

153 with methyl tribenzylglucopyranoside 149 by PIFA in the

presence of various acid catalysts. The results showed that the

reaction with PIFA and TfOH afforded the best result, giving

disaccharide 154 in 77% yield. On the other hand, the use

of bis[cyclohexyl]trifluoromethanesulfonylborane [(cyclo-

Hex)2BOTf] and methanesulfonic acid resulted in a poor yield.

The synthesis of disaccharides under the optimized conditions

was performed using “odorless” thioglycoside 155 and 149 as

the donor and the acceptor [81]. Even with the combination of

“disarmed” 155 and “armed” 149, the reaction gave rise to the

desired disaccharide 157 in 87% yield. The same reaction of the

corresponding 3-epimer 156 proceeded smoothly to give the

disaccharide 158 in good yield (Scheme 20).

Randolph and Danishefsky reported a glycal assembly strategy

to the synthesis of a branched oligosaccharide [82]. Bennett and

co-workers reported that phenyl(trifluoroethyl)iodonium tri-

flimide was a stable promoter for glycosylation reactions using

thioglycoside donors [83]. Since the reactions often were unse-

lective in the absence of C2 acetate-directing groups, Bennett et

al. investigated the compatibility of the above-mentioned reac-

tion in nitrile solvents documented to have a β-directing effect,

with the aim of developing a glycosylation that can be selec-

tively achieved in the absence of directing groups. After prelim-

inary screens, they found that the reaction in the presence of

phenyl(trifluoroethyl)iodonium triflimide 160 and the non-

nucleophilic base 2,4,6-tri-tert-butylpyrimidine (TTBP) at 0 °C

with the solvent combination of 2:1 CH2Cl2/pivalonitrile provi-

ded the optimal reaction outcome. However, they also encoun-

tered a problem: the reduced solubility of substrate in the sol-

vent system resulted in lower yields. They therefore examined

mixed nitrile solvents again, and eventually found that a quater-

nary solvent mixture composed of 6:1:1:1 CH2Cl2/acetonitrile/

isobutyronitrile/pivalonitrile greatly improved both the chemi-

cal yields and stereoselectivity, as shown in Scheme 21. The

results suggested that both the solvent system and iodonium salt

promoter are required for selectivity.

Even though glycals have a π-electron-rich enol ether unit,

reports regarding transformations involving glycal oxidation

as well as installation of heteroatom substituents at the C2

position were limited. In 2001, Gin’s group reported the

C2-acycloxyglycosylation procedure based on hypervalent

iodine chemistry [84]. In this reaction, the use of a combination

of hypervalent iodine and Lewis acid was key, as in the reac-

tions described above. In this procedure, a solution of the glycal
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Scheme 20: Synthesis of disaccharides using disarmed thioglycosides by hypervalent iodine-mediated glycosylation.

Scheme 21: Glycosylation using aryl(trifluoroethyl)iodium triflimide.

donor and a (diacyloxyiodo)benzene reagent was first treated

with BF3·OEt2. Then, the glycosyl acceptor (R”OH) and a cata-

lytic amount of TfOH were added to the mixture, giving the

1,2-trans disubstituted C2-acyloxylglycoside. A plausible

mechanism of the reaction is shown in Figure 8. The first step

of the reaction between glycal 161 and (diacyloxyiodo)benzene

formed the glycosyl ester intermediate 162 bearing a phenyl

iodonium(III) functionality at C2, which was transformed to a

diacyloxylated product 163. As evidence in support of this

mechanism, they reported that 163 was indeed isolated when

the reaction was finished at the first step. In the second step, the

resulting diacyloxylated product 163 could effectively glycosy-

late the appropriate acceptor by the action of TfOH to give the

C2-acyloxyglycoside 164 with good selectivity at the anomeric

position as a consequence of participation by the neighboring

C2 acyloxy group (Figure 8).

Figure 8: Expected mechanism of hypervalent iodine-mediated glyco-
sylation with glycals.
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Scheme 22: Synthesis of oligosaccharides by hypervalent iodine-mediated glycosylation with glycals.

They prepared C2-acyloxy glycosides 165, 166, 169, 170 and

172 using hypervalent iodine-mediated coupling reactions with

glycals, and the results are shown in Scheme 22. Either (diace-

toxyiodo)benzene or (dibenzoyloxyiodo)benzene could serve as

an efficient oxidant, and the reactions utilizing them gave the

products installing either the acetate or benzoate functionality,

respectively, at the C2-position. Both glucal 115 and galactal

167 were amenable to the oxidative glycosylation reaction to

stereoselectively give C2-acyloxylated β-glycosides in good

yields [84] (Scheme 22).

Hotha and co-workers utilized the reaction of glycals with

hypervalent iodine reagents for the stereoselective synthesis of

C2 deoxyglycosides and amino acid glycoconjugates [85]. In

their work, they also utilized an important chemical attribute of

cetylammonium bromide (CTAB) – namely, CTAB forms sur-

factant-assembled lipophilic nanoreactors stable in organic sol-

vents, which could be used for regioselective functionalization

of indenes. Therefore, they investigated the regioselective iodi-

nation of glycals by using CTAB and hypervalent iodine

reagents for the synthesis of 2-deoxy-2-iodoacetates. In the pre-

liminary experiments, the reaction between per-O-acetylglucal

(177) and PhI(OAc)2 in CTAB and KI gave trans-2-iodo

α-acetate and its corresponding bromo acetate in a 94:5 ratio.

The latter was expected to be formed by halide counter ion

exchange between CTAB and KI. Since the reaction occurred as

expected, it was applied to the synthesis of amino acid conju-

gates. Acetyl groups of the (diacetoxyiodo)benzene were

exchanged with N- and O-protected amino acids by slow evapo-

ration of a mixture of PhI(OAc)2 and amino acid 173 and 174 in

chlorobenzene to give PhI(OCOR)2 compounds 175 and 176.

The formation of iodo ester glycosides 178 and 179 from 175

and 176 was achieved in very good yields under the conditions

shown in Scheme 23.
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Scheme 23: Synthesis of 2-deoxy amino acid glycosides.

Figure 9: Rationale for the intramolecular migration of the amino acid unit.

Notably, the resulting iodo ester glycosides 178 and 179 were

considered to have self-assembled structures versatile for the

synthesis of serenylated and threonylated glycosides by intra-

molecular glycosylation. In addition, the access to 2-deoxy-

glycosides should be easily achievable by subsequent radical

deiodination of the products. After several experiments, treat-

ment with a catalytic amount of TMSOTf was found to be suit-

able for the intramolecular glycosylation, giving the corre-

sponding acid, which was easily converted to the correspond-

ing methyl ester 180 under EDCI/DMAP/MeOH conditions

[85]. Similarly, the reaction of the threonine derivative 179

afforded 181 in good yield. Radical deiodination of 180 and 181

using Bu3SnH and AIBN successfully gave 2-deoxy-β-glyco-

sides 182 and 183, which were difficult to synthesize from the

corresponding 2-deoxy sugar derivative in a stereoselective

manner (Scheme 23).

As mentioned above, the iodo ester glycosides were considered

to have self-assembled structures suitable for intramolecular

glycosylation. As depicted in Figure 9, treatment of 184 with

TMSOTf first cleaved the silyl ether to form 185, which was

correctly positioned to undergo intramolecular glycosidation.

As a result, the Lewis acid could also facilitate the departure of

the anomeric ester and the resulting 185 gave rise to the intra-

molecular nucleophilic attack to furnish the corresponding acid

186.

Glycals and thioglycosides were often used as sugar donors for

the glycosylation of oligosaccharides. It is interesting that the

hypervalent iodine-mediated oxidative reactions with theses de-

rivatives provide a different method to build glycosidic bonds.

Diversity in glycoside bond forming reactions would contribute

to improve the oligosaccharide synthesis.

Conclusion
The Pummerer-type glycosylation includes oxidation of

a sulfide to the corresponding sulfoxide followed by the

TMSOTf-mediated coupling reaction. The reaction utilizing

hypervalent iodine reagents could bypass one step of the

Pummerer-type glycosylation and directly give 4’-thionucleo-

sides from the corresponding sulfide derivative. The reaction

could be efficiently applied to the synthesis of 4’-selenonucleo-

sides as well as 4’-thionucleosides. Based on the concept of

hypervalent iodine-mediated glycosylation, a reaction applic-
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able to the synthesis of carbocyclic nucleosides and a coupling

reaction between nucleobase and glycal derivatives were de-

veloped. The latter reaction was employed to synthesize dihy-

dropyranonucleosides. Oxidative scission is a characteristic

reaction mediated by hypervalent iodine reagents and is typical-

ly used for dehomologation of sugars. A one-pot glycosylation

using this reaction was also developed for the synthesis of

acyclic nucleoside derivatives. In addition to nucleoside synthe-

sis, hypervalent iodine-mediated glycosylation could also be

applied to the synthesis of oligosaccharides and glycoconju-

gates when thioglycosides and glycals were used as sugar

donors. There is no doubt that the use of hypervalent iodine

reagents greatly improved the efficiency of the synthesis of

nucleosides and oligosaccharides. The results of these synthe-

ses demonstrate the power of glycoside bond-forming reactions,

and should assist in the future identification or synthesis of bio-

logically active nucleoside and glycoconjugate derivatives.
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