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Abstract

Losses in vital functions of the somatic motor and sensory nervous system are induced by

severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts

are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions,

whereas the prognosis is not always favorable. Here, we use human skeletal muscle-

derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles

samples were obtained from the amputated legs from 9 patients following unforeseen acci-

dents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as

CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/

expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice

sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8–12 weeks, active

cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferen-

tial differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation

of the myelin sheath and perineurium/endoneurium surrounding regenerated axons,

resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and

endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of

downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of

the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during

the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80%

vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in

the formation of vascular networks in the conduit during the early stage (first 2 weeks) of

recovery was observed in both groups with the expression of key factors (mRNA and protein

levels), suggesting the paracrine effects to angiogenesis. These results suggested that the
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human Sk-SCs may be a practical source for autologous stem cell therapy following severe

peripheral nerve injury.

Introduction

Severe nerve transection with a long gap is an irreparable injury to the living body, leading to

permanent loss of related motor and sensory functions. In such cases, autologous nerve grafts

have been used as the gold standard treatment [1], with the expectation of proliferation and

activation of associated Schwann cells and production of neurotrophic factors and cytokines

[2]. However, the prognosis is not favorable, despite the sacrifice of healthy nerves from other

parts of the body.

Alternatively, scaffold bridges, which can be of synthetic or biological origin and be resorb-

able or non-resorbable, have been studied with the hope that bridging conduits can provide

adequate mechanical support for separated nerve ends and prevent the diffusion of neuro-

trophic and neurotropic factors secreted by transected stumps [1]. However, it appears clear

that use of these conduits alone does not facilitate nerve regeneration across long gaps [3].

Acellular conduits have also been used with several cell sources, such as Schwann cells and/or

Schwann-like cells induced from cultivated bone morrow stromal cells [4], olfactory ensheath-

ing cells [5], and adipose tissue-derived cells [6]. However, it is unlikely that these conduits

could match or exceed the performance of autografts. Even the combined use of the iPS-

derived neurospheres with bioabsorbable conduit transplantation showed only about 5% axo-

nal recovery in long-gap nerve injury after 12 weeks [7].

On the other hand, we recently reported the potential therapeutic use of mouse skeletal

muscle-derived multipotent stem cells (Sk-MSCs) in long-gap nerve treatment with bridging

by an acellular conduit [8] based on their capacity for synchronized reconstitution of the mus-

cle-nerve-blood vessel unit [9]. As expected, transplanted mouse Sk-MSCs actively differenti-

ated into all peripheral nerve support cells (Schwann cells and perineurial/endoneurial cells)

and blood vessel-related cells (pericytes and vascular endothelial cells), leading to 90% recovery

in the number of axons and a 9-fold increase in blood vessel formation, with diminished differ-

entiation into the skeletal muscle cell lineage [8]. Favorable functional recovery in vivo was

demonstrated by observing subjects walk across a narrow log 8 weeks after transplantation [8].

These results were revolutionary because they showed 2–3 fold higher recoveries than the

reported scores of the gold standard treatment [1].

However, it was still unknown whether human skeletal muscle also included such stem cells

comparable to the mice. Human skeletal muscle-derived stem cells (Sk-SCs) have been iso-

lated, characterized, and examined with respect to their in vivo differentiation capacities [10–

14]. However, the therapeutic application of human Sk-SCs to nerve repair has never been

investigated, even though they are thought to be involved in nerve regeneration [15]. We also

studied the optimal methods for the therapeutic isolation and fractionation of human skeletal

muscle-derived cells (Sk-Cs), and established appropriate cell expansion culture methods [16].

Subsequently, we demonstrated that the human Sk-Cs also exerted stem cell potential for skel-

etal muscle and peripheral nerve-vascular lineage cells in severely damaged skeletal muscle

[16], similar to the mouse Sk-MSCs [9, 17, 18]. Therefore, it appeared that human Sk-Cs was

considered also the skeletal muscle-derived stem cells (Sk-SCs).

In the present study, we first examined the differentiation capacity of human Sk-SCs in

severely crushed sciatic nerves of nude rats. In order to examine the therapeutic potential of
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human Sk-SCs, we injected them into the long-gap transected nerve model of nude mice with

an acellular conduit bridge. We strictly followed the protocol for mouse-to-mouse experiments

reported previously [8]. The results clearly indicated that human Sk-SCs exerted comparable

capacities to those seen with mouse Sk-MSCs [8], with regard to cell biology, tissue morphol-

ogy, physiology, and therapeutic potential. It is therefore possible that combined use of human

Sk-SCs and a bridging conduit is the best method for long nerve gap therapy. The present

results are a significant and practical step forward in the development of a therapeutic strategy

for long-gap nerve injury.

Materials and Methods

Human skeletal muscle samples and cell isolation

We recruited 9 patients (aged 16 to 79 years, 7 male and 2 female) whose legs were amputated

after unforeseen accidents. Study protocols were carried out according to The Code of Ethics

of the World Medical Association (Declaration of Helsinki), and were approved by our institu-

tional ethics committee (Tokai University School of Medicine: BC approval No. 12I-11). All

patients gave written (signed) informed consent after being a detailed explanation of the study

aims and procedures. As for the patients under 20 years-old, written informed consent from

the next of kin was also obtained. The consent procedures were also approved by our institu-

tional ethics committees (see above). Muscle samples (5–10 g) were wrapped in gauze moist-

ened with cold (4˚C) physiological saline immediately after removal, and were transferred to

the laboratory for isolation of stem cells within 30 minutes.

The human Sk-SCs were isolated using a previously described procedure for mouse and

human muscles [8, 16, 19, 20]. Briefly, muscle samples were weighed and washed several times

with DMEM containing 1% penicillin/streptomycin, and were cut into several pieces (5–7 mm

thick and wide, and 40–50 mm long). Muscles were never minced. Muscle pieces were treated

with 0.1% collagenase type IA (Sigma-Aldrich, St. Louis, MO) in DMEM containing 7.5% FCS

with gentle agitation for 2 hours at 37˚C. Extracted cells were filtered through 70-μm, 40-μm,

and 20-μm nylon strainers in order to remove muscle fibers and other debris, and then were

washed and resuspended in Iscove’s modified Dulbecco’s medium (IMDM) containing 10%

FCS, yielding enzymatically extracted cells. Enzymatically extracted mixed cells were then pre-

pared for staining with cell surface antigens and sorting, or were stored in liquid nitrogen with

cell preservative solution (Cell Banker; Juji-field, Tokyo, Japan) until use, after pre-freezing at

−80˚C using a bio freezing vessel (BICELL; Nihon Freezer Co., Ltd., Tokyo, Japan).

Sorting of enzymatically isolated cells and cell culture

Sorting of enzymatically isolated cells and expansion culture was performed strictly in accor-

dance with a previous report [16]. Isolated cells were sorted using cell surface markers, includ-

ing CD29 (BD Biosciences, San Jose, CA), CD34 (RAM34, eBioscience, San Diego, CA), and

CD45 (30-F11, BioLegend, San Diego, CA) antibodies using a FACSAria (Becton Dickinson

Japan, Tokyo, Japan), to yield CD34+/45-/29+ (Sk-34/29+), CD34+/45-/29- (Sk-34/29-), and

CD34-/45-/29+ (Sk-DN/29+) fractions. All samples were sorted accordingly. FACS analysis of

human Sk-SCs before and after expansion culture as well as detailed sorting of human Sk-34

and Sk-DN cells are summarized in Fig 1. First, analysis was performed on freshly isolated or

thawed human Sk-SCs using typical mesenchymal stem cell surface makers: CD29, CD31,

CD44, CD56 (NCAM), and CD73 (purchased from BD Biosciences, San Jose, CA); CD105

and CD117 (c-kit) (from BioLegend, San Diego, CA); CD133 (from Miltenyi Biotec, Bergisch

Gladbach, Germany); and CD166 (from Beckman Coulter, Brea, CA); as well as CD34

(RAM34; eBioscience, San Diego, CA) and CD45 (30-F11; BioLegend, San Diego, CA)
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antibodies (Fig 1A). Cell analysis and sorting were carried out on a FACSAria (Becton Dickin-

son Japan, Tokyo, Japan). Then, cells were sorted into three fractions (Fig 1B). Sorted cell frac-

tions were separately cultured and expanded in the optimal conditions described previously

[16], and then analyzed again (Fig 1C). The details of an appropriate cell culture/expansion

methods (passages were limited to two times) were described previously [16].

Recipient animals and cell transplantation

Athymic nude mice (female, BALB/cA Jcl-nu/nu; CLEA Japan, Tokyo, Japan, aged 5–6 wk,

n = 80) and rats (male and female, F344/NJcl-mu/mu; CLEA, Tokyo, Japan, aged 8–12 wk,

n = 17) were used as transplant recipients. Three additional mice were used to obtain normal,

untreated control data. The animals were housed in standard cages and were provided food

and water ad libitum. The room temperature was kept at 23 ± 1˚C, and a 12:12 light-dark cycle

was maintained throughout the experiment. All experimental procedures were approved by

the Tokai University School of Medicine Committee on Animal Care and Use (No. 153015).

All methods were undertaken to minimize potential pain and distress, and there were no ani-

mals died unexpectedly during the study.

In order to determine in vivo differentiation and therapeutic potential, we used two types of

animal models: 1) a severe nerve crush injury model, and 2) a completely transected nerve

with long-gap model. All operations were performed under inhalation anesthesia (Isoflurane;

Abbot, Osaka, Japan), and body (rectal) temperature was maintained at 36 ± 1˚C with radiant

heat and this was maintained throughout the surgical procedure. During surgery, analgesic

nonnarcotic opioid (butorphanol tartrate; 0.1mg/Kg subcutaneous infusion, Meiji Seika

Pharma, Tokyo, Japan) was administered if necessary. During the recovery phase, we paid

attention to animal behavior, and when pain behavior was observed, subcutaneous infusion of

analgesic nonnarcotic opioid above was performed. We used the severe nerve crush injury

model to simulate Seddon’s axonotmesis and/or the Sunderland’s fourth degree, which

involves loss of axons, endoneurial tubes, perineurial fasciculi, and vascular networks, while

continuity of the epineurium is maintained. Therefore, multiple stimulations for peripheral

nerve and vascular lineage cells (such as Schwann, endoneurial/perineurial, and vascular cells)

and synergistic effects of transplanted cells might be expected. Using this model, we examined

the differentiation capacity of three cell fractions (Sk-DN/29+, Sk-34/29+, and Sk-34/29- cells).

Details of this model were described previously [8]. Briefly, the nerve crush injury model was

prepared in nude rats (n = 14) as follows: the right sciatic nerve was exposed through a gluteal

muscle incision. The sciatic nerve was then repeatedly crushed with forceps for a 12-mm span

along the longitudinal axis. Most of the peripheral nerve support tissues were destroyed, except

the epineurium, which is the outermost layer of the nerve. All transplanted cells were sus-

pended in culture media at a concentration of 1 × 106 cells/6 μl, and 3 μl of cells/nerve was

Fig 1. Fluorescence activated cell sorting (FACS) analysis of human Sk-SCs before and after expansion culture, and sorting

of human Sk-34 and Sk-DN cells. (A) Characteristics of human Sk-SCs just after thawing, in a putative freshly isolated state. First,

CD45+ cells were discarded as hematopoietic cells, and the remaining cells were analyzed further. Based on the results in (A),

possible markers for cell sorting were CD29, CD34, CD73, and p75 (CD271). (B) We then selected CD29 and CD34, and sorted three

types of cell: Sk-34/29- (CD34+/45-/29-), Sk-34/29+ (CD34+/45-/29+), and Sk-DN/29+ (CD34-/45-/29+). We also confirmed the

concentration of p75+ cells (see panels P6, P7, and P8). (C) Characteristics of the three types of cell after 2 weeks of expansion

culture. Basically, three types of cell showed similar characteristics, while a lower distribution of p75+ cells was seen in Sk-34/29- cells

than in the initial state (see P6 in B). Note that the patterns of Sk-34/29+ and Sk-DN/29+ are similar, but that they showed quite

different behaviors after in vivo transplantation (see Fig 1). Therefore, in our cells, FACS characteristics after expansion culture did

not reflect in vivo differentiation capacity after transplantation. The validity of using CD29 in the detection of human cells (see Fig 2) is

also evident (C), because of their whole positivity. Standard cell sorting was performed on all samples, and detailed FACS analysis

was performed using 3 males and 1 female (ages: 17, 27, 60, and 79; muscles: soleus, gastrocnemius, and tibialis anterior).

doi:10.1371/journal.pone.0166639.g001
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injected into the destroyed hollow portion of the nerve through the remaining epineurium

using a fine tip glass pipette. The same amounts of media without cells were injected as

controls.

On the other hand, therapeutic capacity was examined using the complete nerve transection

with long-gap model, and four transplantation groups (Sk-34 (29+/-, Sk-DN/29+, mixed [Sk-34

and Sk-DN/29+] and medium control) were prepared. Details of this model were also

described previously [8]. For the complete nerve transection model with long-gap, the sciatic

nerve was transected with a 7-mm (mouse) or 12-mm (rat) gap. The nerve gap was then

bridged using an acellular conduit made from a separated esophageal submucous membrane

from nude mice after 3 days of 70% ethanol dehydration. The bridging conduit was injected

with three types of cell (concentration of 3 × 106 cells/6 μl/nerve for rat, and 3 μl/nerve for

mouse), including human Sk-34, Sk-DN/29+, and mixed cells (Sk-34 + Sk-DN/29+), or the

same amount of medium alone (3 μl/nerve per mouse, and 6 μl per rat). Transplanted cells

were optimally cultured and expanded with one passage, as described above. This model was

also used for the RT-PCR analysis of engrafted Sk-34 cells 6 weeks after transplantation.

Immunohistochemistry and immunoelectron microscopy

At the end of each transplantation period, recipient nude mice or rats were given an overdose

of pentobarbital (60 mg/kg, i.p.), and were then perfused with warm 0.01 M phosphate-buff-

ered saline (PBS) through the left ventricle, followed by fixation with 4% paraformaldehyde/

0.1 M phosphate buffer (4% PFA/PB). Nerves were removed and fixed overnight in 4% PFA/

PB, washed with graded sucrose (0–25%)/0.01 M PBS series, embedded in optimum-com-

pound (O.C.T compound; Tissue-Tek, Sakura Finetechnical Co., Ltd., Tokyo, Japan) and fro-

zen at − 80˚C. Subsequently, in order to examine the bridged conduit, several 7-μm cross- and

longitudinal sections were obtained from three portions, as shown in Fig 2. Section 1was a

cross-section showing the proximal portion of the conduit, section 2 was a longitudinal section

Fig 2. Schematic drawing of the nerve gap bridging method and extraction of histological sections. A

cellular conduit was prepared using a mouse esophagus dehydrated in 70% ethanol for 3 days. Cells were

injected with a fine glass pipet after suturing.

doi:10.1371/journal.pone.0166639.g002
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showing the midportion of the conduit, and section 3 was a cross-sectional profile of the distal

portion of the conduit. Engrafted human cells were detected by anti-human nuclear antigen

(HNA, 1:100, 4˚C overnight; clone 235–1, Cy3 conjugate; Millipore, Temecula, CA). Localiza-

tion of nerve fibers (axons) was determined by rabbit polyclonal anti-neurofilament 200 (N-

200, 1:1000, room temperature for 1 h; Sigma, Saint Louis, MO). Myelin formation was

detected by rabbit polyclonal anti-myelin basic protein (MBP; 1:200, room temperature for 2

h; Millipore, Billerica, MA). The total distribution of blood vessels was determined using rat

anti-mouse CD31 monoclonal antibody (1:500, 4˚C overnight; BD Pharmingen, San Diego,

CA), and/or rabbit polyclonal anti-human CD31 (1:200, room temperature for 2 h; Abcam,

Cambridge, UK). Immature Schwann cells were detected using rabbit anti-p75 polyclonal anti-

body (1:400, 4˚C overnight; CST, Boston, MA) or mouse monoclonal antibody (1:100, 4˚C

overnight; Abcam, Tokyo, Japan), and rabbit anti-glucose transporter 1 (GLUT-1, 1:100, room

temperature for 1 h; Diagnostic BioSystems, Pleasanton, CA) was used for identification of the

perineurium. Myogenic cells were confirmed with rabbit polyclonal anti-skeletal muscle actin

(1:300, room temperature for 1 h; Abcam, Tokyo, Japan). Reactions were visualized using

Alexa Fluor-488, -594, -647-conjugated goat anti-rabbit, anti-rat, and anti-mouse antibodies

(1:500, room temperature for 2 h; Molecular Probes, Eugene, OR), respectively. Nuclei were

counter-stained with DAPI. Histological photographs were taken with a fluorescence multi

focal projection system using Stereo Investigator (mbf Bioscience, MicroBrightField. Inc.,

Williston, VT) and fluorescence microscopy (Olympus BX61 with U-HGLGPS and BX-UCB,

Tokyo, Japan). Staining of p75 and CD31 was further confirmed by confocal imaging. Confo-

cal imaging was performed with a Zeiss LSM 700 confocal microscope equipped with a 40x or

40x LD “C-Apochromat” water immersion objective lens (Carl Zeiss, Jena, Germany).

For immunoelectron microscopy, sections were stained using anti-HNA (1:50, 4˚C over-

night; clone 235–1, biotin conjugate; Millipore), followed by HRP-conjugated streptavidin sec-

ondary antibody (1:200, room temperature for 1 h; DAKO) in order to label engrafted human

cells. Reactions were visualized with DAB after fixation in 1% glutaraldehyde/0.1 M phosphate

buffer. Visualized sections were then fixed in 1% osmium tetroxide/0.05 M phosphate buffer,

and were prepared for electron microscopic analysis. Cell differentiation into Schwann cells,

perineurial/endoneurial cells, vascular endothelial cells and pericytes, and fibroblasts were

mainly observed. Immunoelectron microscopy was performed as described previously [8, 9,

16, 17, 19, 21]. Consequently, the HNA-positive cells were detected as cells having dark nuclei

because of products that reacted with DAB (black dots) in the immunoelectron micrograph.

Histological analyses were performed on all samples, and 4 samples were prepared for

immunoelectron microscopy.

RT-PCR

In order to test the putative cell differentiation capacity, the expression of specific markers for

skeletal muscle, peripheral nerve, and vascular cell lineages, as well as the neurotrophic and

vasculogenic factors, was examined by RT-PCR of expanded (passage 1) Sk-34, Sk-DN/29+

cells before and after transplantation. Specific primers for human cells and analyzed materials

are summarized in S1 Table. Expanded cells were lysed and total RNA was purified using a

QIAGEN RNeasy Micro Kit. First-strand cDNA synthesis was performed with an Invitrogen

SuperScript III system using a dT30-containing primer (see above), and specific PCR (35

cycles of 30 s at 94˚C, 30 s at 60–65˚C, and 2 min at 72˚C) was performed in a 15-μl volume

containing Ex-Taq buffer, 0.8 U of ExTaq-HS-polymerase, 0.7 μM specific sense and antisense

primers, 0.2 mM dNTPs, and 0.5 μl of cDNA. To analyze cells after transplantation, operated

nerves almost 15 mm in length (mouse) or 25 mm (rat) were detached, including the bridging
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conduit portions, and three nerves (mouse) or one nerve (rat) were prepared for cell isolation

using the same protocol as for Sk-SCs isolation with collagenase-type IA solution (see above).

Total extracted cells were then sorted using human-specific CD29 (BD Biosciences) in order

to re-isolate the engrafted human cells and discard contaminated mouse derived-cells. CD29

selected almost 100% of the expanded pre-transplantation cells (see Fig 1). Sorted CD29+ cells

were analyzed for human-specific mRNA expression. The CD29- cell fraction was also pre-

pared for the same human-specific RT-PCR, in order to confirm the inclusion of unlabeled

human cells. The analysis was repeated three times with different samples (mouse, n = 9; rat,

n = 3), and the relative expression intensity of each band was classified into three levels qualita-

tively, as an apparently strong (+3), an apparently low (+1), intermediate (+2), or undetectable

(0) band with respect to the housekeeping control gene (β-actin), which was used for every

electrophoresis. Obtained values were averaged.

Protein analysis

In order to examine the paracrine effects of Sk-34 and Sk-DN cells, key cytokines related to

vascular regeneration were also analyzed by an antibody array kit (Proteome Profiler Array,

Human angiogenesis array kit, ARY007, R & D Systems, Minneapolis, MN) a protein levels.

Cell culture supernatants of Sk-34 and Sk-DN/29+ cells, prepared for use just prior to trans-

plantation, were obtained after centrifugation, and 500 μl of the supernatants were prepared

for the protein analysis. Culture medium containing 20% FCS was also prepared as the nega-

tive control. The relative protein expression levels of the selected angiogenesis-related cyto-

kines, including Ang (Angiogenin), IGF binding protein (BP)-3, IL-8, MCP-1 (monocyte

chemotactic protein-1), MMP-9, PlGF (placenta growth factor), and VEGF, were determined.

Functional assessment of downstream muscles

The most prominent functional recovery markers for long-gap sciatic nerve transection,

tetanic tension outputs of the solo plantaris (PLA) and combined soleus (SOL) + gastrocnemius

(GAS) muscles of nude mice were measured in both the left (non-operated control side) and

right (operated side) legs and compared among the Sk-34 (n = 22), Sk-DN/29+ (n = 19), mixed

(n = 13), and media control (n = 14) groups. Measurements were performed in situ under

inhalation anesthesia (Isoflurane; Abbot, Osaka, Japan), and body (rectal) temperature was

maintained at 36 ± 1˚C with radiant heat throughout measurement. The distal tendons of ref-

erence muscles and sciatic nerves (about 15 mm) on both sides were carefully exposed, and tis-

sues were coated with mineral oil to prevent them from drying and to minimize electric-noise

interference. The details of setting and method of the tension measurement were described

previously [8]. Tetanic tension output was considered to be the total recovery of nerve-muscle

units, and the recovery ratio was determined based on the following equation: y = 53.848In

(x)– 73.467, based on the relationship between tension output and body mass from the pooled

data of non-operated control mice (n = over 120).

Characterization of downstream tibial nerve and planter flexor muscle

recovery

In order to further examine the recovery of the downstream nerve-muscles, axons of the tibial

nerve were stained with N-200 associated with laminin (anti-laminin). The nerve branches

associated with the muscle spindles in the plantaris muscle were stained and quantified for

comparison among the Sk-34, media, and normal control groups. Similarly, myosin ATPase

staining (preincubation at pH 4.2~4.3 and specifically stained for Type-I fiber) was performed

for the plantaris muscles of each group in order to examine pathological changes. These
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include fiber type grouping, which is typically observed after denervation-reinnervation,

denervation induced muscle fiber atrophy characterized by irregular fiber diameters, and ill-

defined fiber colors, which indicate denervated or regenerating muscle fibers.

Quantitative analysis

Regeneration of axons, myelin, and blood vessels in whole cross-sections of the bridging con-

duit was determined by the number of positive reactions to anti-N-200, -MBP, and -CD31,

respectively. Reacted cells/tissues were counted using a Stereo-investigator (MBF Bioscience,

MicroBrightField, Inc., Williston, VT). The analysis was performed on 4–5 sections per sam-

ple, and values were averaged. The number of axons in the downstream tibial nerves was also

quantified. Values are expressed as means ± SE. Differences in morphological and functional

data between groups were evaluated by parametric Tukey-Kramer post-hoc multicomparison

test, and the level of significance accepted was sat at p< 0.05.

Results

Differentiation capacity of human Sk-SCs in the crush injury model

In order to determine the basic differentiation capacities of human Sk-SCs in a damaged

nerve-specific niche, we first performed three types of expanded (passage 1) cell transplants in

the sciatic nerve crush injury model of nude rats, using Sk-DN/29+, Sk-34/29+, and Sk34/29-

cells. Six weeks after transplantation, vigorous and successful cell engraftment was observed in

the Sk-34/29+ and Sk-34/29- fractions (pink nuclei), but cell engraftment was unsuccessful in

the Sk-DN/29+ cell transplantation (Fig 3A). HNA+ nuclei (pink) were densely and uniformly

distributed in both Sk-34/29+ and Sk-34/29- cell transplanted nerves, similar to N200+ axons

(green, Fig 3A). Only a few HNA+ cells could be seen outside of the epineurium in Sk-DN/29+

cell-transplanted nerves (arrows in Fig 3A). Transplanted cells did not interfere with nerve

regeneration. Instead, the transplanted groups tended to show greater regeneration than that

of the medium control (Fig 3B). However, the medium control group showed sufficient recov-

ery to the normal intact levels, thus showing that this crush injury model is a self-recovering

model.

With regard to the differentiation of engrafted human Sk-34/29+ cells, double staining of

HNA+ nuclei and p75 was evident, indicating differentiation into Schwann cells (arrows in Fig

3B). Cell localization and differentiation of Sk-34/29+ cells was further confirmed by immu-

noelectron microscopy (Fig 3C). Cells having HNA+ nuclei (dark nuclei with black dots) dif-

ferentiated into myelinated Schwann cells, endoneurial cells, perineurial cells, vascular

endothelial cells, and pericytes. Consequently, these results indicated that Sk-34/29+ cells were

able to differentiate into peripheral nerve support cells and vascular cells. Note that this differ-

entiation could be attributed to Sk-34/29- cells, and this is the reason that we combined Sk-34/

29+ and Sk-34/29- cells into Sk-34 cells for the subsequent experiments. In addition, these

trends correspond to those observed in previous mouse Sk-MSC and human Sk-SC experi-

ments [8, 16].

Expression of specific mRNAs before and after transplantation of Sk-DN

and Sk-34 cells

In order to further evaluate the putative capacity for cellular engraftment and differentiation of

Sk-DN/29+ and Sk-34 cells, the relative expression of specific mRNAs was examined before

and after transplantation into the bridging conduit of a long nerve gap model in nude rats.

Thirty-six markers were selected in relation to cellular commitment, growth, and regeneration
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of peripheral nerves, blood vessels, skeletal muscle, and common factors (Fig 4 and S1 Table).

Just before transplantation, similar expression of specific mRNAs was observed in both

expanded Sk-DN/29+ and Sk-34 cells, whereas the latter were Pax7 negative (Fig 4A). Six

weeks after bridging and transplantation, operated nerves associated with the conduit were

removed and prepared for cell isolation, as described for muscle cell isolation (see Methods).

Isolated cells were then sorted by human-specific CD29 to obtain human-derived cells, and

CD29+ cells were prepared for analysis of human-specific mRNAs. Notably, no reactions were

observed in the same RT-PCR analysis for the CD29- cell fraction, showing that almost no

human cells remained. In this analysis, there were no cells detected in the Sk-DN/29+ cell

transplantation, whereas a large number of cells were determined Sk-34 by cell sorting (Fig

4B), corresponding to the results of the crush injury model experiment (see Fig 3). In addition,

sorted human-derived engrafted cells showed a lack of expression of skeletal myogenic mark-

ers, while peripheral nerve and vascular marker expression, as well as common factors, were

retained (Fig 4C). This also indicates the differentiation of human Sk-34 cells into peripheral

nerve and blood vessel support cells in the bridging conduit, thus confirming the therapeutic

potential of Sk-34 cells. These results clearly suggested that expression of cell surface markers

and specific mRNAs just before transplantation (after expansion culture) had no relation to

successful cell engraftment (see patterns in Sk-34/29+/- vs. Sk-DN/29+ in Fig 4A and Fig 1C).

However, expression of CD34 immediately after thawing and/or isolation (before culture) is

an important determinant for successful engraftment.

Quantitative analysis of regenerated axons and myelin in the bridging

conduit

In order to evaluate the contributions of transplanted cells to transected nerve recovery, regen-

erated axons and myelin were assessed in cross-sections 1 and 3 (see Methods, Fig 5). Compar-

isons were performed among Sk-34, Sk-DN/29+, mixed (Sk-34 + Sk-DN/29+), and media

control groups, and typical features 8 weeks after transplantation are shown in Fig 5. Some

HNA+ human cells were detected in the Sk-34 and mixed groups, but nothing was observed in

the Sk-DN/29+ group. Similarly, it seems to receive the impression that favorable reconstitu-

tion of axons (N200) and myelin (MBP) was observed in the Sk-34 and mixed groups, and

some recovery in the Sk-DN/29+ group and a slight recovery in the media group were detected

(Fig 5).

A quantitative comparison of axon and myelin formation in sections 1 and 3 at 2 and 8

weeks after transplantation is shown in Fig 6. It was evident that 1) axonal regeneration began

at the proximal site of the conduit, and 2) axonal regeneration preceded myelin formation. In

Fig 3. Differentiation potential of Sk-34/29+, Sk-34/29-, and Sk-DN/29+ cells in a severely crushed nerve niche. Results

were obtained from a nude rat experiment, after transplantation of a male patient sample (age 62, tibialis anterior). (A) Cross-

sectional profiles of crushed nerves 6 weeks after surgery stained with HNA (human cell nuclei, pink) and N200 (axon, green).

(B) Comparison of the number of axons and myelin in the whole nerve cross-sections of four experimental groups. Dotted

square shows the average range of normal non-operated control values. Complete recovery of both axon and myelin was

observed in the media group, suggesting that this crush injury model is a possible self-recovery model. *P < 0.05. (C) Triple

staining with HNA (purple), N200 (red), and p75 (immature Schwann cells, green) in Sk-34/29+ cell-transplanted nerves,

showing donor human cell-derived Schwann cells (arrows). Blue = nuclear staining with DAPI. (D) Immunoelectron

microscopic detection of engrafted Sk-34/29- cells. Note that arrows shows HNA- nuclei, and HNA+ nuclei show darker

staining because of their DAB reaction products (higher electron density of heavy metal-binding; compare nuclei with arrows

and arrowheads). Human Sk-34/29- cells differentiated into Schwann cells (S), perineurial cells (P), endoneurial cells (E),

endothelial cells (EC), and pericytes (PC). Note that opposite pattern of immunostaining and immunoelectron microscopy of

Sk-34/29- and Sk-34/29+ cells were presented in the S1 Fig, and confirmed that the same differentiation capacity of both cells.

Bars in A = 200 μm, B = 50 μm, and C = 10 μm.

doi:10.1371/journal.pone.0166639.g003
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section 1, a temporal increase in the number of axons was observed in the Sk-34 and mixed

groups 2 weeks after surgery, but a return to normal values was seen at 8 weeks. This suggests

Fig 4. Relative expression of mRNAs specific for peripheral nerve, vascular, and skeletal muscle lineages before and after

transplantation of Sk-34 and Sk-DN/29+ cells. Results were obtained from a nude rat experiment. (A) Expression of specific mRNAs of

expanded Sk-34 and Sk-DN/29+ cells just before transplantation. Numbers (1–36) and colors (black, pink, green, red) in bars correspond to

factor names and numbers (1–36). (B) Sorting of cells from nerves treated with bridging conduits using human cell-specific CD29 antibody

6 weeks after transplantation. Non-reactivity of human CD29 to the rat cells were preliminary confirmed. There were no human cells

present in Sk-DN/29+ cell-transplanted nerves, but numerous cells were seen in the Sk-34 transplanted nerves. (C) Expression of specific

mRNAs in sorted (engrafted) Sk-34 cells. Disappearance of skeletal muscle-related markers is clear (No.1–9). Expression was evaluated

based on a housekeeping control (β-actin) provisionally as follows: 0 = none, 1 = apparently low, 2 = intermediate, 3 = apparently strong

(relative to β-actin = 2), and averaged across five samples (4 males and 1 female; age: 16, 17, 32, 50, and 62; muscles: gastrocnemius and

tibialis anterior).

doi:10.1371/journal.pone.0166639.g004
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that a transient increase in axons had an accelerating effect of stem cell transplantation, but

this subsequently decreased to normal levels. In contrast, a gradual increase in axons was

observed in the Sk-DN/29+ and media groups from 2 to 8 weeks. Consequently, all three trans-

plant groups showed 95–100% axonal recovery, but only 47% recovery was seen in section 1 in

the media group after 8 weeks. With regard to myelin formation, 54% and 33% recovery was

detected in the Sk-34 and mixed groups, while the other groups showed low scores at 2 weeks.

At 8 weeks, however, the Sk-34 group showed 100% recovery, while 89% recovery was seen in

the Sk-DN/29+ group, 91% was seen in the mixed group, and around 39% was seen in the

media group. In section 3, around 22–35% axonal recovery was observed in the Sk-34 and

mixed groups, but no myelin formation was observed at 2 weeks. However, at 8 weeks, 71–

79% axonal and myelin recovery was observed in the three transplant groups, while the media

group showed only about 30% recovery. Thus, taken together, the Sk-34 group showed a total

of 87% axonal and 88% myelin recovery through the conduit; the mixed group showed 89%

axonal and 84% myelin recovery; the Sk-DN/29+ group showed 83% and 84% recovery; and

the media group showed 41% and 36% recovery during the 8 weeks post-transplantation.

Quantitative analysis of early stage vascular formation in the conduit and

paracrine effects of Sk-34 and Sk-DN cells

In order to compare the early stage vascular formation in the conduit, newly formed CD31+

blood vessels were assessed in cross-sections 1 and 3 (see Methods, Fig 7). Comparisons were

performed among Sk-34, Sk-DN/29+, and media control groups at 2 weeks after transplanta-

tion. Typical features observed at 2 weeks after transplantation are shown in Fig 7A. A large

number of blood vessels were formed in the conduit even at 2 weeks after transplantation

(early stage of regeneration). A quantitative comparison of blood vessel formation is shown in

Fig 7B. Two transplantation groups showed significantly higher numbers of blood vessels in

Section-1 (proximal portion), and this trend was also observed in Section-3. Moreover, these

three groups consistently showed a higher number of blood vessels than normal levels (dotted

lines in Fig 7B).

Concurrently, the protein levels of angiogenesis regulatory cytokines such as Ang (Angio-

genin), IGF binding protein (BP)-3, IL-8, MCP-1 (monocyte chemotactic protein-1), MMP-9,

PlGF (placenta growth factor), and VEGF were measured in both expanded Sk-34 and Sk-DN/

29+ cells prepared immediately before transplantation (Fig 7C). Notably, active protein expres-

sion levels of these seven factors were equally measured in both groups.

Differentiation of human Sk-34 cells in the conduit

Eight weeks after Sk-34 cell transplantation, immunohistochemical detection of Schwann cells,

perineurial cells, and endothelial cells in the conduit was performed (Fig 7). A close relation-

ship between HNA+ nuclei and myelin (MBP+) was observed in the cross- (Fig 8A) and longi-

tudinal sections (Fig 8B). This relationship was further supported by evidence for

differentiation into Schwann cells, which were detected by double-positive staining for p75

and HNA (Fig 8C, arrows). Differentiation into perineurial cells and formation of the perineu-

rium was also demonstrated by co-staining of GLUT-1 and HNA (Fig 8D, arrows). Similarly,

differentiation of endothelial cells was detected by double staining for CD31 and HNA (Fig

8E, arrows). Interestingly, several Sk-actin+ and HNA+ cells, which are considered skeletal

muscle cells, were detected 7 days after Sk-DN/29+ cell transplantation, even in the nerve

bridging conduit (Fig 8F, arrows). However, the number of these Sk-actin+ cells decreased 2

weeks after transplantation and disappeared at 3 weeks. Thus, the Sk-DN/29+ cells were pres-

ent and/or retained in the conduit during the first 3 weeks. This disappearance of Sk-DN/29+
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cells is shown in S2 Fig. Staining for the normal control nerve, as was standard for the immu-

nohistochemistry (N200, MBP, p75, and GLUT-1) as presented in Figs 3, 5 and 8 is shown in

S5 Fig.

Muscle mass and tetanic tension recovery in downstream muscles

Changes in lower hindlimb muscle mass downstream of the damaged nerve, a functional

recovery marker of the transected nerve, were measured at 2, 4, 8, and 12 weeks after surgery

(Fig 9A). Recovery was evaluated by the total mass of five muscles of the lower hindlimb

Fig 5. Cross-sectional profiles of bridging conduits transplanted with Sk-34, Sk-DN/29+, media, and

mixed cells (Sk-34+Sk-DN/29+) 8 weeks after surgery. Results were obtained from a nude mice experiment.

Upper images = section-1, lower images = section-3. A large numbers of HNA+ cells (red reactions) were

observed limitedly in the Sk-34- and mixed-transplanted nerve (first row in both sections), with reconstitution of

axons and myelin that was favorable when compared to the other two groups (green reactions in second and third

row). However, there are no HNA+ cells in the Sk-DN/29+ group, but showed better axon and myelin recovery than

the media group (green reactions in second and third row in columns 2 and 3). Bars = 100 μm. Data were obtained

from 2 male patients (ages: 35 and 60; muscles: gastrocnemius and tibialis anterior).

doi:10.1371/journal.pone.0166639.g005

Fig 6. Quantitative comparison of the number of axons and myelin formation in sections-1 and -3 at 2 and 8

weeks after transplantation. Results were obtained from a nude mice experiment. Reconstitution in section-1

(proximal portion) clearly came before that in section-3 (distal portion). This was also the case for axonal

regeneration and myelin formation. Note that the Sk-34 and mixed groups showed more axonal regeneration than

controls in section-1 at 2 weeks, but they were both within the mean range at 8 weeks. The dotted line shows

normal control values ± SE. Thus, Sk-34 group in section-1 shows 100% recoveries. *P < 0.05 (vs. media), #

P < 0.05 (vs. Sk-DN/29+).

doi:10.1371/journal.pone.0166639.g006
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plantar and dorsal flexor muscles. Changes in values of body and muscle mass and tension out-

puts in each group during the recovery phase are summarized in S2 Table. Muscle mass con-

sistently decreased until 4 weeks after surgery in all groups, and then gradually recovered by 12

weeks. Thus, 4 weeks was considered the turning point in recovery, with a 34–43% recovery of

pre-surgery mass, and significant differences were observed between the Sk-34 and media

groups. At 8 weeks, the three transplant groups showed 66–69% recovery, but the media group

showed a significantly lower value (55%). At 12 weeks, the Sk-34 and mixed groups showed

about 75–77% recovery, while the Sk-DN/29+ and media groups showed around 70%.

Tetanic tension output of muscles following electrical stimulation of the sciatic nerve proxi-

mal to the gap portion was also assessed at 2, 4, 8, and 12 weeks after transplantation (Fig 9B).

Measurements were performed in the solo plantaris and separately in the tandem gastrocne-

mius and soleus muscles, and were evaluated as the total function of plantar flexor muscles. In

contrast to muscle mass, gradual recovery was observed in the three transplant groups, while

the media group showed no changes during the first 4 weeks. After 4 weeks, all groups showed

recovery that accelerated through 8 weeks, but this tended to slow by 12 weeks, except in the

Sk-34 group, which showed constant recovery. Significant differences were observed at 4

weeks (41% vs. 8.8%) and 12 weeks (97% vs. 60%) between the Sk-34 and media groups. These

data revealed two important points: 1) rapid recovery (that differed significantly from the

media group) during the first 4 weeks in the Sk-34 group; and 2) modest recovery in the Sk-

DN/29+ group, with transplanted cells disappearing within the first 3–4 weeks (S1 Fig). As a

result, 97–99% tension recovery was observed in the Sk-34 and mixed groups.

Characteristics of the tibial nerve and its branches associated with the

muscle spindle in the plantaris

Based on the above muscle mass and functional recovery data, reconstitution of peripheral

nerve and muscles further from the damaged site, such as the tibial nerve and its branches

associated with the muscle spindle of the plantaris, were analyzed in the Sk-34 and media

groups (Fig 10). The ample size of the tibial nerve with the large number of axons in the Sk-34

muscle (Fig 10A) was almost the same as that of the control (Fig 10C), while in the media

group, a few axons with a thin shape nerve was evident (Fig 10B). The number of axons in the

tibial nerve was also counted in the above three groups (Fig 10J). Normal control showed

about 1600 axons. Approximately half of this number was observed in the Sk-34 group

(around 800), and the media group showed less than 200. Significant differences were observed

between the three groups. A similar trend was also evident in the more downstream nerve

branches located in each plantaris muscle (Fig 10D–10F, arrows). The media muscle tended to

show fewer nerve fibers (axons) in and around the muscle spindles than the Sk-34 and control

muscles (Fig 10D–10F, arrowheads). Furthermore, a pathognomonic irregular (small and

large) fiber size was frequently observed in the media group, but was less frequently observed

in the Sk-34 group (Fig 10G and 10H), thus confirming incomplete innervation in the media

group. However, fiber-type grouping was consistently observed in both groups; thus,

Fig 7. Quantitation of blood vessels formed in the conduit at 2 weeks after transplantation and the protein expression of

angiogenetic cytokines. (A) Detection of newly formed blood vessels in the conduit using CD31 immunostaining in the Sk-34

(left), Sk-DN/29+ (center), and media (right) groups. Upper panels show Section-1 and lower panels show Section-3. Bars =

100 μm. (B) Comparison of the number of blood vessels among three groups. *P < 0.05. (C) Measurement of the protein levels of

angiogenesis related cytokines. Ang: Angiogenin, IGFBP-3: Insulin-like growth factor binding protein-3, IL-8: Interleukin-8, MCP-1:

Monocyte chemotactic protein-1, MMP-9: Matrix metalloprotease-9, PlGF: Placenta growth factor, and VEGF: Vascular endothelial

growth factor. Levels are expressed as pixel intensity. Data were obtained from 2 male patients (ages: 35 and 60; muscles:

gastrocnemius and tibialis anterior).

doi:10.1371/journal.pone.0166639.g007
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Fig 8. Profiles of engrafted human Sk-34 and Sk-DN/29+ cells in the bridging conduit. Results were obtained

from a nude mice experiment. A–E = 8 weeks, F = 7 days after transplantation. Pink coloring indicates HNA+ nuclei of

human cells. (A, B) Relationship between engrafted Sk-34 cells and myelin (MBP, green staining) formation in cross-

and longitudinal-sections. (C) Engrafted human Sk-34 cell-derived, putative newly formed Schwann cells (arrows)

stained with p75 (green). (D) Human Sk-34 cell-derived perineurial cells and/or perineurium stained with GLUT-1

(green, arrows). (E) Human Sk-34 cell-derived endothelial cells (CD31+; green, arrows). (F) Human Sk-DN/29+ cell-

derived myotubes (skeletal muscle actin+; green, arrows) detected at 7 days. Blue = nuclear staining with DAPI.

Bars = 50 μm. Photographs were obtained from 2 male patients (ages: 27 and 55; muscles: gastrocnemius and tibialis

anterior). In addition, disappearance of Sk-DN/29+ cells in the bridging conduit during the 3 weeks after transplantation

is confirmed in the S2A Fig. Response of Sk-actin in the Sk-34 cell transplanted nerve conduit is also showed in the

S2B Fig. Confirmation of p75 (C) and CD31 (E) staining were further performed by confocal microscopy (S3 Fig).

Furthermore, in the present immunohistochemistry, detection of Schwann cells and perineurium were performed by

p75 and GULT-1. However, anti-p75 also react to endoneurium (endoneurial cells) and perineurium (perineurial cells),

and there were confirmed by IEM (S4 Fig). The standard for these immunohistochemistry (N200, MBP, p75, and

GLUT-1) as presented in Figs 3, 5 and 8 is shown in S5 Fig as for the staining for the normal control nerve.

doi:10.1371/journal.pone.0166639.g008
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Fig 9. Recovery of downstream muscle mass and tension output. Results were obtained from a nude

mice experiments, after transplantation of 7 patient samples (5 males and 2 female; ages: 16, 17, 27, 35, 55,

62, and 79; muscles: soleus, gastrocnemius, and tibialis anterior). (A) Changes in lower hindlimb muscle

mass during the 12-week recovery phase. Values represent the total muscle mass of the gastrocnemius,

plantaris, soleus, extensor digitorum longus, and anterior tibialis muscles. (B) Changes in the tetanic tension

output of plantar flexor muscles (gastrocnemius, plantaris, and soleus) during the 12-week recovery phase.

Mean values in each group at each stage are summarized in S2 Table. *P < 0.05.

doi:10.1371/journal.pone.0166639.g009

Novel Autologous Therapy for Long-Gap Peripheral Nerve Injury Using Human Sk-SCs

PLOS ONE | DOI:10.1371/journal.pone.0166639 November 15, 2016 19 / 28



denervation and re-innervation clearly occurred in both groups, but innervation was incom-

plete in the media group and was relatively favorable in the Sk-34 group. Taken together, the

results from nude mice through the present experiments ultimately bring a 50% recovery and/

or retention of motor units with the reconstitution of a completely ruptured sciatic nerve,

including the regeneration of the sensory nervous system such as the re-establishment of mus-

cle spindles.

Discussion

Recently, we established therapeutic isolation, sorting, and expansion culture methods for

human Sk-SCs, and demonstrated the stem cell potency of human Sk-SCs for differentiation

into skeletal muscle-nerve-blood vessel lineages after transplantation into severely damaged

muscle [16]. It is possible that the differentiation capacity of human Sk-SCs is comparable to

that of mouse Sk-MSCs [9, 17] because we used the identical cell isolation (enzymatic digestion

and cell sorting) method. However, unlike mouse Sk-MSCs, we found that human Sk-SCs

could be divided into two populations: the skeletal myogenic lineage (Sk-DN/29+) consisting

primarily of satellite cells, and the multiple peripheral nerve-blood vessel lineage (Sk-34) [16].

Using this method, in the present study, we demonstrated that human Sk-34 cells are suitable

for damaged nerve regeneration therapy. That is, transplanted human Sk-34 cells were actively

engrafted into damaged sites following differentiation into Schwann cells and endoneurial/

perineurial cells, and were associated with vascular endothelial cells and pericytes in the nude

rat crush injury model (Fig 3). These results are comparable to a previous mouse Sk-MSC

study focusing on severe nerve crush injury model [8]. In addition, the therapeutic potential of

human Sk-34 cells with a conduit in long-gap nerve transection was also comparable to that of

mouse cells [8], showing about 87% axonal and 88% myelin recovery (Figs 5 and 6), and favor-

able engraftment and differentiation into peripheral nerve-blood vessel support cells in the

conduit (Fig 8). Similar favorable nerve reconstitution was observed in the downstream tibial

nerve, which showed recovery from Wallerian degeneration. In the downstream distal hin-

dlimb muscles, 75% of muscle mass and 97% of tetanic tension was recovered, and was associ-

ated with nearly homogeneous muscle fiber diameters (less irregularity) and innervation of the

muscle spindles, suggesting sensory nerve regeneration (Figs 9 and 10). In addition, engrafted

Sk-34 cells expressed nerve-vascular-related trophic and growth factor mRNAs 6 weeks after

transplantation (Fig 4). The expression levels of angiogenesis-related cytokines such as VEGF

in the expanded Sk-34 cells were also detected by protein analysis (Fig 7C), which reflects the

accelerated blood vessel formation at 2 weeks after transplantation (Fig 7A and 7B). Further-

more, significant acceleration of morphological and functional recovery during the first 4

weeks after injury was also a characteristic of the human Sk-34 treatment associated with their

active engraftment (Figs 6 and 9). These comprehensively improved recoveries following long

nerve-gap injury have never been reported previously.

More importantly, these results were obtained from an allograft into nude mice/rats, not

into SCID or NOD/SCID mice, which suggests the ease of cell engraftment. Thus, superior

engraftment capacity of the present human Sk-34 cells described here might be used for autol-

ogous adult stem cell therapy. In addition, the present isolation/expansion method was con-

firmed to be safe setting the limit of 2 passages of cell culture, with no karyotype abnormalities

appearing [16]. Furthermore, tumorigenesis in vivo was not observed in over 40 patient sam-

ples in over 200 transplantation experiments totally in the previous muscle experiment [16]

and the present nerve experiment. Therefore, this Sk-SCs autograft method should be consid-

ered safe and practical for human nerve repair therapy.
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Fig 10. Characteristics of the tibial nerve and its branches associated with muscle-spindles in the plantaris muscle.

Results were obtained from a nude mice experiment. Photographs (Sk-34) were obtained from the data of a female patient
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Another group has reported similar differentiation and therapeutic capacity using human

muscle-derived stem cells [15]. The isolated cells demonstrated neuronal and glial phenotypes

in vitro and ameliorated a critical-sized sciatic nerve injury after in vivo transplantation into

the SCID mouse model, showing differentiation into Schwann cells. The main difference from

the present study is their cell isolation method, which involved a pre-plating technique using

long-term cell culture with repeated passages. The recipient animals (SCID mouse), nerve

injury model (less than 7 mm gap), and cell transplantation method (without a conduit) are

also different. Therefore, it is difficult to compare and evaluate the therapeutic effects in both

studies directly. If compared, their results of approximately 450 axons recovered in the rup-

tured sciatic nerve and 50% retention of downstream muscle mass are apparently less than the

values of the non-cell transplanted media control group in the present study. Nonetheless, pre-

vious and present studies have collectively demonstrated that skeletal muscles are important

and practical cell sources for nerve repair [9, 15–17]. Similarly, several human adult somatic

stem cell lines, such as human hair follicle stem cells [22], human umbilical cord-derived mes-

enchymal stem cells [23], and human bone marrow stromal cells [24], have been applied to the

regeneration of damaged peripheral nerves, and their cellular differentiation capacities have

been examined in vivo. These studies consistently showed limited differentiation into Schwann

cell after transplantation. Therefore, the present multiple/comprehensive contribution associ-

ated with the differentiation into all peripheral nerve support cells, along with significant con-

tributions to angiogenesis, was never suggested. It is expected that this multiple regenerative

capacity will be developed for the therapeutic use of peripheral nerve repair.

The other human skeletal muscle derived stem cells have also been isolated and character-

ized, and their myogenic differentiation capacity examined in vivo [10–14]. In our method,

the myogenic capacity in vivo was limited in the Sk-DN/29+ cells, a fraction suggested to

mainly comprise satellite cells [16], and were eliminated during the first 3–4 weeks after trans-

plantation in the present long-gap nerve niche (S2 Fig). However, various cell isolation

method were used, such as with or without muscle mincing, various collagenase concentra-

tions, with or without proteases, and different cell expansion culture methods. It has been sug-

gested that these different conditions affect the expressions of CD markers and the ability of in
vivo engraftment and differentiation capacities of isolated cells [25]. Although a direct compar-

ison of these cells is difficult, these studies undoubtedly suggest a remarkable potential of the

skeletal muscles as a source of stem cells, for therapeutic use. Our method may have important

practical implications for therapeutic use because it is safe and efficient, with rapid cell isola-

tion and robust cell engraftment following transplantation.

Regarding the rejection of Sk-DN/29+ cells in the damaged nerve niche, there are several

possible explanations. First, we confirmed that Sk-DN/29+ cells originally showed skeletal

myogenic potential in vitro and in vivo [16], and that similar myogenic cell elimination in the

peripheral nerve-specific niche was also confirmed in the previous mouse Sk-MSCs experi-

ment [8]. The elimination of myogenic cells in the damaged nerve niche was also observed by

another group [15]. Therefore, the myogenic cells were eliminated from the nerve-specific

niche, while the expression of cell surface markers and/or specific mRNAs were similar in Sk-

34 and Sk-DN/29+ cells just prior to transplantation (Fig 4A and Fig 1). Specifically, during

(age: 17; muscle: tibialis anterior). (A–C) Tibial nerve along with the plantaris muscle. (D–F) Tibial nerve branches (arrows) and

muscle spindles (arrowheads) in the plantaris. (G-I) Portion of the gastrocnemius muscle stained with ATPase (acid) taken at

the same magnification. Left column (A, D, G) = Sk-34, mid column (B, E, H) = media, and right column (C, F, I) = control.

Panels A–F show staining with N200 (red) + laminin (green) at the same magnification, and blue = nuclear staining with DAPI.

Bars in C, F = 50 μm, and I = 200 μm. (J) The number of axons in the tibial nerve was counted. A 50% recovery was observed in

the Sk-34 group, whereas media group showed only less than 10% recovery. *P < 0.05.

doi:10.1371/journal.pone.0166639.g010
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the first 7 days after transplantation, Sk-DN/29+ cells differentiated into myocytes/myotubes

producing skeletal muscle-specific proteins such as actin. However, these committed cells

could not receive any further growth factors or factors promoting differentiation into mature

myofibers in the damaged nerve niche, and thus, they stopped growing (differentiation arrest),

underwent necrosis, and may have been phagocytized within the next 2–3 weeks (see S2 Fig).

This trend was confirmed in myogenic cells from mouse Sk-MSCs in the damaged nerve niche

[8]. Thus, we confirmed that skeletal myogenic cells cannot grow in a nerve-specific niche

basically. However, we also confirmed that the present human Sk-DN/29+ group showed

greater recovery than the media group in all comparisons (83–84% axon/myelin recovery, 70%

muscle mass recovery, and 81% tension output recovery), since all other measures were clearly

lower than those in the Sk-34 group. Therefore, the paracrine effects of transplanted Sk-DN/

29+ cells during the first 3–4 weeks may have positively affected overall recovery, acting as an

adjuvant for damaged nerve tissue repair. In fact, both Sk-34 and Sk-DN/29+ cells showed

active expression of angiogenesis-regulating cytokines just before transplantation, including

Angiogenin, IGFBP-3, IL-8, MCP-1, MMP-9, PlGF, and VEGF, which are potent stimulators

of new blood vessel formation through the process of angiogenesis [26–33]. The presence of

these cytokines in the Sk-DN/29+ group was associated with increased blood vessel formation

in the conduit during the early stage of regeneration (2 weeks after transplantation) compared

with that in the media group (Fig 7). This early and increased formation of blood vessels may

have created a favorable oxygen-glucose environment in the nerve conduit, and resulted in sig-

nificantly better recovery in the Sk-DN/29+ group than in the media group. This also suggests

that treatment during the first 4 weeks after injury markedly affects subsequent morphological,

volumetric, and functional nerve recovery; thus, it should reflect further nerve damage

therapy.

In the above context, the combined transplantation of Sk-34 and Sk-DN/29+ cells was likely

to consider the best method. This mixture was actually the same as for mouse Sk-MSCs [8],

because it is difficult to divide myogenic and non-myogenic stem cells in mouse Sk-MSCs

[34]. However, the results clearly indicated that synergistic effects and/or specific adverse

effects were not observed in the mixed group, which showed comparable results to those of the

Sk-34 group in all experiments. Thus, we conclude that mixed transplantation may be a sec-

ondary option in nerve gap therapy, in the case that an insufficient number of Sk-34 cells are

obtained, and/or the case that an increased cell injection is necessary for larger nerve gaps.

Therefore, the mixed transplantation of Sk-34 and Sk-DN/29+ cells is a possible secondary

option for the nerve repair.

The 60% functional (in situ downstream muscle contraction) recovery in the present media

control group was higher than that observed in C57BL/6N mice previously. The nude mice

control group in this study showed 41% axon and 36% myelin recoveries, whereas the previous

C57BL mice showed 21% axon and 23% myelin recoveries [8]. In addition, the previous func-

tional assessment (narrow corduroy walking score) in C57BL mice indicated 34% recovery

based on behavior [8]. As a result, relatively higher recoveries were observed in the nude mice

media control group in this study. The reasons are unclear, but this may be a characteristic of

nude mice. In addition, we must note that the basic motor ability was lower in nude mice,

because they could not perform narrow corduroy walking even in the normal, non-operated

control state, and this is the reason for the absence of an in vivo corduroy walking analysis in

this study.

The material for the bridging conduit in the nerve gap is another important issue [35].

With regard to conduit materials, we used an acellular tube made from the separated esoph-

ageal submucous membranes of nude mice after 3 days of 70% ethanol dehydration, because

of its size, substance permeability, and tenderness. For human therapy applications, an
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autologous vein of an appropriate size would be the best candidate at present, while the efficacy

of cellular or acellular conditions must be examined. However, the use of an artificial tube is

less invasive and much better for the patient. Biodegradable materials, such as polyglyconate

[36, 37] and/or collagen type I [38] have been shown to be clinically beneficial in nerve repair,

and they may be good candidate materials. However, we think that further consideration/

improvement, such as adjustable size, substance permeability, and tenderness, should be nec-

essary to complete our purpose at present.

In the present study, functional recovery of downstream muscles was apparent 2 weeks

after the operation (Fig 9B), and Sk-34 cell transplantation resulted in significantly attenuated

muscle atrophy at 4 weeks (Fig 9A). These results suggest that early rehabilitation can potenti-

ate axonal regeneration, promote selective target reinnervation, and modulate central reorga-

nization [39]. An appropriate brief electrical stimulation of the proximal nerve stump [40] and

laser phototherapy [41, 42] are also candidate co-treatments for accelerating axonal growth

and preventing denervated muscle atrophy.

Conclusion

The skeletal muscle is the largest organ in the body, comprising approximately 40–50% of total

body mass. Our previous study demonstrated that there were no differences in the therapeutic

tissue reconstitution capacity of Sk-SCs obtained from the leg and abdominal muscles [16].

Thus, we expect that removal of a small sample (around 3 g) from the abdominal wall muscle

would allow donor cells to be obtained relatively easily and safely, with minimal sacrifice. Of

course, sampling around the nerve-damaged site is also possible. In addition, we confirmed

the comparable differentiation and reconstitution potential of human Sk-34 and Sk-DN/29+

cells using MACS (magnetic-activated cell sorting). Therefore, human Sk-SCs are a potential

practical source for autologous stem cell therapy following severe nerve injury.

Supporting Information

S1 Fig. Differentiation potential of Sk-34/29+, Sk-34/29- cells in a severely crushed nerve

niche. Results were obtained from a nude rat experiment, after transplantation of a male

patient sample (age 62, tibialis anterior). (A and B) Triple staining with HNA (purple), N200

(red), and p75 (immature Schwann cells, green) in Sk-34/29+ cell-transplanted nerves, show-

ing donor human cell-derived putative Schwann cells (arrows). Blue = nuclear staining with

DAPI. (C-F) Immunoelectron microscopic detection of engrafted Sk-34/29- cells. Note that

arrows in C and D shows HNA- nuclei, and HNA+ nuclei show darker staining because of

their DAB reaction products (higher electron density of heavy metal-binding). Human Sk-34/

29+ cells differentiated into Schwann cells (S), perineurial cells (P), endoneurial cells (E), endo-

thelial cells (EC), and pericytes (PC). Note that combined results of Fig 3 and this Figure S1,

showed the same differentiations of Sk-34/29- and Sk-34/29+ cells in vivo.

(TIF)

S2 Fig. (A) Disappearance of Sk-DN/29+ cells in the bridging conduit during the 3 weeks after

transplantation. Results were obtained from a nude mouse experiment. A gradual decrease in

Sk-actin+ (green) cells over time was evident. (B) Anti-Skeletal muscle actin staining for the

Sk-34 cell transplanted nerve conduit. An adherent muscle fibers on the outside of conduit

(arrows) are Sk-actin+, but there were no Sk-actin+ cells in the inside of conduit (regenerated

nerve portion including transplanted Sk-34 cells) in the cross-sectional and longitudinal pro-

files. Arrows = accidentally adhered skeletal muscle fibers with the outside of the conduit. Red

nuclei = Human Nuclear Antigen positive cells. Blue nuclei = DAPI, as the recipient cell
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nuclei.

(TIF)

S3 Fig. Confocal images for p75 and CD31 staining. The photograph was obtained by Zeiss

LSM700 confocal microscope equipped with 40x LD “C-Apochromat” water immersion objec-

tive lens (Carl Zeiss, Jana, Germany).

(TIF)

S4 Fig. Immunoelectron microscopy of p75 and HNA. E = endoneurial cell, P = perineurial

cell, S = Schwann cell and � = HNA+ nuclei. Arrows showed DAB+ reactions of the perineu-

rium and endoneurium, and arrowheads showed DAB+ reactions of Schwann ells. (A) HNA+

endoneurial cells/endoneurium surrounded HNA+/p75- Schwann cell. (B) HNA+ perineurial

cell/perineurium surrounded several p75- Schwann cells, but one is �HNA+. (C) Perineurium

(arrows) surrounded several Schwann cells, including �HNA+ and p75+ (arrowheads)

Schwann cells. (D) Similarly, HNA+ perineurial cell/perineurium surrounding several p75+

Schwann cells (arrowheads).

(TIF)

S5 Fig. Staining of N200 (A), MBP (B), p75 (C), and GLUT-1(D) in a normal control nerve.

Results were obtained from a nude mouse experiment. The number of p75+ cells is relatively

lower in a normal control nerve, because of their main containing of mature Schwann cells.

Similarly, mature perineurium/endoneurium in a normal nerve does not react with GLUT-1.

Squares 1 and 2 in panels A-D correspond each adjunctive panels 1 and 2, and are higher mag-

nifications.

(TIF)

S1 Table. Specific primers for human cells. bp = base pair. All primers were checked that

there were never responded to the rats and mouse cells.

(DOCX)

S2 Table. Statistics of body and muscle mass, and tetanic tension output in each group dur-

ing recovery phase. Values are expressed as means ±S.E. TA = Tibialis Anterior,

EDL = Extensor Digitorum Longus, SOL = Soleus, PLT = Plantaris, GAS = Gastrocnemius.

(DOCX)
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