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Normal integral basis of an unramified quadratic
extension over a cyclotomic Z2-extension

par Humio ICHIMURA et Hiroki SUMIDA-TAKAHASHI

Résumé. Soit ` un nombre premier impair. Soient K/Q une ex-
tension cyclique réelle de degré `, AK la 2-partie du groupe des
classes d’idéaux de K, et H/K le corps des classes correspondant
à AK/A

2
K . Soit Kn la n-ème couche de la Z2-extension cycloto-

mique sur K. Nous considérons les questions (Q1) “existe-il une
base intégrale normale pour H/K ?” et (Q2) “sinon, l’extension
induite HKn/Kn a-t-elle une base intégrale normale pour un cer-
tain n ≥ 1 ?” Sous quelques hypothèses sur ` et K, nous répon-
drons à ces questions en termes de la fonction L 2-adique associée
au corps K de base. De plus, nous donnons quelques exemples
numériques.

Abstract. Let ` be an odd prime number. Let K/Q be a real
cyclic extension of degree `, AK the 2-part of the ideal class group
of K, and H/K the class field corresponding to AK/A

2
K . Let Kn

be the nth layer of the cyclotomic Z2-extension over K. We con-
sider the questions (Q1) “does H/K has a normal integral basis?”,
and (Q2) “if not, does the pushed-up extension HKn/Kn has a
normal integral basis for some n ≥ 1?” Under some assumptions
on ` and K, we answer these questions in terms of the 2-adic
L-function associated to the base field K. We also give some nu-
merical examples.

1. Introduction
We fix an odd prime number `. Let K/Q be a real cyclic extension of

degree `, and ∆ = Gal(K/Q). We denote by K∞/K the cyclotomic Z2-
extension, and by Kn the nth layer of K∞/K with K0 = K. Let An =
ClKn(2) be the 2-part of the ideal class group of Kn, and H/K the class
field corresponding to the quotient A0/A

2
0. We say that a Galois extension

N/F of a number field F with group G has a normal integral basis (NIB
for short) when ON is cyclic over the group ring OF [G]. Here, OF denotes
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the ring of integers of F . In this paper, we deal with the following two
questions:

Q 1. Does the extension H/K has a NIB ?

Q 2. If not, does the pushed-up extension HKn/Kn has a NIB for some
n ≥ 1 ?

The first question is of classical nature. Some fundamental results on this
type of questions are given in Brinkhuis [3] and Childs [5]. One of them
asserts that an unramified abelian extension N/F of a totally real number
field F never has a NIB, with the possible exception of a composite of
quadratic extensions of F ([3, Corollary 2.10]). This is a reason that we
deal with the class field H corresponding to A0/A

2
0 and not the whole

Hilbert class field of K. It is conjectured that the ideal class group A0
capitulates in Kn for some n (Greenberg’s conjecture). The second one is
an analogous question for the integer ring OH of H. For some topics/results
closely related to these two questions, see Remarks 1.6 and 1.7 at the end
of this section.

We work under the assumptions:

A 1. The prime number 2 is a primitive root modulo `.

A 2. The prime number 2 remains prime in K.

These conditions imply that 2 remains prime in K(ζ`). Here, for an integer
m ≥ 2, ζm denotes a primitive mth root of unity. We fix a nontrivial
Q̄2-valued character χ of ∆, which we often regard as a primitive Dirichlet
character. Because of the assumption (A1), all such characters are conjugate
over Q2 with each other. The assumption (A2) implies that χ(2) 6= 1. Let
Oχ = Z2[ζ`] be the subring of Q̄2 generated over Z2 by the values of χ. Here,
Z2 is the ring of 2-adic integers, Q2 the field of 2-adic rationals and Q̄2 a
fixed algebraic closure of Q2. For a module M over Z2[∆] and a Q̄2-valued
character ψ of ∆, M(ψ) = M eψ (or eψM) denotes the ψ-component of M ,
where

eψ = 1
`

∑
σ∈∆

TrQ2(ψ)/Q2(ψ(σ))σ−1

is the idempotent of Z2[∆] associated to ψ. Here, Q2(ψ) is the field gener-
ated by the values of ψ over Q2, and Tr is the trace map. Then, because of
(A1), M is decomposed as

(1.1) M = M(χ0)⊕M(χ),

where χ0 is the trivial character of ∆. Further, we can naturally regard the
Z2[∆]-module M(χ) as a module over Oχ. It is well known that An(χ0)
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is trivial for all n ≥ 0 (see Washington [26, Theorem 10.4(b)]). Hence, we
have
(1.2) An = An(χ).

Because of the assumption (A1), we have Oχ ∼= Z⊕(`−1)
2 as Z2-modules. It

follows that
|A0| = |A0(χ)| = 2κ(`−1)

for some κ ≥ 0. Let fχ be the conductor of χ. It is known that there exists
a unique power series gχ(t) ∈ Λ = Oχ[[t]] related to the 2-adic L-function
L2(s, χ) by

gχ((1 + 4fχ)1−s − 1) = 1
2L2(s, χ).

For this, see [26, Theorem 5.11]. We denote by Pχ(t) ∈ Oχ[t] the distin-
guished polynomial associated to gχ(t), and put λχ = degPχ. By a theorem
of Ferrero and Washington [26, Theorem 7.15], gχ(t) is not divisible by a
prime element of Oχ. Namely, 2 - gχ(t). Hence, gχ(t) equals Pχ(t) times a
unit of Λ.

Lemma 1.1. Under the assumptions (A1) and (A2), the class group A0 is
nontrivial (i.e., κ ≥ 1) if and only if λχ ≥ 1.

We denote by Hnib the composite of the subextensions of H/K with NIB.
Then we see that Hnib/K has a NIB by a well known theorem on rings of in-
tegers (see Theorem (2.13) in Chapter 3 of Fröhlich and Taylor [6]). Namely,
Hnib/K is the maximal subextension of H/K having a NIB. Clearly Hnib is
Galois over Q, and hence Gal(Hnib/K) = Gal(Hnib/K)(χ) is naturally re-
garded as anOχ-module. Here, the equality holds because of (1.1) and (1.2).
Using some result in the above mentioned paper [5], we can show that
Gal(Hnib/K) ∼= Oχ/2 if it is nontrivial (see Lemma 3.1 in §3). Here and in
what follows, we abbreviate as Oχ/α = Oχ/αOχ for an element α ∈ Oχ.

Theorem 1.2. Under the assumptions (A1) and (A2), let |A0| = 2κ(`−1)

for some κ ≥ 1. Then the following two assertions hold.
(I) We have 2κ|Pχ(0).
(II) The extension Hnib/K is nontrivial if and only if

Pχ(0) ≡ 0 mod 2κ+1.

From now on, we assume that

A 3. A0 ∼= Oχ/2κ with some κ ≥ 1.

Under this assumption, we have Gal(H/K) ∼= Oχ/2 and Hnib = H or K.
The following is an immediate consequence of Theorem 1.2.

Theorem 1.3. Under the assumptions (A1)-(A3), the Oχ/2-extension
H/K has a NIB if and only if Pχ(0) ≡ 0 mod 2κ+1.
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In view of Theorem 1.3, we assume that

A 4. 2κ‖Pχ(0)

for dealing with the capitulation problem (Q2). Further, we assume the
following stronger version of Greenberg’s conjecture.

A 5. |A0| = |A1|.

There are many cases where this condition is satisfied (see a table in §5).
Let 2A0 be the elements c ∈ A0 with c2 = 1. We can show that (A5) implies
that |A0| = |An| for all n ≥ 1 and that 2A0 is contained in the kernel of the
natural lifting map A0 → A1, using Nakayama’s lemma (see Fukuda [7] or
Kraft-Schoof [18]).

Results on the question (Q2) are quite different when λχ = 1 and when
λχ > 1. We state them in two different theorems for clarity. When λχ = 1
and 2κ‖Pχ(0), we have Pχ(t) = t+ 2κθ for some unit θ ∈ O×χ .

Theorem 1.4. Under the assumptions (A1)-(A5), assume further that
λχ=1.

(I) The case κ = 1. When θ ≡ 1 mod 2, HK1/K1 has a NIB. When
θ 6≡ 1 mod 2, HKn/Kn has no NIB for any n.

(II) The case κ ≥ 2. The extension HKn/Kn has no NIB for any n ≥ 1.

Theorem 1.5. Under the assumptions (A1)-(A5), assume further that
λχ≥2.

(I) The case κ = 1. The pushed-up extension HK2/K2 has a NIB,
while HK1/K1 has no NIB.

(II) The case κ ≥ 2. The extension HK1/K1 has a NIB.

We prove these theorems in §3 and 4 after introducing several lemmas in §2.
In §5, we let ` = 3, and handle a cyclic cubic field K of a prime conductor

p with p ≡ 1 mod 3 and p < 104. We computed the values λχ, v0 =
ord2(Pχ(0)), v1 = ord2(Pχ(−2)) for each such K when it satisfies (A2).
Here, ord2(∗) denotes the additive 2-adic valuation on Q̄2 with ord2(2) = 1.
By Lemma 1.1, the class group A0 is nontrivial if and only if λχ ≥ 1. In
the range of our computation, there are 48 fields K which satisfy (A2) and
|A0| > 1. The value v1 is necessary when we apply Theorem 1.4. Actually,
under the setting of Theorem 1.4(I), we have the following equivalence:

θ ≡ 1 mod 2⇐⇒ v1 ≥ 2.
For these 48 p’s, we computed the class groups A0 and A1, and give a table
of these data at the end of §5. Among them, we find that 44 ones satisfy
the further conditions (A3)-(A5). By Theorems 1.3-1.5, we can completely
answer the questions (Q1) and (Q2) for them. The four patterns in The-
orems 1.4 and 1.5 actually occur. The exceptional 4 = 48 − 44 primes are
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p = 709, 1879, 4219 and 7687. For these, we find that H/K has no NIB,
but we can not answer (Q2) by the results of this paper.

Remark 1.6. Let p be an odd prime number. Theorem 1.2 is quite anal-
ogous to a theorem of Taylor [25] (resp. Srivastav and Venkataraman [23])
which deals with an unramified cyclic extension of degree p over the p-
cyclotomic field Q(ζp) (resp. an unramified quadratic extension over a real
quadratic field). Let F be an imaginary abelian field with ζp ∈ F with p - h+

F
satisfying some additional conditions, and Fn the nth layer of the cyclo-
tomic Zp-extension F∞/F . Here, h+

F is the class number of the maximal real
subfield of F . Let Cl−Fn be the “minus” class group of Fn, and Hn/Fn the
class field corresponding to the quotient Cl−Fn/(Cl

−
Fn

)p. In [10, 11], we stud-
ied normal integral basis problems for Hn/Fn for each n ≥ 0 corresponding
to (Q1) and (Q2) in connection with the p-adic L-functions associated to F .

Remark 1.7. In [17], Kawamoto and Odai studied the question (Q1) when
` = 3 without the assumption (A2). Let hK andM be the class number and
the Hilbert class field of K, respectively. When hK > 1, they showed that
M/K has a NIB if and only if hK = 4 and a generator of the group of units
O×K of K satisfies some condition, and determined all cyclic cubic fields K
with fK < 104 satisfying the conditions mainly using some numerical data
in Gras [9]. Here, fK is the conductor of K.

2. Lemmas
Let F be a real abelian field. Let E = EF = O×F be the group of

units of F , E+ = E+
F the subgroup consisting of totally positive units,

and E∗ = E∗F the subgroup consisting of units ε satisfying the congruence
ε ≡ u2 mod 4OF for some u ∈ F . For a unit ε ∈ E, the following equivalence
is well known:
(2.1) F (ε1/2)/F is unramified at all finite primes⇐⇒ ε ∈ E∗.

For this, see [26, Exercise 9.3]. It follows that F (ε1/2)/F is unramified at
all primes (including the infinite ones) if and only if ε ∈ E+ ∩ E∗.

Lemma 2.1. Let L/F be a quadratic extension unramified at all finite
primes.

(I) The extension L/F has a NIB if and only if L = F (ε1/2) for some
unit ε ∈ EF with ε ≡ 1 mod 4OF .

(II) When the prime number 2 is unramified in F , L/F has a NIB if
and only if L = F (ε1/2) for some unit ε ∈ EF .

Proof. The assertion (I) is due to Childs [5, Theorem A]. Let us show (II).
Let ε be a unit of F , and assume that the extension F (ε1/2)/F is unramified
at all finite primes. Then, by (2.1), we have ε ≡ u2 mod 4OF for some
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u ∈ F×. Let d be the residue class degree of a prime ideal of the abelian
field F over 2. By replacing ε with ε2d−1, we have ε ≡ 1 mod 4OF . This is
because u2d−1 ≡ 1 mod 2OF since the prime number 2 is unramified in F .
Therefore, the assertion (II) follows from (I). �

We denote by AF (resp. ÃF ) the 2-part of the ideal class group of F in the
ordinary (resp. narrow) sense. The first assertion in the following lemma
was shown in Oriat [20, Théorème 2], and the second one in Taylor [24,
Assertion (*)]. (For the latter, see also [14, Theorem 2].)

Lemma 2.2. Let F/Q be a cyclic extension of prime degree p (≥ 3), and ψ
a nontrivial Q̄2-valued character of Gal(F/Q). Assume that −1 ≡ 2a mod p
for some a. Then the following assertions hold.

(I) AF (ψ) is trivial if and only if ÃF (ψ) is trivial.
(II) (E+/E2)(ψ) = ((E+ ∩ E∗)/E2)(ψ) = (E∗/E2)(ψ).

In what follows, we work under the notation of §1, and assume that the
conditions (A1) and (A2) are satisfied.

Proof of Lemma 1.1. We put k = Q(
√
−1) and L = Kk = K(

√
−1).

Clearly K is the maximal real subfield of L. For an imaginary abelian
field M with the maximal real subfield M+, let h−M be the relative class
number, and A−M the kernel of the norm map AM → AM+ . We can nat-
urally regard the minus class group A−L as a Z2[∆]-module, and we have
A−L = A−L (χ) because of (1.1) and A−L (χ0) = A−k = {0}. By Lemma 2.2(I)
and the assumption (A1), A0 = AK(χ) is trivial if and only if so is the
narrow class group ÃK(χ). As χ(2) 6= 1 (the assumption (A2)), we see that
ÃK(χ) is trivial if and only if so is the minus class group A−L (χ) by [12,
Corollary 2]. As the degree [L : k] is odd, the unit index QL of L is equal
to that of k (cf. [12, Lemma 4]). Therefore, from h−k = 1 and the analytic
class number formula [26, Theorem 4.17], it follows that

(2.2) h−L =
∏
χ

(
−1

2B1,ω4χ

)
.

Here, ω4 is the Teichmüller character of conductor 4 and χ runs over the
nontrivial Q̄2-valued characters of ∆. By [26, Theorem 5.11], we have

1
2B1,ω4χ = 1

2L2(0, χ) = gχ(4fχ).

Hence, by the formula (2.2), we observe that A−L = A−L (χ) is trivial if and
only if gχ is a unit of the power series ring Λ (namely, λχ = 0). Thus we
obtain the assertion. �

Let Un be the group of principal units of the completion K̂n of Kn at
the unique prime divisor of Kn over 2, U (1)

n the subgroup of Un consisting
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of local units u ∈ Un with u ≡ 1 mod 2, and U∞ = lim←−Un the projective
limit with respect to the relative norms Km → Kn (m > n). Identifying the
Galois group Γ = Gal(K∞/K) with Gal(K∞(ζ4)/K(ζ4)) in a natural way,
we choose and fix a topological generator γ of Γ so that ζγ = ζ1+4fχ for
all 2-power-th roots ζ of unity. We identify as usual the completed group
ring Oχ[[Γ]] with the power series ring Λ = Oχ[[t]] by the correspondence
γ ↔ 1+t. Then we can naturally regard the χ-components U∞(χ), Un(χ) as
modules over Λ. It is well known that U∞(χ) ∼= Λ as Λ-modules (Gillard [8,
Proposition 1]). We choose and fix a generator u = (un)n≥0 of U∞(χ) over
Λ. We put wn = wn(t) = (1 + t)2n − 1. Then, by [8, Proposition 2], we have
an isomorphism

(?) Un(χ) ∼= Λ/(wn); ugn ↔ gmod wn
of Λ-modules. Here and in what follows, we denote by (∗, ∗∗, · · · ) the ideal
of Λ generated by ∗, ∗∗, · · · ∈ Λ. When we refer to the isomorphism (?)
with n = m, we shall often call it (?)m in what follows. We denote by In
the ideal of Λ with wn ∈ In corresponding to U (1)

n (χ) via the isomorphism
(?)n:

U (1)
n (χ) ∼= In/(wn).

We have U (1)
0 = U0 as 2 is unramified in K, and hence I0 = Λ. The following

assertion was shown in [13].

Lemma 2.3. When n ≥ 1, the ideal In is generated over Λ by the elements
2n and 2n−1−jt2

j for all j with 0 ≤ j ≤ n− 1.

The following assertion is well known.

Lemma 2.4. Let m > n. Via the isomorphism (?), the natural lifting map
Un(χ)→ Um(χ) corresponds to the homomorphism

Λ/(wn)→ Λ/(wm); g mod wn → g × νm,n mod wm
with

νm,n(t) = wm(t)/wn(t) =
2m−n−1∑
j=0

(1 + t)2nj .

Let En = EKn be the group of units of Kn, and Cn the subgroup consisting
of cyclotomic units in the sense of Sinnott [21, page 209] or [8, §4]. Let En
and Cn be the topological closures of En∩Un and Cn∩Un in Un, respectively.
The following was shown in [8, Theorem 2].

Lemma 2.5. The isomorphism (?)n induces

Un(χ)/Cn(χ) ∼= Λ/(Pχ(t), wn).
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Here, let us recall some consequences of the Leopoldt conjecture proved
by Brumer [4] for real abelian fields. A nice reference on this conjecture
is [26, §5.5]. A well known consequence asserts that

(2.3) gcd(Pχ(t), wn(t)) = 1

for all n ≥ 0. We can easily show this using [26, Corollary 5.30] combined
with [26, Theorem 7.10]. Then it follows from Lemma 2.5 that Un(χ)/Cn(χ)
is a finite abelian group for all n ≥ 0. In particular, we have Pχ(0) 6= 0. Put
E′n = En ∩ Un. The following is a consequence of the Leopoldt conjecture
for Kn.

Lemma 2.6. For each n ≥ 0 and a ≥ 1, the inclusion map E′n → En
induces an isomorphism E′n/E

′
n

2a → En/E2a
n .

It is well known that En/Cn is a finite abelian group ([21, Theorem 4.1]).
We denote by Bn the 2-primary part of En/Cn. Then we see that

(2.4) |Bn| = |An|

for all n ≥ 0 from Corollary to Theorem 4.1 and Theorem 5.3 of [21].
Similarly, we see that |Bn(χ0)| = |An(χ0)| (= 1). Hence, it follows that

(2.5) |An(χ)| = |Bn(χ)|

from (1.1). As we mentioned before, the assumption (A5) implies that
|An| = |A0| = 2κ(`−1) for all n. Therefore, from (1.2), (2.5) and Lemma 2.6,
we obtain

(2.6) |En(χ)/Cn(χ)| = |Oχ/2κ|

for all n ≥ 0 if we further assume (A5).

3. Proof of Theorem 1.2
We work under the setting of §1. In particular, H/K denotes the class

field corresponding to A0/A
2
0. We denote by V the subgroup of K×/(K×)2

such that
H = K(v1/2 ∣∣ [v] ∈ V ),

which we can naturally regard as a Z2[∆]-module. Assume that the con-
dition (A1) is satisfied. Then, from (1.1) and (1.2), we see that V =
V (χ) = V (χ−1) and that the same holds for any Galois invariant sub-
module U of V . Let E∗0 = E∗K0

and E+
0 = E+

K0
be the subgroups of

E0 = EK0 defined in §2. (Recall that we have set K0 = K.) We see
that (E0/E

2
0)(χ) ∼= Oχ/2 by a theorem of Minkowsky on units of a Ga-

lois extension over Q (cf. Narkiewicz [19, Theorem 3.26a]). Hence, we have
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(E∗0/E2
0)(χ) ∼= Oχ/2 if it is nontrivial. From (2.1) and Lemma 2.2(II), we

see that

(3.1)
(E0(K×0 )2/(K×0 )2) ∩ V = (E+

0 ∩ E
∗
0)(K×0 )2/(K×0 )2 ∼= (E+

0 ∩ E
∗
0)/E2

0

= ((E+
0 ∩ E

∗
0)/E2

0)(χ) = (E∗0/E2
0)(χ).

For each [v] ∈ V , we have vOK0 = A2 for some ideal A of K0. By mapping
[v] to the ideal class [A], we obtain from (3.1) the following exact sequence:

(3.2) {0} → (E∗0/E2
0)(χ)→ V = V (χ)→ A0 = A0(χ).

We see from (3.1) and Lemma 2.1 (II) that

(3.3) Hnib = K(ε1/2
∣∣ [ε] ∈ (E∗0/E2

0)(χ)).
From this, we immediately obtain

Lemma 3.1. Assume that the condition (A1) is satisfied. If Hnib/K is
nontrivial, then Gal(Hnib/K) ∼= Oχ/2.

In the above, we have used a classical argument for showing “Spiegelung
Satz”, which is found for instance in [20] or [26, §10.2].

Proof of Theorem 1.2. We have U0(χ) ∼= Oχ by (?)0, and U0(χ) ⊇ E0(χ) ⊇
C0(χ). By Lemma 2.5,
(3.4) U0(χ)/C0(χ) ∼= Oχ/Pχ(0).
Since U0(χ) ∼= Oχ, it follows from (2.5) and Lemma 2.6 that
(3.5) E0(χ)/C0(χ) ∼= Oχ/2κ.
The assertion (I) follows immediately from (3.4) and (3.5). To show the
assertion (II), by virtue of (3.3), it suffices to show that (E∗0/E2

0)(χ) =
(E0/E

2
0)(χ) if and only if Pχ(0) ≡ 0 mod 2κ+1. Let [ε] be a nontrivial

element in (E0/E
2
0)(χ) with ε ∈ E0. We may as well assume that ε ∈ E0(χ)

and that ε generates E0(χ) over Oχ. By (3.1), we have [ε] ∈ (E∗0/E2
0)(χ) if

and only if the extension K(ε1/2)/K is unramified at all primes (including
the infinite ones). We see that the last condition is equivalent to ε ∈ U0(χ)2

(i.e. E0(χ) ⊆ U0(χ)2). This is because the prime ideal of K over 2 splits
completely in the class field H/K since it is principal by (A2). Now from
the above, we obtain (II) using (3.4) and (3.5). �

The following generalization of (3.5) is needed in the proof of Theo-
rem 1.5.

Lemma 3.2. Assume that the conditions (A1), (A2) and (A5) are satisfied.
Then

En(χ)/Cn(χ) ∼= Oχ/2κ

for all n ≥ 0.
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Proof. Because of (3.5), it suffices to show that the inclusion U0 → Un
induces an isomorphism

E0(χ)/C0(χ) ∼= En(χ)/Cn(χ).

To prove this, it suffices to show that E0(χ) ∩ Cn(χ) ⊆ C0(χ) by virtue
of the equality (2.6). Let c be an arbitrary element of Cn(χ). Because of
Lemma 2.5, we see that the local unit c corresponds to Pχ(t)x(t) for some
power series x(t) ∈ Λ via the isomorphism (?)n. Assume that c ∈ E0(χ).
Then we have cγ−1 = ct = 1, which is equivalent to t × Pχ(t)x(t) ≡
0 mod wn(t). As wn(t) = tνn,0(t), it follows from (2.3) that νn,0 divides
x(t). Let c0 be the element of C0(χ) corresponding to Pχ(t)x(t)/νn,0(t) via
(?)0. Then by Lemma 2.4 we have c = c0. �

4. Proofs of Theorems 1.4 and 1.5
4.1. Preliminary. In the following, we work under the assumptions (A1)-
(A5). Then, by Theorem 1.3 and (3.3), we have (E∗0/E2

0)(χ) = {0}. Let
L/K be a fixed quadratic subextension of H/K. As Gal(H/K) ∼= Oχ/2,
we see that HKn/Kn has a NIB if and only if LKn/Kn has a NIB. Write
L = K(a1/2) (⊆ H) for some a ∈ K× with [a] ∈ V = V (χ). We have
aOK = A2 for some ideal A of K, which is nonprincipal by the exact
sequence (3.2) and (E∗0/E2

0)(χ) = {0}. By the assumption (A5), the ideal
A capitulates in K1; A = bOK1 for some b ∈ K×1 . We have a = b2ε for some
global unit ε ∈ E1 with [ε] ∈ (E1/E

2
1)(χ), and LK1 = K1(ε1/2). We may as

well assume that ε ∈ E1(χ). Since the prime ideal of K1 over 2 is principal
and K1(ε1/2)/K1 is unramified, we see that

(4.1) ε = u2

for some u ∈ U1(χ). In the rest of this section, we work under this setting.

Lemma 4.1. For an integer n ≥ 1, the quadratic extension LKn/Kn has
a NIB if and only if u ∈ En(χ)U (1)

n (χ).

Proof. We see immediately from Lemma 2.1 that LKn = Kn(ε1/2) has a
NIB if and only if ε ≡ η2 mod 4OKn for some global unit η ∈ En(χ). As
ε = u2, the last condition is equivalent to u ∈ En(χ)U (1)

n (χ). �

The following lemma also follows immediately from Lemma 2.1 and (4.1).

Lemma 4.2. If E1(χ) ∩ U1(χ)2 ⊆ (U (1)
1 )2, then LK1/K1 has a NIB.

Lemma 4.3. For any n ≥ 1, u 6∈ En(χ).

Proof. If u ∈ En(χ), then we have ε = u2 ∈ E2
n, and hence ε ∈ E2

n by
Lemma 2.6. Therefore, LKn = Kn(ε1/2) = Kn, which is a contradiction. �
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Remark 4.4. It is known (a) that an unramified quadratic extension N/F
has a power integral basis (PIB for short) if and only if N = F (ε1/2) for
some unit ε of F ([22, Theorem 3]), and (b) that it has a PIB if it has a NIB
([5, Theorem B], [22, Theorem 2]). From the first assertion (a), we see that,
under the setting and the assumptions of Theorem 1.4, LKn/Kn has a PIB
but not a NIB for all n ≥ 1 if (i) κ = 1 and θ 6≡ 1 mod 2 or (ii) κ ≥ 2. Here,
L/K is an arbitrary quadratic subextension of H/K. Thus, the converse of
the assertion (b) does not hold in general. For some related topics on an
unramified cyclic extension having a PIB but not a NIB, see [16] and some
references therein.

4.2. Proof of Theorem 1.4.

Proof of Theorem 1.4(I). Let n ≥ 1. We put e = ord2(θ − 1). Then we can
easily show that
(4.2) ord2((1− 2θ)2n − 1) = n+ e+ 1.
As Pχ(t) = t+ 2θ, it follows from Lemma 2.5 that

Un(χ)/Cn(χ) ∼= Λ/(t+ 2θ, wn) ∼= Oχ/((1− 2θ)2n − 1) = Oχ/2n+e+1

via the isomorphism (?)n. Then, as κ = 1, we observe from (2.6) that
(4.3) En(χ) ∼= (2n+e, t+ 2θ, wn)/(wn)
via (?)n. In particular, when n = 1, we see from Lemma 2.3 that

(4.4)
U (1)

1 (χ) ∼= (2, t)/(w1),
∪ ∪
E1(χ) ∼= (2e+1, t+ 2θ, w1)/(w1).

Let u ∈ U1(χ) be the local unit in (4.1).
Assume that e = 0. To show that LKn/Kn has no NIB for all n, assume

to the contrary that LKm/Km has a NIB for some m ≥ 1. Let g ∈ Λ
be a power series corresponding to the local unit u via the isomorphism
(?)1. Then, we see from Lemma 2.4 that, regarding u as an element of
Um(χ), it corresponds to g × νm,1(t) via (?)m. As LKm/Km has a NIB
by the assumption, it follows from Lemma 4.1 and (4.3) that g × νm,1
is contained in the ideal of Λ generated by 2m+e, t + 2θ and Im. Using
Lemma 2.3, we can easily show that the last ideal equals (2m, t + 2θ). It
follows that g(−2θ)νm,1(−2θ) ≡ 0 mod 2m. On the other hand, we have
ord2(νm,1(−2θ)) = m− 1 by (4.2). Thus we obtain g(−2θ) ≡ 0 mod 2, and
hence g ∈ (2, t). Therefore, we see from (4.4) and e = 0 that u ∈ U (1)

1 (χ) =
E1(χ), which contradicts Lemma 4.3.

Finally, let us deal with the case e ≥ 1. Let g(t) be a power series
corresponding to the local unit u via (?)1. Then, from (4.1) and (4.4), we
see that 2g(t) is contained in the ideal J = (2e+1, t+ 2θ, w1) of Λ. We see
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that the ideal J equals (2e+1, t+2) because e = ord2(θ−1) and w1 = t(t+2).
Therefore, we obtain

2g(t) = 2e+1x(t) + (t+ 2)y(t)

for some power series x(t), y(t) ∈ Λ. It is clear that y(t) = 2z(t) for some
z(t) ∈ Λ. Hence, g(t) = 2ex(t) + (t+ 2)z(t) is contained in (2, t) as e ≥ 1.
Therefore, u ≡ 1 mod 2 by (4.4), and hence ε = u2 ≡ 1 mod 4. Thus we
see that LK1/K1 has a NIB by Lemma 2.1(I). �

Proof of Theorem 1.4(II). From Lemma 2.5, we obtain

Un(χ)/Cn(χ) ∼= Λ/(t+ 2κθ, wn) = Oχ/((1− 2κθ)2n − 1) = Oχ/2κ+n

via the isomorphism (?)n. Here, the last equality holds because κ ≥ 2.
Hence, by (2.6), we obtain

(4.5) En(χ) ∼= (2n, t+ 2κθ, wn)/(wn).

In particular, we have

U (1)
1 (χ) = E1(χ) ∼= (2, t)/(w1).

Using this and (4.5), we can show the assertion in a way similar to Theo-
rem 1.4(I), the case e = 0. �

4.3. Proof of Theorem 1.5. Assume that the conditions (A1)-(A5) are
satisfied and that λχ ≥ 2. We put X = (Pχ(t), w1(t)). Denote by Y the
ideal of Λ with X ⊆ Y such that E1(χ) ∼= Y/(w1) via the isomorphism (?)1.
The following is an immediate consequence of Lemma 4.2.

Lemma 4.5. Under the above setting, the extension LK1/K1 has a NIB if

Y ∩ (2, w1) ⊆ (2I1, w1).

To deal with the module Y , we need some information on X = (Pχ(t), w1).
We write

Pχ(t) = w1(t)Q(t) + αt+ β

for some polynomial Q(t) ∈ Oχ[t] and some α, β ∈ Oχ. Then we have

X = (αt+ β, w1(t)).

By (A4), we have 2κ‖β. Letting f ′(t) denote the formal derivative of a
polynomial f(t) ∈ Oχ[t], we have

P ′χ(t) = (2t+ 2)Q(t) + w1(t)Q′(t) + α.

We see that P ′χ(0) ≡ 0 mod 2 as λχ ≥ 2, and hence 2 divides α from the
above. If 2κ divides α, then 2−κ(β + αt) is a unit of Λ. If 2ν‖α for some ν
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with 1 ≤ ν ≤ κ − 1, we have αt + β = v × 2ν(t + 2κ−νϑ) for some units
v, ϑ ∈ O×χ . Thus we see that

X =
{

(2κ, w1(t)), when 2κ|α
(2ν(t+ 2κ−νϑ), w1(t)), when 2ν‖α with 1 ≤ ν ≤ κ− 1

for some ϑ ∈ O×χ . From the above, the case X = (2ν(t + 2κ−νϑ), w1) can
occur only when κ ≥ 2.

Lemma 4.6. Let X = (2κ, w1(t)). Then we have an isomorphism
Λ/X ∼= Oχ/2κ ⊕Oχ/2κ

of Oχ-modules via the correspondence a+ bt mod X ↔ (a, b).

Lemma 4.7. Let X = (2ν(t + 2κ−νϑ), w1(t)) with 1 ≤ ν ≤ κ − 1 and
ϑ ∈ O×χ . We put e = ord2(ϑ−1). The ideal X contains 2e+κ+1 (resp. 2κ+1)
when ν = κ− 1 (resp. 1 ≤ ν ≤ κ− 2). Further, we have an isomorphism

Λ/X ∼=
{
Oχ/2e+κ+1 ⊕Oχ/2κ−1, when ν = κ− 1
Oχ/2κ+1 ⊕Oχ/2ν , when 1 ≤ ν ≤ κ− 2

of Oχ-modules via the correspondence a+ b(t+ 2κ−νϑ) mod X ↔ (a, b).

As Lemma 4.6 is quite easily shown, we do not give its proof. We give a
proof of Lemma 4.7 at the end of this section.

By Lemma 3.2, the quotient Y/X is isomorphic to Oχ/2κ as an Oχ-
module. Hence we observe that Y = ($, X) for some $ ∈ Λ such that
(4.6) $ mod X (∈ Λ/X) is of order 2κ

and
(4.7) t$ ≡ σ$ mod X
with some σ ∈ Oχ.

Lemma 4.8. The ideal Y is not contained in (2, w1(t)).

Proof. Assume that Y ⊆ (2, w1(t)). Then it follows that E1(χ) ⊆ U2
1 . This

implies, in particular, that for a unit η ∈ E0 \ E2
0 with [η] ∈ (E0/E

2
0)(χ),

the quadratic extension K1(η1/2)/K1 is unramified at all finite primes. On
the other hand, the group (E∗0/E2

0)(χ) is trivial because of (3.3) and Theo-
rem 1.3. Hence, K0(η1/2)/K0 is ramified at the prime over 2. Further, both
the extensions K1 = K0(21/2) and K0((2η)1/2) over K0 are ramified at 2.
Therefore, it follows that the (2, 2)-extension K1(η1/2)/K0 is fully ramified
at 2. This implies that K1(η1/2)/K1 is ramified at 2, a contradiction. �

To prove Theorem 1.5, we deal with the following three cases sepa-
rately in view of Lemmas 4.6 and 4.7; the case (A) where X = (2κ, w1),
the case (B) where X = (2κ−1(t + 2ϑ), w1) and the case (C) where
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X = (2ν(t + 2κ−νϑ), w1) with 1 ≤ ν ≤ κ − 2. Here, ϑ is a unit of Oχ.
As we mentioned just before Lemma 4.6, the cases (B) and (C) concern
only with the case κ ≥ 2 (Theorem 1.5(II)).

Proof of Theorem 1.5; the case (A). In this case, we haveX = (2κ, w1). By
Lemma 4.6, an element $ ∈ Λ with Y = ($, X) satisfying (4.6) and (4.7) is
of the form 1+bt or t+2b modulo X for some b ∈ Oχ, up to a multiplication
of a unit of Oχ. This is because an element (a, b) of Oχ/2κ ⊕ Oχ/2κ is
of order 2κ if and only if (i) a ∈ O×χ or (ii) 2|a and b ∈ O×χ . If $ ≡
1 + bt mod X, then it follows that Y = Λ and hence Λ/X ∼= Oχ/2κ, which
contradicts Lemma 4.6. Thus we see that

Y = (t+ 2b, 2κ, w1(t))

with some b ∈ Oχ.
Let us deal with the case κ = 1. Then we have Y = (2, t) = I1. It follows

that E1(χ) = U (1)
1 (χ). Let u be the local unit in (4.1). If LK1/K1 has a NIB,

then it follows from Lemma 4.1 and the above that u ∈ E1(χ)U (1)
1 (χ) =

E1(χ), which contradicts Lemma 4.3. Thus LK1/K1 has no NIB. To show
that LK2/K2 has a NIB, take a power series g(t) corresponding to u via
the isomorphism (?)1. Regarding u as an element of U2(χ), we see from
Lemma 2.4 that the power series

g(t)× (1 + (1 + t)2) = g(t)× (2 + 2t+ t2)

corresponds to u via (?)2. We see that the ideal (Pχ(t), I2) equals (2, t2)
because λχ ≥ 2, 2‖Pχ(0) and I2 = (4, 2t, t2) by Lemma 2.3. Thus 2 +
2t + t2 is contained in (Pχ(t), I2), which implies that u ∈ E2(χ)U (1)

2 (χ) by
Lemma 2.5. Hence, LK2/K2 has a NIB by Lemma 4.1.

Next, let κ ≥ 2. Let f(t) ∈ Λ be a power series contained in Y ∩ (2, w1).
Then we have

f(t) = (t+ 2b)x(t) + 2κy(t) = 2z(t) + w1(t)w(t)

for some power series x(t), y(t), z(t), w(t) ∈ Λ. Letting t = −2b, we observe
that z(−2b) ≡ 0 mod 2 as κ ≥ 2. This implies that z(t) ∈ I1 = (2, t). Thus
we see that LK1/K1 has a NIB by Lemma 4.5. �

Proof of Theorem 1.5(II); the case (B). In this case, we have

X = (2κ−1(t+ 2ϑ), w1)

with some ϑ ∈ O×χ . By Lemma 4.7, an element $ ∈ Λ with Y = ($, X)
satisfying (4.6) and (4.7) is of the form $b = 2e+1 + b(t+2ϑ) modulo X for
some b ∈ Oχ, up to a multiplication of a unit of Oχ. From Lemma 4.8 and
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κ ≥ 2, we see that b is a unit Oχ. Then, because of (4.7), a power series
f(t) ∈ Y ∩ (2, w1) is written in the form

(4.8) f(t) = $bσ + 2κ−1(t+ 2ϑ)x(t) = 2y(t) + w1(t)z(t)

for some σ ∈ Oχ and some power series x(t), y(t), z(t) ∈ Λ. To show
Theorem 1.5(II) in this case, it suffices to show that y(t) ∈ (2, t) by virtue
of Lemma 4.5. Letting t = −2ϑ in (4.8), we obtain

(4.9) 2e+1σ = 2y(−2ϑ) + w1(−2ϑ)z(−2ϑ).

We have w1(−2ϑ) = 4ϑ(ϑ−1) ∼ 2e+2, where for 2-adic rationals ξ1 and ξ2,
we write ξ1 ∼ ξ2 when ξ1/ξ2 is a 2-adic unit. Then for the case e ≥ 1, we
see immediately from (4.9) that 2y(−2ϑ) ≡ 0 mod 4, which implies that
y(t) ∈ (2, t).

Let us deal with the case e = 0. By (4.9) and w1(−2ϑ) ∼ 22, we have

(4.10) σ ≡ y(−2ϑ) ≡ y(0) mod 2.

Letting t = 0 in (4.8), we see that

(2 + 2ϑb)σ + 2κϑx(0) = 2y(0).

As κ ≥ 2, it follows that

(1 + ϑb)σ ≡ y(0) mod 2.

From the above two congruences, we obtain bϑσ ≡ 0 mod 2, and hence 2|σ
since ϑ and b are units of Oχ. Therefore, we see from (4.10) that y(0) ≡
0 mod 2 and hence y(t) ∈ (2, t). �

Proof of Theorem 1.5(II); the case (C). By Lemma 4.7, an element $ ∈ Λ
with Y = ($, X) satisfying (4.6) and (4.7) is of the form $b = 2 + b(t +
2κ−νϑ) modulo X for some b ∈ Oχ, up to a multiplication of a unit of Oχ.
By Lemma 4.8, we have b ∈ O×χ . Then, because of (4.7), a power series
f(t) ∈ Y ∩ (2, w1) is written in the form

f(t) = $bσ + 2ν(t+ 2κ−νϑ)x(t) = 2y(t) + w1(t)z(t)

for some σ ∈ Oχ and x(t), y(t), z(t) ∈ Λ. By Lemma 4.5, it suffices to show
that y(t) ∈ (2, t). Letting t = −2κ−νϑ and t = 0 in this formula, we obtain
congruences

σ ≡ y(−2κ−νϑ) ≡ y(0) mod 2κ−ν

and
(1 + 2κ−ν−1bϑ)σ ≡ y(0) mod 2κ−ν

similarly to the case ν = κ − 1. From these, we can show that 2|σ using
ϑ, b ∈ O×χ , and obtain y(t) ∈ (2, t). �
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Proof of Lemma 4.7. First, we deal with the case ν = κ − 1. We consider
the following Oχ-homomorphism

ϕ : Oχ ⊕Oχ → Λ/X; (a, b)→ a+ b(t+ 2ϑ) mod X.

As w1 = t2 + 2t ∈ X, we see that it is surjective by [26, Proposition 7.2].
To prove Lemma 4.7 in this case, it suffices to show that (a, b) ∈ Oχ ⊕Oχ
is contained in kerϕ if and only if 2e+κ+1|a and 2κ−1|b. We have

w1(t) = (t+ 2ϑ)Q(t) + w1(−2ϑ)

and w1(−2ϑ) ∼ 22+e. Therefore, if 2e+κ+1|a, then there exists an element
α ∈ Oχ such that 2κ−1αw1(−2ϑ) = a, and hence

a = −2κ−1(t+ 2ϑ)× αQ(t) + 2κ−1αw1(t) ∈ X.

From this we obtain the “if”-part of the assertion. To show the “only if”-
part, take an element (a, b) in kerϕ. Then we have

(4.11) a+ b(t+ 2ϑ) = 2κ−1(t+ 2ϑ)x(t) + w1(t)y(t)

for some x, y ∈ Λ. We show that

(4.12) 22+e+i|a and 2i|b

for each i with 0 ≤ i ≤ κ − 1. Letting t = −2ϑ in (4.11), we obtain
a = w1(−2ϑ)y(−2ϑ). Then, as w1(−2ϑ) ∼ 2e+2, the assertion (4.12) holds
when i = 0. Assume that (4.12) holds for some i with 0 ≤ i ≤ κ− 2. Then,
by (4.11), we have 2i|y(t). Dividing (4.11) by 2i and putting y1(t) = y(t)/2i,
we obtain

(4.13) a

2i + b

2i (t+ 2ϑ) = 2κ−i−1(t+ 2ϑ)x(t) + w1(t)y1(t).

Letting t = 0 in (4.13), we have
a

2i + b

2i × 2ϑ = 2κ−iϑx(0).

We see that 4 divides a/2i because 22+e+i|a by the assumption on induction,
and that 4 divides 2κ−i as i ≤ κ − 2. Therefore, it follows from the above
that 2i+1|b, and hence 2|y1(t) by (4.13). Dividing (4.13) by 2 and putting
y2(t) = y1(t)/2, we have

a

2i+1 + b

2i+1 (t+ 2ϑ) = 2κ−i−2(t+ 2ϑ)x(t) + w1(t)y2(t).

Letting t = −2ϑ, we see from w1(−2ϑ) ∼ 2e+2 that a/2i+1 is divisible
by 2e+2 and hence 2e+2+(i+1)|a. Thus, (4.12) holds also for i + 1. There-
fore, (4.12) holds for all i in the range, and hence the “only if”-part is
shown.
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Let us deal with the case 1 ≤ ν ≤ κ−2. Consider the following surjective
homomorphism over Oχ:

ϕ : Oχ ⊕Oχ → Λ/X; (a, b)→ a+ b(t+ 2κ−νϑ) mod X.
We show that (a, b) ∈ kerϕ if and only if 2κ+1|a and 2ν |b. We have
w1(−2κ−νϑ) ∼ 2κ−ν+1 as 1 ≤ ν ≤ κ − 2. Using this, we can show the
“if”-part similarly to the case ν = κ − 1. Conversely assume that (a, b) is
contained in kerϕ. Then we have

a+ b(t+ 2κ−νϑ) = 2ν(t+ 2κ−νϑ)x(t) + w1(t)y(t)
for some x, y ∈ Λ. Using this, we can show that for each 0 ≤ i ≤ ν,
2κ−ν+1+i|a and 2i|b inductively similarly to the case ν = κ − 1. Thus we
obtain the assertion. �

5. Numerical result
In this section, we let ` = 3, and deal with a cyclic cubic field K of a

prime conductor p with p ≡ 1 mod 3 and p < 104. Clearly, ` = 3 satisfies
the condition (A1). First, we explain our computational result. In the range
p < 104, there are 411 cubic fields K of conductor p satisfying (A2). Let χ
be a nontrivial Q̄2-valued character of ∆ = Gal(K/Q). For each of them,
we computed λχ, v0 = ord2(Pχ(0)), and v1 = ord2(Pχ(−2)). There are
48 ones with λχ ≥ 1. By Lemma 1.1, the condition λχ ≥ 1 is equivalent
to A0 6= {0}. The table at the end of this section gives the conductor p,
and the data of Ai, vi with i = 0, 1 and λχ for these 48 cubic fields. The
number ai (resp. two numbers ai, bi) in the row “Ai” means that Ai ' Oχ/ai
(resp. Ai ' Oχ/ai ⊕ Oχ/bi). The number a in the row “NIB” means that
HKn/Kn has a NIB for n ≥ a but HKn/Kn has no NIB for n < a. The
mark ∗ in the row “NIB” means that HKn/Kn has no NIB for all n ≥ 0. We
obtained these explicit result on the questions (Q1) and (Q2) immediately
from our data and Theorems 1.3, 1.4 and 1.5. There are 4 cubic fieldsK with
no mark in the row “NIB”. The first three K’s satisfy the conditions (A2)-
(A4) but not (A5), and H/K has no NIB by Theorem 1.3. The 4th K
with p = 7687 does not satisfy (A3), and H/K has no NIB by Lemma 3.1.
For these 4 ones, we can not answer the capitulation problem (Q2) by the
results of this paper.

In what follows, we explain how we obtained the data in the table. Letting
χ be a nontrivial Q̄2-valued character of ∆ = Gal(K/Q), we write the
Iwasawa power series gχ(t) as

gχ(t) =
∑
i≥0

cit
i ∈ Λ = Oχ[[t]].

Since gχ(t) is not divisible by a prime element of Oχ ([26, Theorem 7.15]),
the lambda invariant λχ equals the smallest integer i with ci ∈ O×χ . As
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usual, we put χ∗ = ω4χ
−1 and ṫ = (1 + 4p)(1 + t)−1 − 1. By [26, §7], we

have the following approximation formula for gχ(t):

gχ(t) ≡ − 1
2j+3p

2j+2p∑
a=1

aχ∗(a)−1(1 + ṫ)−γj(a)

modulo the ideal Ij(t) = ((1 + ṫ)2j − 1) of Λ for j ≥ 0. Here, a runs
over the odd integers with 1 ≤ a ≤ 2j+2p and p - a, and γj(a) is the
integer satisfying 0 ≤ γj(a) < 2j and (1 + 4p)γj(a) ≡ a or −a mod 2j+2

according as a ≡ 1 or −1 mod 4. In the range p < 104, there are 411
cubic fields K satisfying (A2). Applying the above formula with j = 2 for
those 411 ones, we were able to compute the values λχ, v0 and v1 using
UBASIC [2]. It turned out that the maximal values of λχ and vi are 3.
This assures the validity of our choice j = 2 because I2(t) ⊆ (2, t22) and
I2(0) = I2(−2) = 24Oχ, where Ij(2α) is the ideal of Oχ generated by f(2α)
for all f(t) ∈ Ij(t). In the above range, there are 48 fields K such that
λχ ≥ 1.

For these 48 cubic fields, we computed the groups A0 and A1 as follows.
Our method is quite similar to the one in [15, Section 3]. As in §2, let Bi
be the 2-part of Ei/Ci. We have |Bi| = |Ai| by (2.4). We first deal with
the group Bi since it is easier to attack than the ideal class group Ai. For
a finite set L of prime numbers, we consider the map

φ = φL : Ei → XL =
∏
l∈L

∏
L|l

(OKi/L)×; ε→ (ε mod L)L|l∈L,

where L runs over the prime ideals of Ki dividing some prime number l in
L. We see that the map φ induces an isomorphism Bi ∼= (φL(Ei)/φL(Ci))(2)
if the set L satisfies the condition

(5.1) dimF2 φL(Ci)/φL(Ci)2 = rankZEi,

where F2 is the finite field with 2 elements. Since we know a set of explicit
generators of Ci, we can obtain that of φL(Ci) mod X2e

L for any e, and can
compute exact values r1, r2, · · · such that

XL/φL(Ci)X2e
L
∼= AL,e := Z/2r1 ⊕ Z/2r2 ⊕ · · ·

by elementary row operation. When L satisfies (5.1) and ri’s are smaller
than e, we see that Bi is isomorphic to a subgroup of AL,e. In this sense, the
group AL,e is an “upper bound” of the group Bi. We chose some L’s with
|L| = 10 and l ≡ 1 mod 2i+2p for all l ∈ L, and computed using UBASIC
an upper bound B′i of Bi in the above sense as small as possible. As A0 is
nontrivial, we clearly have

|B′i| ≥ |Bi| = |Ai| ≥ |Oχ/2| = 4.
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When |B′i| = 4, we immediately see that Ai = Oχ/2. We obtained |B′i| = 4,
except for the 11 cases where Ai 6∼= Oχ/2 in the table. For these exceptional
ones, we computed the structure of Ai as an abelian group using Kash3 [1],
and obtained the data given in the table. It turned out that for these ones,
|Ai| = |B′i|. From this and (2.4), it follows that Bi ∼= B′i. As a consequence,
we obtained isomorphisms

A0 ∼= (E0/C0)(χ) and A1 ∼= (E1/C1)(χ)

as Oχ-modules except for the case where p = 7687 and i = 0. In this case,
we have

(E0/C0)(χ) ∼= Oχ/4 but A0 ∼= Oχ/2⊕Oχ/2.

Our computation was carried out with UBASIC and Kash3 on a PC with
Intel Core i5-2410M CPU and 8 GB memory. The total time of computation
with UBASIC (resp. Kash3) was about five minutes (resp. two hours).

Table: p < 10000 and λχ > 0.
p A0 A1 v0 v1 λχ NIB p A0 A1 v0 v1 λχ NIB
163 2 2 1 1 2 2 4789 2 2 1 1 1 ∗
349 2 2 1 1 1 ∗ 4801 2 2 1 1 2 2
547 2 2 1 1 2 2 5479 2 2 1 1 1 ∗
607 2 2 1 2 1 1 5659 2 2 1 1 1 ∗
709 2 2,2 1 1 2 5779 2 2 1 1 1 ∗
853 2 2 1 1 1 ∗ 6247 4 4 2 2 2 1
937 2 2 1 1 1 ∗ 6553 2 2,2 3 3 2 0
1009 2 2 3 1 1 0 6637 2 2 1 1 1 ∗
1879 2 2,2 1 1 3 6709 2 2 1 1 1 ∗
1951 2 2 1 2 1 1 7027 2 4 2 2 2 0
2131 2 2 1 1 1 ∗ 7297 2 2 1 1 2 2
2311 2 2 1 1 2 2 7489 2 2 1 2 1 1
2797 2 2 1 3 1 1 7687 2,2 2,4 2 3 2
2803 2 2 1 1 1 ∗ 7879 2 2 1 1 2 2
3037 2 2 1 1 2 2 8209 2 2 1 1 1 ∗
3517 2 2 1 1 2 2 8647 2 2 1 1 1 ∗
3727 2 2 1 1 1 ∗ 8731 2 2 1 1 1 ∗
4099 2 2 1 2 1 1 8887 2 2 1 1 2 2
4219 2 4 1 1 1 9283 2 2 2 1 1 0
4261 2 2 1 1 2 2 9319 2 2 1 1 1 ∗
4297 4 4 2 1 1 ∗ 9337 2 2 1 1 1 ∗
4357 2 2 2 1 1 0 9391 2 2 1 1 1 ∗
4561 2 2 2 1 1 0 9421 2 2 1 1 2 2
4639 2 2 3 1 1 0 9601 2 2 1 1 1 ∗
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