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The development of organoid techniques for regenerative

therapy has progressed remarkably with the use of tissue-

derived stem cells and pluripotent stem cells based on stem

cell biology and tissue engineering technology. To realize

whole-organ replacement therapy as next-generation

regenerative medicine, it is expected that fully functional

bioengineered organs can be reconstructed using an in vitro

three-dimensional (3D) bioengineered organ germ and

organoids by stem cell manipulation and self-organization. In

this mini-review, we focused on substantial advances of 3D

bioengineering technologies for the regeneration of complex

oral organs with the reconstruction of 3D bioengineered

organ germ using organ-inductive potential embryo-derived

epithelial and mesenchymal cells. These bioengineering

technologies have the potential for realization of future organ

replacement therapy.
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Introduction
Organogenesis is achieved by an autonomous develop-

mental process via the self-organization of complex tis-

sues that includes cell-to-cell interactions, spatiotemporal

expression of molecules and cell growth/movement [1,2].

Almost all organs arise from their respective organ germs

through reciprocal epithelial–mesenchymal interactions

in both epithelial tissue and mesenchymal tissue during

embryonic development [3,4]. Ectodermal oral organs,

including teeth and salivary glands, develop from the
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respective germ layers based on those reciprocal interac-

tions, and the principal interactions in ectodermal organ

development allow for the organization of a three-dimen-

sional (3D) tissue structure to achieve the respective

physiological organ functions [3,5].

Current biotechnology in regenerative medicine has

advanced dramatically based on new findings in embry-

onic development, stem cell biology and tissue engineer-

ing technology [2,6]. In particular, stem cell research has

focused on tissue-derived stem cells, embryonic stem

(ES) cells and induced pluripotent stem (iPS) cells, the

use of which is considered an attractive regenerative

concept, and these stem cells have been attempted to

be used regenerate damaged tissues/organs with struc-

tural and functional disorders [2]. Many attempts to create

bioengineered tissues/organs that can replace damaged

organs have been reported [7]. Cell-sheet-based technol-

ogy, which allows tissue reconstruction from stem cells

grown on a sheet, can regenerate a broad range of tissues

damaged by burns and cardiac dysfunction through cell-

sheet transplantation [8]. Organoids, which can be

derived from tissue-specific stem cells or pluripotent stem

cells, have functional 3D tissue structures that resemble

parts of organs and have the potential to provide an

alternative approach to organ transplantation in the clinic

[9�,10�]. Ideally, organ replacement regenerative therapy

offers enormous potential for the replacement of dysfunc-

tional organs with functional regenerated organs using

bioengineering technology [7]. However, ectodermal oral

organs, including teeth and salivary glands, cannot be

sufficiently reproduced from tissue-derived stem cells or

pluripotent stem cells [2]. Thus, it is desired to develop a

next-generation regenerative approach in which fully

functional bioengineered organs can be reconstructed

using in vitro 3D stem cell manipulation and organization

technology [2,7].

In this mini-review, we focused on the bioengineering

technologies for fully functional regeneration of complex

oral organs with the reconstruction of the 3D organ germ

using completely dissociated organ-inductive potential

embryo-derived-epithelial and mesenchymal stem cells.

These bioengineering technologies can provide substan-

tial advances in future organ replacement therapy.

3D tissue organization and therapeutic
potential by organoid technology
An organoid model, which refers to 3D tissue structures

containing various functionally differentiated cells
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through self-organization from immature stem cells and

isolated tissue fragments, is available for regenerative

therapies through the replication of its tissue-specific

stem cell niches [11,12]. Organoid studies are divided

into two major approaches, reconstitution of bioengi-

neered organ germ using organ-inductive potential

embryo-derived and/or adult-derived epithelial and

mesenchymal stem cells and organoid induction, which

is repeated by organ induction processes during embryo-

genesis using pluripotent stem cells, including embry-

onic stem cells (ES cells) and induced pluripotent stem

cells (iPS cells). We have developed an organ germ

method to reconstitute bioengineered organ germs

[13] and demonstrated proof of concepts for functional

organ regeneration by orthotopic transplantation of the

bioengineered germs, including the tooth [14,15,16��],
salivary gland [17,18�], lachrymal gland [19] and hair

follicles [20] (Figure 1). Recently, many researchers

have reported organoid technologies that could generate

3D tissue structures such as the optic cup [2,21], pitui-

tary epithelium [22,23], intestine [24,25], cerebrum

[26,27], inner ear [28], lung [29��], and kidney [30] as

mini-organs (Figure 1). Unique technologies to produce

liver or other organoids using tissue engineering have
Figure 1
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also been reported, and this bioengineered organ-bud

has a 3D multicellular structure with a microvascular

network [31,32]. These reports revealed the important

involvement of an intrinsic self-organization mechanism

in the distinctive patterning of epithelial tissue archi-

tecture using signaling molecules to induce an organ-

forming field and organogenesis according to a body

plan. These organoid technologies have been suggested

to have therapeutic potential and are assumed to be

available as a disease model, for drug testing and as

organ replacement therapy. As a disease model, gut

organoids have already been used to examine infectious

diseases [33], tumor biology [34], and genetic diversity

[35]. Organoids also contribute to providing a regenera-

tive approach as a source of autologous tissue for trans-

plantation. Several studies have already succeeded in

transplanting kidney organoids for renal dysfunction

that could represent vascularization and functional sub-

stitution [36]. Although these technologies, including

organoids, are considered an effective strategy for organ

regeneration, problems exist regarding how these mini-

organs will grow whole organs that are of sufficient size

and have full functionalities for organ regenerative

therapy.
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Functional whole-organ replacement
technology in oral organs
3D bioengineering technology focused on the organoid

model is considered an effective regenerative approach to

restore partial organ function at local damaged sites.

However, the organoid model reconstituting partial com-

ponents of an organ has not yet achieved the ideal goal of

regenerating complex organs that can recover from exten-

sive organ injury or severe organ dysfunction. The ulti-

mate goal of regenerative therapy is to develop organ

replacement therapy that can replace lost or damaged

organs through the orthotopic transplantation of fully

functioning bioengineered organs [7]. The bioengineer-

ing technology to regenerate 3D complex organs has been

established as an in vitro 3D cell manipulation method

designated the ‘Organ Germ Method’ [13]. The most

important breakthrough in this cell manipulation method

is the achievement of 3D cell compartmentalization of

immature epithelial and mesenchymal cells at a high cell

density in collagen gel. This unique technology could

achieve the precise replication of the developmental

processes in organogenesis and organ-size regulation,

adjusted by the cell-to-cell contact length between the

epithelial and mesenchymal cell layers, thereby enabling

the development of many types of bioengineered organ

germs such as teeth, hair, salivary glands and lacrimal

glands [13–15,17,19,20,37] (Figure 2a).
Figure 2
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Functional tooth organ regeneration
Teeth have 3D multicellular structures involving distinc-

tive hard tissues and soft connective tissues that can

establish functional cooperation with the maxillofacial

region and central nervous system [38]. In particular,

teeth are strongly related to biological oral functions,

including occlusion, pronunciation and facial aesthetics,

supporting local/general health [7]. Conventional dental

treatments using artificial materials, such as fixed dental

bridges, removable dentures and dental implants, have

been widely performed to restore oral function after tooth

loss. Although these artificial therapies are mainly effec-

tive for occlusal restoration, further improvements based

on biological requirements are expected to recover tooth

physiological functions [7].

Challenges for tooth organ regeneration in the dental

field

For the realization of tooth organ regeneration, many

researchers have considered developing an in vitro 3D

cell manipulation technology using immature epithelial

and mesenchymal stem cells derived from tooth germs

[7]. Tissue-engineering technology using scaffolds has

contributed to a broad range of 3D tissue regeneration by

seeding stem cells onto the biodegradable materials [39].

Previous reports, which used collagen/gelatin sponges or

PLA/PLGA copolymers as scaffolds, have demonstrated
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the partial generation of tooth tissue structures through

seeding epithelial and mesenchymal single cells isolated

from porcine tooth germ [40,41]. The cell aggregation

method is also known to be a typical 3D bioengineering

technology for the reconstitution of bioengineered organ

germ [42]. In previous studies, bioengineered cell aggre-

gates mixed with epithelial and mesenchymal tooth germ

cells could generate the correct tooth structure through

self-rearrangement of epithelial and mesenchymal cells

[43,44]. These technologies are considered useful meth-

ods for tooth organ regeneration; however, further

improvements are required concerning the regulation

of tooth structure and the frequency of tooth formation.

Functional tooth organ regeneration

To achieve functional tooth organ regeneration, the

bioengineered tooth must be developed into a tooth loss

region after orthotopic transplantation of the bioengi-

neered tooth germ and restore the physiological tooth

functions, including occlusal performance and biological

cooperation with the periodontal ligament and afferent

responsiveness to noxious stimulation [14]. Our bioengi-

neered tooth has not only demonstrated successful engraft-

ment into the tooth loss region but also performed an

occlusal function with the opposing natural tooth. The

bioengineered tooth had appropriate tooth hardness of

the enamel and dentin tissue and had the potential to

successfully restore masticatory performance [14,15]. Fur-

thermore, the engrafted bioengineered tooth exerted phys-

iological tooth functions, including tooth movement and

neural function, in cooperation with the maxillofacial region

in a mouse model [14,15] (Figure 2b). Recently, we dem-

onstrated functional tooth replacement through the ortho-

topic transplantation of bioengineered tooth germ that was

reconstructed using postnatal tooth germ cells in a large

animal model. These studies represented a substantial

advancement in functional tooth organ regeneration through

the transplantation of bioengineered tooth germ as a practi-

cal model for future clinical regenerative medicine [16��].

Functional salivary gland organ regeneration
The salivary gland has characteristic 3D multicellular

structures that are organized in the acini, myoepithelial

cells and ducts for saliva emission. Salivary glands play

essential roles in the protection of appendage oral organs

and the maintenance of upper gastrointestinal tract func-

tion via serous and mucous saliva production [5]. Salivary

gland impairment leads to xerostomia, which is a dys-

function of saliva secretion caused by aging, injury, Sjö-

gren’s syndrome and radiation therapy. Xerostomia

involves fundamental oral/general problems, including

dental decay, periodontal disease and swallowing dys-

function [5]. Although conventional treatments for xer-

ostomia are mainly palliative approaches using artificial

substitutes, a novel curable treatment based on a biologi-

cal approach is required to recover the salivary gland

functions [17,18�].
www.sciencedirect.com 
Attempts for salivary gland regeneration in previous

studies

In the research field of salivary gland regeneration, many

studies have traditionally been conducted using salivary

gland-derived stem cells and biocompatible/biodegrad-

able scaffolds, including collagen, fibrin, alginate, hya-

luronic acid and PLGA, which could result in self-orga-

nization of 3D miniature tissues, termed salivary gland

organoids [45–47]. Salivary gland organoids, which are

generated by in vitro organoid culture following Wnt

pathway activation through the addition of Wnt3A and

R-Spondin, have demonstrated therapeutic potential for

radiation-damaged salivary gland function with the saliva

secretion and increase in functional acini in vivo [48,49].

Recently, it was reported that salivary gland function

could be restored through in vitro self-renewal and orga-

noid formation from human salivary gland stem cells [50].

Because irreversible xerostomia is caused by acinar cell

damage and dysfunction related to post-radiation and

aging, the development of organoid technology-based

cell therapy is expected to realize salivary gland regener-

ation [51�].

Orthotopically functional salivary gland regeneration

For full regeneration of salivary gland impairment, bioen-

gineered salivary glands must be able to restore the

physiological secretory functions through functional

replacement by orthotopic transplantation [18�]. Bioen-

gineered salivary gland germ, which is generated by our

Organ Germ Method, successfully underwent branching

morphogenesis, followed by stalk elongation and cleft

formation similar to the conventional 3D organoid

method. To demonstrate successful salivary gland

replacement therapy, a functional duct connection

between the salivary gland ducts in the host and bioen-

gineered salivary gland germ is critical for the differenti-

ation of acinar formation and saliva secretion function

[17]. Bioengineered salivary glands could be engrafted

into the salivary gland defect model through successful

duct connection and proper development of the acinar

structure with myoepithelial encirclement and peripheral

nervous innervation. Regenerated salivary glands could

be demonstrated using the physiological secretory func-

tions under afferent and efferent neuron network control

in cooperation with the central nervous system [17,52]

(Figure 2b). Bioengineered salivary glands could also be

used to treat disorders resulting from salivary gland

hypofunction, including dryness, bacterial infection and

swallowing dysfunction. Our bioengineering technology

for functional salivary gland regeneration represents a

proof of concept for bioengineered secretory organ

replacement therapy in the future [17,18�].

Future prospects for whole-organ
regeneration of oral organs
Current progress in 3D organ regenerative technologies,

including organoid models and the bioengineered organ
Current Opinion in Cell Biology 2017, 49:84–90
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germ method, is remarkable regarding the potential in

future organ replacement therapy [9�]. To address the

clinical applications of complex oral organ replacement,

organ-inducible stem cells, which can replicate epithelial-

–mesenchymal interactions in their respective organo-

genesis, must be identified from patients [7,18�]. Plurip-

otent iPS cells are considered candidate cell sources for

oral organ regeneration and represent the potential to

differentiate into dental epithelial or mesenchymal cells

for the reconstitution of bioengineered organ germ

[53,54]. In addition, notable recent research has demon-

strated the bioengineered 3D integumentary organ sys-

tem from iPS cells and includes appendage organs such as

skin, hair follicles and sebaceous glands [55��]. This

bioengineered 3D integumentary organ system also

demonstrates the feasibility of available bioengineering

technology in oral organs and the realization of whole-

organ replacement therapy using iPS cells (Figure 1).

Identically, morphological regulation of regenerated oral

organs such as by size and shape is essential for full

restoration of natural organ functions. Further studies

are required to develop an in vitro bioengineering tech-

nology that can regulate organ morphology, including a

3D organoid model, tissue engineering using scaffolds

and the utilization of morphogenesis-related molecules to

achieve the appropriate organ morphogenesis [51�]. Com-

plex oral organ replacement is now regarded as a viable

model for studying future organ replacement therapies

that can be applied to other complex organs, and it will

contribute to developing 3D bioengineering technology

in whole-organ regeneration [7,18�].
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This study successfully developed a novel in vivo transplantation model
designated as a clustering-dependent embryoid body (CDB) transplanta-
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