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Clear and transparent nanocrystals for infrared-
responsive carrier transfer
Masanori Sakamoto 1, Tokuhisa Kawawaki 1, Masato Kimura2, Taizo Yoshinaga3, Junie Jhon M. Vequizo 4,

Hironori Matsunaga4, Chandana Sampath Kumara Ranasinghe 4, Akira Yamakata 4, Hiroyuki Matsuzaki 5,

Akihiro Furube6 & Toshiharu Teranishi 1

Infrared-light-induced carrier transfer is a key technology for ‘invisible’ optical devices for

information communication systems and energy devices. However, clear and colourless

photo-induced carrier transfer has not yet been demonstrated in the field of photochemistry,

to the best of our knowledge. Here, we resolve this problem by employing short-wavelength-

infrared (1400–4000 nm) localized surface plasmon resonance-induced electron injection

from indium tin oxide nanocrystals to transparent metal oxides. The time-resolved infrared

measurements visualize the dynamics of the carrier in this invisible system. Selective exci-

tation of localized surface plasmon resonances causes hot electron injection with high effi-

ciency (33%) and long-lived charge separation (~ 2–200 μs). We anticipate our study not

only provides a breakthrough for plasmonic carrier transfer systems but may also stimulate

the invention of state-of-the-art invisible optical devices.
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‘Invisibility’ has emerged as an important feature of photo-
responsive materials, with their increasing demand in
energy devices1,2. The control of light-absorption-induced

carrier transfer is the bedrock of this subject. For the fabrication
of invisible materials, an effective strategy is selective absorption
of the ultraviolet (UV) or infrared (IR) region of light. As UV
light is unfavourable for light to energy-conversion systems, IR-
light absorbers are the key to responding to this challenge.
However, simultaneous pursuit of clear and colourless IR-induced
carrier transfer has been an important goal of photochemistry
research.

The development of an IR-responsive pigment remains a great
challenge. In terms of artificial materials, IR-responsive narrow
band-gap semiconductors (e.g. InSb, HgCdTe, etc.) are opaque and
exhibit dark colours derived from inter- and intra-band transitions.

Plasmonic materials, which are artificial pigments, exhibit optical
properties overwhelmingly superior to those of natural pigments in
the IR region3–8. The localized surface plasmon resonance (LSPR)
band derived from the collective oscillation of carriers in transparent
conductive-oxide nanocrystals (NCs) makes it possible to achieve
selective absorption of short-wavelength infrared (SWIR)
(1400–4000 nm) light, which is an important wavelength band in
sensors7–9.

Here we demonstrate SWIR-induced electron transfer from
transparent indium tin oxide (ITO) NCs to metal oxides (SnO2 and
TiO2). Time-resolved-IR spectroscopy of the ITO/SnO2 heterointer-
face reveals high electron-injection efficiency (33%) and long-lived
charge separation (~2–200 μs). Furthermore, we demonstrate the
potential expansion of applicable IR light beyond 4 μm by using the
tunability of LSPR of ITO NCs. We anticipate our result could
constitute a step forward, not only in the science of plasmonic-carrier
transfer, but also for state-of-the-art invisible optical devices in
general.

Results
Fabrication and characterization of heterointerfaces. For car-
rier injection using LSPR in the SWIR-region, the fabrication of
heterointerfaces with rational-band alignment is essential. As
electron-acceptor phases to form heterointerfaces with ITO NCs,
we selected two types of metal-oxide semiconductors, TiO2

(anatase or P25, a mixture of anatase and rutile) and SnO2,
because these metal oxides can be “clear and colourless” and are
commonly used as electron-transport layers and/or photo-
catalysts and possess suitable acceptor levels (i.e., position of the
conduction band (CB)) for hot-electron injection from ITO NCs.
Energy diagrams of the ITO NCs and metal oxides are shown in
Fig. 1a. The energy difference (ΔE) between the Fermi level
(EF) of the ITO and the CBs of SnO2 and TiO2 are 0.2 and 0.7 eV,
respectively, which are accessible for hot electrons generated in
ITO NCs10–12. The combination of ITO and SiO2 was also
adopted as a monitoring reference for the LSPR-stimulated
response of ITO NCs, because no electron transfer from the ITO
NC to the insulating SiO2 phase is expected. The ITO NCs were
synthesised according to previous reports13 and immobilised on
metal oxides via thermal-annealing and a reductive-annealing
process (see Methods). Figure 1b, c shows the UV–Vis–IR spectra
of ITO NCs and three types of ITO/metal oxides. All samples
have LSPR peaks in the IR region. TEM and XRD measurements
revealed no changes in the size or crystalline structure of ITO
NCs during the annealing process (Supplementary Figs. 1–5). The
broadening of LSPR band of ITO NCs on SnO2 results from the
plasmonic coupling of ITO NCs (see Supplementary Fig. 5).

Carrier dynamics at the heterointerfaces. To elucidate the
LSPR-induced carrier dynamics of ITO/metal oxides, we per-
formed femtosecond (fs)- and microsecond (μs)-laser flash pho-
tolysis to obtain time-resolved infrared-absorption (TR-IR). TR-
IR spectroscopy allows us to directly observe the LSPR-induced
carrier dynamics at the ITO/metal-oxide heterointerfaces. The
observation of free-carrier absorption (FCA) by metal oxides is
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Fig. 1 Energy diagrams and optical properties. a Energy diagrams of the indium tin oxide (ITO) nanocrystals (NCs) and metal oxides. The EF values of ITO
NCs and the conduction band edges of SnO2 and TiO2 were obtained from references10–12, respectively. C.B. conduction band; V.B. valence band. b Left-
hand side image: absorption spectrum of ITO NCs in CHCl3 solution. Right-hand side image: ITO-NC-coated glass substrate. c Extinction spectra of the
ITO/SiO2, ITO/TiO2 and ITO/SnO2 after reductive annealing. The spectrum shown in orange is the solar spectrum (AM 1.5)
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the direct evidence of electron injection from the ITO NCs into
the CBs of metal oxides.

The kinetic profiles of ITO/metal-oxide interfaces on a
picosecond (ps) scale were measured to investigate light-
stimulated electron injection from ITO to the metal oxide (Fig. 2a
and Supplementary Fig. 7). Upon excitation of ITO and ITO/
SiO2, transient absorptions (ΔOD) appear within the time
resolution of 285 ± 40 fs and decay with the time constant of
0.17 ± 0.08 ps and 0.37 ± 0.11 ps, respectively (Supplementary
Tables 1 and 2). The sequence of events in plasmonic materials
following pump excitation includes electron dephasing,
electron–electron scattering, electron-phonon coupling and
lattice-heat dissipation, all of which take place at different
timescales14. The observed instantaneous appearance within time
resolution and decay of transient-absorption signal upon the
excitation of ITO and ITO/SiO2 are ascribed to electron
dephasing and carrier scattering including electron–electron
and electron-phonon scattering, respectively14.

On the other hand, the ITO/SnO2 and ITO/TiO2 hetero-
interfaces also showed the instantaneous appearance of signal
within the time resolution, decaying dominantly with the time
constant of 0.21 ± 0.1 ps and 0.14 ± 0.09 ps, respectively (Supple-
mentary Tables 1 and 2). Subsequently, the signal becomes almost
constant, which can be regarded as the component with lifetime
much longer than time window of instrument (>3 ns). This
instantaneous appearance within the time resolution and fast
decay of signal is assignable to the above-mentioned LSPR-
induced ultrafast events, and the long-lived component is
assignable to FCA of SnO2 and TiO2, respectively15–17. To
confirm FCA formation, we measured the IR spectra of the ITO/
SnO2 interface at 10 ps after excitation by the 1700-nm laser

(Fig. 2b). The observed broad-absorption band from the near-IR
to mid-IR region agrees well with the FCA of SnO2

15. This result
strongly indicates that the hot electrons generated in ITO NCs
were injected into the conduction band of SnO2. As expected, no
FCA was observed for SnO2 without ITO NCs and ITO NCs
alone, and an ITO/SiO2 interface (Fig. 2a, Supplementary Fig. 7
and 8). For further confirmation of LSPR-induced carrier
generation, we performed an excitation-spectrum measurement
to probe the FCA. The excitation spectrum at 5000 nm and at
10 ps after the laser pulse reproduced the LSPR band of the ITO
NCs, clearly proving LSPR-induced electron injection from ITO
to SnO2 (Fig. 2c). The possibility of non-linear optical
phenomena caused by the enhanced electromagnetic field around
the ITO NCs18, was ruled out by the laser-power dependence of
the FCA intensity at 5000 nm (see Supplementary Fig. 9). These
facts clearly demonstrate that LSPR-induced electron injection
proceeds from the ITO NCs to SnO2.

Notably, as shown in Fig. 2c, the FCA was observed even under
excitation of NIR-to-SWIR lasers (1000–2500 nm). The quantum
yield (Φ) of LSPR-induced charge injection at an ITO/SnO2

heterointerface was calculated by equation (1),

Φ ¼ ne
Nphoton

; ð1Þ

where ne (cm−3) is the free-carrier number per unit volume
injected into SnO2 and Nphoton (cm−3) is the absorbed-photon
number of the pump light per unit volume in ITO/SnO2. The
electron-injection efficiency of the ITO/SnO2 interface by
excitation with a 1700-nm laser pulse was determined to be
33% from equation (1) (see Methods for details)15. Furthermore,
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Fig. 2 TR-IR measurements and excitation spectra. a Kinetic profiles for the transient absorption of ITO NCs and ITO/SnO2 at the ps scale at 5000 nm
upon the excitation by a 1700-nm laser. The instrument response function (IRF) (FWHM of IRF= 285 ± 40 fs) is shown by the pink line (see also
Supplementary Figure 6). b TR-IR spectrum of ITO/SnO2 at 10 ps after excitation of the LSPR band by a 1700-nm laser. The features of the observed FCA
spectrum (black circles) agrees well with the absorption spectrum reproduced by simulation (red line)15. c Excitation spectrum for the FCA of SnO2. The
probe light had a fixed wavelength of 5000 nm and the excitation-light wavelength changed with the laser power kept at 6 μJ/pulse. d The kinetic profile of
ITO/SnO2 at 5000 nm in the μs region following excitation by the 1400-nm laser. (FWHM of IRF= 0.485 μs). The red line shows the line of best fit
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we demonstrated that the responsive IR light of the ITO/SnO2

system is extendable over 4000 nm. Since the peak position of
LSPR of heavily-doped semiconductors is sensitive to the carrier
density, the LSPR absorption of ITO can be easily tuned by
changing the doping ratio of Sn13. As shown in Fig. 3, ITO NCs
doped with 1% Sn, which exhibited LSPR absorption at around
2000–5000 nm, also showed LSPR-induced electron injection.
This fact clearly indicates that IR light in the mid-wavelength
infrared region (3000–8000 nm), which is the important region
for the thermal sensors or free-space optical communications19,
can be applicable to the present system.

The FCA of ITO/SnO2 monotonically decayed with a triple
exponential function and the time constants are measured to be
2.0 ± 0.1, 33 ± 1 and 160 ± 1 μs (Fig. 2d and Supplementary
Table 3). From the change of decay profiles depending on the size
of SnO2, we concluded that multiple decay profiles of FCA reflect
the multiple decay channels of FCA, including the charge
recombination and carrier trapping (see Supplementary Figs.11
and 13 for detail). The decay of FCA represents the lifetime of
charge separation, which is an important parameter in determin-
ing the light-energy-conversion efficiency or quantum yield of
optical detector. The long-lived charge separation is favourable
for efficient energy conversion. For plasmonic carrier injection
systems, fast charge recombination is a major obstacle facing
efficient light-energy conversion5,20. The long-lived charge
separation in our ITO/SnO2 system, which reaches ~2–160 μs,
indicates that combining plasmonic ITO with SnO2 is a
promising technique for IR-light sensors and energy-conversion
systems. The photocurrent measurement of the ITO NCs/SnO2/
W photoelectrode further proves that IR-light-induced carrier
injection from ITO to SnO2 provides practicable electromotive
force, even under irradiation with IR light (Fig. 4). Although the
IPCE measurement succeeded up to 1600 nm due to the
limitations of the instrument (Fig. 4b), the photocurrent was
also successfully extracted through the external circuit, even
under SWIR light (1615–2280 and 2093–2547 nm in Fig. 4c, d,
respectively) from the Xe lamp.

Discussion
It was revealed that the LSPR-induced electron injection from
ITO to the SnO2 or TiO2 phases takes place, but the real
mechanism should be identified because there are several possible
mechanisms for the formation of FCA in metal oxides by the
sensitisation of plasmonic NCs, i.e., plasmon-induced hot-elec-
tron injection5, local-electromagnetic-field-induced in-situ elec-
tron and hole generation in a semiconductor21 and plasmon-

induced resonant-energy transfer (PRET)22. PRET only occurs
when the LSPR band of ITO NCs overlap with the absorption
band of the semiconductor. However, the absorption of SnO2

does not overlap with the LSPR of ITO. On the other hand, the
enhanced local electromagnetic fields of plasmonic materials can
contribute the generation of electron-hole pairs in the semi-
conductor, even if the interlayer effectively blocks the injection of
hot electrons generated by LSPR excitation21. To clarify whether
this mechanism is responsible for our system, we measured the
TR-IR of ITO/oleylamine(OAm)/SnO2, in which the ITO NCs
are attached to the SnO2 through the insulating OAm with a
molecular length of ~2 nm. As the result, the FCA was not
observed for the ITO/OAm/SnO2, owing to the complete
obstruction of electron injection from ITO NCs by insulating
OAm layers (Supplementary Fig. 14). Consequently, we can
conclude that LSPR-induced hot-electron injection is a key
mechanism for the emergence of the FCA of SnO2. Additionally,
the appearance of FCA within a short timescale (~1 ps) strongly
suggests that hot-electron injection takes place in the tunnelling
process through the Schottky barrier at the ITO/SnO2 hetero-
interfaces. Recently, the electron-injection mechanism from metal
(Au or Al) to metal-oxide semiconductors upon LSPR excitation
was investigated23,24. Both the LSPR-induced hot-electron injec-
tion and electron transfer via inter- or intraband transitions in
metal were concluded to be responsible for electron injection.
Note that the LSPR band of the ITO NCs was completely sepa-
rated from the inter- of intraband-transition bands. This means
that our ITO/SnO2 exhibited efficiency of 33% by only selective-
excitation of LSPR (without inter or intraband). This fact is
favourable for the application of the present LSPR-induced carrier
transfer system to the invisible optical devices. In contrast to ITO/
SnO2, the electron-injection efficiency to TiO2 (anatase) was poor
(0.11%).

The hot-electron-injection efficiency of ITO/SnO2 is sig-
nificantly high compared with that of ITO/TiO2, implying that
the Schottky barrier at the heterointerface is a criterion for
inducing such injection. It was reported that the ITO has both
semiconducting and metallic natures and forms the Schottky
barrier at the ITO/TiO2 interface25. The height and thickness of
the Schottky barrier at the ITO/TiO2 heterointerface should be
larger than that at the ITO/SnO2 heterointerface because the
barrier is affected by the alignment of EF of materials forming
these interfaces. Thus, in the case of the ITO/TiO2 system, the hot
electrons generated in the ITO are unfavourable for tunnelling
through or overcoming the Schottky barrier at the heterointer-
face. This barrier is an obstacle to electron injection and can
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suppress charge recombination as a positive effect. Such recom-
bination suppression is thought to contribute to the long-lived
charge separation of the ITO/SnO2 system. The present results
provide us with fine tuning of the plasmonic material/semi-
conductor heterointerface to realise efficient charge separation,
which to the best of our knowledge has not yet been established in
plasmonic electron-injection systems.

In conclusion, we have demonstrated SWIR-LSPR-induced
hot-electron injection from ITO NCs to SnO2 or TiO2 by means
of the μs- and fs-TR-IR measurements. Considering the trans-
parency of ITO and metal oxides, this is the first example of a
clear and colourless system for IR-responsive carrier transfer, to
the best of our knowledge. The selective-excitation of LSPR of
ITO causes hot-electron injection with high efficiency (33%) and
long-lived charge separation (~2–160 μs) thanks to fine control of
the heterointerface. The reasonable electron injection efficiency
and the much-longer-lived charge separation, compared with the
typical Au/TiO2 and other Au/semiconductor systems, guarantee
the value of our system for optical devices using IR-light. Fur-
thermore, we demonstrated that IR light longer than SWIR region
can be applicable to the present system owing to the ease con-
trollability of LSPR band of heavily doped semiconductor NCs.
We believe that our experimental results provide an important
step for the LSPR-induced carrier transfer and a useful strategy
for use in invisible optical devices.

Methods
Transient-absorption measurements. Microsecond (μs) time-resolved IR-
absorption measurements were conducted using custom-built spectrometers, as
described in our previous papers26. ITO/metal oxide samples were photoexcited by
using a 1400 nm laser pulses (energy: 2.7 mJ pulse−1, duration: 6 ns, repetition rate:
1 Hz) originating from a Nd: YAG laser (Continuum Surelite II) equipped with an
optical parametric oscillator (OPO) system to generate the desired pump wave-
length. The IR light emitted from the MoSi2 coil was used as the probe light in the
mid-IR region (7000–1000 cm−1). The transmitted IR light from the ITO/metal
oxide samples fixed on the CaF2 plate was then introduced into the grating
spectrometer and the monochromated light from the spectrometer was detected by
an MCT detector (Kolmar), and then the output electric signal was amplified using
an AC-coupled amplifier (Standford Research System SR560, 1 MHz). The time
resolution of the spectrometers was limited to ~1 μs by the bandwidth of the
amplifier. The instrument response function (IRF) was evaluated by measuring the
scattered laser pulses detected by the MCT. The FWHM value of IRF was estimated
to be 0.485 μs as indicated in Supplementary Figure 12.

In the femtosecond-to-picosecond region, the ultrafast kinetic measurements
were performed using on Ti:sapphire laser system (Spectra Physics, Solstice and
TOPAS Prime, duration: 90 fs, repetition rate: 1 kHz) to generate the pump and
probe wavelengths27. The ITO/metal oxide samples were photoexcited using
1700 nm (energy: 6 μJ pulse−1). The probe light was focused on the sample and the
transmitted IR light during irradiation condition entered the spectrometer
equipped with gratings. The monochromated light was then detected by MCT
detector. The FWHM of IRF value was estimated to be 285 ± 40 fs (refer to
Figure S6b). For the measurement of the kinetic profile shown in Supplementary
Fig. 14, a femtosecond Ti:sapphire laser system (Spectra Physics; Hurricane and
TOPAS; wavelength: 800 nm; pulse duration: 150 fs; repetition rate: 1 kHz) was
used. The FWHM value of IRF of the system is 210 fs. The 1700-nm pulse from one
OPA was used as a pump light. For the probe light, a 3440-nm pulse generated
from the other OPA with a difference-frequency-generation crystal was used. The
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intensity of the probe light transmitted from the sample was detected using an
MCT photodetector (KMPV11-1-J1, Kolmar technology).

Transmission electron microscopy. TEM observations (JEM-1011, JEOL) were
carried out at an accelerating voltage of 100 kV. TEM samples were prepared by
placing a drop of cluster solution onto a carbon-coated copper grid. HAADF-
STEM and EDS elemental mapping were performed on Titan3 (FEI) (convergence
semiangle: 17.9 mrad, a high-brightness Schottky emission gun (X-FEG) and
double spherical aberration correctors, Oxford Instruments X-MaxN 100TLE EDS
detector) electron microscopes with an operating voltage of 300 kV.

Spectrometry. Steady-state UV–vis–NIR-absorption spectroscopy was conducted
using a U-4100 spectrophotometer (HITACHI).

X-ray diffraction analysis. XRD patterns were taken by X’pert Pro MPD
(PANalytical) with CuKα radiation (λ= 1.542 Å) at 45 kV and 40 mA.

Synthesis of ITO nanocrystals. ITO NCs doped with different ratio of Sn was
synthesised as follows13. An n-octylether (10-mL) suspension of indium(III)
acetate (1.2–x mmol), tin(II) 2-ethylhexanoate (x mmol), 2-ethylhexanoic acid (3.6
mmol) and oleylamine (10 mmol) was stirred at 80 °C under vacuum for 30 min.
The solution was heated at 150 °C for 1 h under a N2 atmosphere and stirred for a
further 2 h at 280 °C to afford the formation of ITO NCs. After cooling to room
temperature, oleic acid (10.8 mmol) was injected into the solution and then stirred
for 30 min under a N2 atmosphere. Repeated centrifugal purification by ethanol
yielded pure ITO NCs protected by oleic acid. Finally, ITO NCs were re-dispersed
in chloroform.

Loading of ITO nanocrystals onto metal oxides. ITO NCs were adsorbed onto
nano-sized oxides through the dipole-induced dipole or dipole−charge interactions
between the hydrophobic ITO NCs and hydrophilic oxides28. We used SiO2 (G-10,
Fuji Sylisia), TiO2 (anatase or P-25, Aldrich) and SnO2 (Wako, 22–43 nm) as oxide
supports. Oxide supports (100mg) were added into the chloroform solution (50mL)
containing the desired quantity of ITO NCs (10-wt%-Sn doping vs oxides, wt of
oxides were calculated as the sum of In and Sn), followed by stirring for 24 h. The
solution was filtered and washed with hexane and chloroform. Based on the absor-
bance change of the filtrates before and after stirring with oxides for 24 h, we con-
cluded that nearly all the ITO NCs were adsorbed onto oxide supports. After the
adsorption, the sample was putted on the glass plate and calcined in air at 600 °C for
30min to remove organic compounds, while the intensity of the LSPR peak was
significantly reduced in all ITO/metal oxides upon the calcination due to the decrease
in the free-electron density. This calcination removed the surface ligands of ITO NCs,
thereby creating a heterointerface between ITO NCs and oxide supports. After cal-
cination, the ITO/metal oxides are annealed under reductive atmosphere (4% H2/Ar)
at 280 °C for 5 h to regenerate the LSPR. TEM and XRD measurements revealed no
changes in size and crystalline structure of the ITO/oxide heterointerfaces upon heat
treatments (Supplementary Fig. 1 and 2). For the measurement of absorption spec-
trum in IR region, we used CaF2 as substrate. All ITO/oxide show an LSPR peak in
the NIR region, even after annealing under reductive atmosphere.

Preparation of the ITO-NC/SnO2/W photoelectrode. A dense SnO2 layer was
prepared on tungsten substrates (Nilaco, 1.5 cm × 3 cm) by spin-coating 1-butanol
containing 0.1-M SnCl2·2H2O (Aldrich) and annealing at 450 °C for 30 min. A
mesoporous SnO2 layer was formed on the dense SnO2 layer using the SnO2-Sol
squeeze method (obtained by mixing 10 mL of 1-butanol with 1.0 g of SnO2 NPs
(diameter= 22–43 nm, Wako), 132.4 mg of ethylcellulose (90–110 mPa·s, TCI) and
1 mL of acetylacetone (Wako)), followed by annealing at 450 °C for 30 min. The
thickness of the SnO2 film, which was measured by scanning electron microscopy
(S-4800, HITACHI), was 5 μm. ITO NCs were deposited onto the surfaces of the
SnO2 films by spin-coating an octane solution containing ITO NCs (50 mgmL−1).
The resulting electrode was calcined in air at 600 °C for 30 min, followed by anneal
under 4% H2/Ar at 280 °C for 5 h.

Estimation of the quantum yield of electron injection at an ITO/SnO2 het-
erointerface. The quantum yield (Φ) of LSPR-induced charge injection at an ITO/
SnO2 heterointerface was calculated by equation (1),

Φ ¼ ne
Nphoton

; ð1Þ

where ne (cm−3) is the free-carrier number per unit volume injected into SnO2 and
Nphoton (cm−3) is the absorbed-photon number of the pump light per unit volume
in ITO/SnO2.

Nphoton was calculated by equation (2),

Nphoton ¼ A ´Total energy of one pulse
Energy of single photon

´ ð1� 10�O:D:@1700Þ=V; ð2Þ

where A is the ratio of the beam intensity within the FWHM of a laser pulse (0.5)

to the full intensity assuming that the laser pulse has a Gaussian intensity profile.
The total energy of one pulse is 1 μJ and the single-photon energy was estimated as

Energy of single photon ¼ hc=λ; ð3Þ

where h, c and λ are the Planck constant (6.626 × 10−34 J·s), the speed of light
(2.998 × 108 m/s) and the wavelength of the pump laser (1700 nm), respectively.
From equation (3), the single-photon energy was calculated as 1.17 × 10−19 J. V is
the volume of the pump-laser path in the sample pellet and is calculated to be
3.75 × 10−6 cm3 from the FWHM of the pump laser (349 μm) and the optical-path
length (l= 39.2 μm). The OD of the sample is 1.35 at the excitation wavelength
(1700 nm). Thus, Nphoton was calculated as 0.109 × 1019 cm−3. The absorption
coefficient, α (cm−1), due to free-carrier injection into the SnO2 was calculated
according to equation (4)

10�ΔO:D:@5000 nm ¼ e�α�l ; ð4Þ

where ΔOD at 5000 nm is 0.00160. From equation (4), α was calculated to be
0.939 cm−1. Since the absorption cross section of the free carrier is expressed as
σ= α/ne (cm2), ne is expressed by the following equation,

ne ¼
α

σ′ ð5Þ

where σ′ is the apparent absorption cross section of SnO2 powder (2.59 × 10−18

cm2), which is calculated in the next section. From equation (5), ne was calculated
to be 0.0363 × 1019 cm−3. Finally, the Φ value of electron injection was determined
to be 33% from equation (1).

Estimation of the apparent absorption cross section of SnO2 powder.
According to ref. 15, the absorption cross section (σ) of SnO2 is expressed as

logðσ=10�18½cm2�Þ ¼ aþ b � log10ðλ½nm�Þ; ð6Þ

where a┴=−8.888, b┴= 2.894, a//=−8.705 and b//= 2.863. When λ is 5000 nm,
σ┴ and σ// are estimated as 65.59 × 10−18 cm2 and 76.763 × 10−18 cm2, respectively.
As the direction of a-axis and b-axis is equal, the averaged σave value was calculated
to be 69.312 × 10−18 cm2 using the equation σave= (σ//+ 2σ┴)/3. Since the σave
value is the value of a single SnO2 crystal, a correction that takes the number
density of SnO2 powder into account is necessary to evaluate the apparent
absorption cross section (σ′). As the density of single-crystal SnO2 and the bulk
density of the sample powder are 6.95 g/cm3 and 0.26 g/cm3, respectively, σ′ was
calculated by using the following equation:

σ′ ¼ ð0:26=6:95Þ � σave: ð7Þ

From equation 6, σ′ was calculated as 2.593 × 10−18 cm2.

Estimation of the quantum yield of electron injection at an ITO/TiO2 (ana-
tase) heterointerface. The quantum yield (Φ) of LSPR-induced charge injection
at an ITO/TiO2 (anatase) heterointerface was estimated using the same procedure
as in the case of the ITO/SnO2 interface discussed above.

In the present case, the total energy of one pulse is 6 μJ and the energy of a
single photon was 1.17 × 10−19. The volume of the pump-laser path in the sample
pellet (V) was calculated to be 5.55 × 10−6 cm3 based on the FWHM of the pump
laser (349 μm) and the optical-path length (l= 58 μm). The OD of the sample is
1.49 at the excitation wavelength (1700 nm). Thus, Nphoton is calculated to be
4.48 × 1018 cm−3. The absorption coefficient, α (cm−1), due to the injection of
free carriers into TiO2 (anatase) was estimated to be 0.635 cm−1 from the ΔOD at
5000 nm (=0.00160) and the optical-path length l (=58 μm). The apparent
absorption cross section (σ′) of TiO2 (anatase) powder is 1.303 × 10−16 cm2, which
is determined in next section. From the values of α and σ′, ne was calculated to be
4.87 × 1015 cm−3. Finally, the Φ of electron injection was estimated to be 0.11% at
the ITO/TiO2 (anatase) heterointerface.

Estimation of the apparent absorption cross section of TiO2 (anatase) pow-
der. According to refs. 16 and 29, the average σave value was calculated to be 6.549 ×
10−16 cm2. As the σave value is that of a single crystal of TiO2 (anatase), correction
taking the number density of TiO2 powder into account is necessary to evaluate the
apparent absorption cross section (σ′). Since the density of single-crystal TiO2

(anatase) and the bulk density of the sample powder ranges from 3.90 g/cm3 to
0.776 g/cm3, respectively, σ′ was calculated as

σ′ ¼ ð0:776=3:90Þ � σave: ð8Þ

From equation 8, the σ′ value of TiO2 (anatase) was calculated to be
1.303 × 10−16 cm2.
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Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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